以太网技术大全——端到端以太网

合集下载

以太网介绍分析 (一)

以太网介绍分析 (一)

以太网介绍分析 (一)以太网介绍分析以太网 (Ethernet) 是广泛应用于局域网的一种计算机通信技术。

它是由Robert Metcalfe和他的研究团队于1970年代末在美国计算机科学实验室发明的。

与其他局域网技术相比,以太网更加廉价、易于部署和维护,因此被广泛使用。

一、以太网的工作原理以太网利用一种称为CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的协议来管理网络中的数据传输。

这种协议要求每台计算机在发送数据包之前侦听网络上是否有其他计算机正在发送数据。

如果网络中没有数据包,则计算机可以发送数据包。

如果两个或多个计算机同时开始发送数据包,它们会发生碰撞,并自动停止发送,然后稍微等待一段时间再次发送。

这种反复检测和等待的过程称为CSMA/CD过程。

二、以太网的拓扑结构以太网的拓扑结构包括星型拓扑、总线型拓扑和环型拓扑。

其中,星型拓扑是最为常见的拓扑结构。

它的特点是所有节点都连接到交换机上,交换机起着调度和转发数据的作用。

总线型拓扑的特点是所有节点都连接到同一条总线上,数据包从一个节点传输到另一个节点。

环型拓扑的特点是各节点连接成一个环形,数据包从一个节点传输到相邻的节点,直到到达目的节点。

三、以太网的速率和传输距离以太网的传输速率通常为10Mbps、100 Mbps或1000Mbps。

在实际应用中,越高的传输速率意味着更大的带宽和更高的传输效率。

以太网的传输距离受网线材料和信号衰减等因素影响。

一般而言,100米是以太网正常的传输距离。

四、以太网的优缺点以太网被广泛应用于局域网的原因之一是其优良的性价比。

与其他局域网技术相比,它更加便宜。

此外,它的部署和维护也更加简单。

另一方面,以太网的主要缺点是其速度相对较慢。

与一些现代的局域网技术(如光纤网络)相比,它的速度远远不够快。

总之,以太网是一种被广泛应用于局域网中的计算机通信技术。

计算机三级《网络技术》基础知识:以太网

计算机三级《网络技术》基础知识:以太网

计算机三级《网络技术》基础知识:以太网2015计算机三级《网络技术》基础知识:以太网1.以太网的发展1976年7月,Bob在ALOHA网络的基础上,提出总线型局域网的设计思想,并提出冲突检测、载波侦听与随机后退延迟算法,将这种局域网命名为以太网(Ethernet)。

以太网的核心技术是:介质访问控制方法CDMA/CD.这种方法解决了多结点共享公用总线的问题。

早期以太网的传输介质是同轴电缆,后用双绞线,再后用光纤。

2.以太网的帧结构与工作流程(1)以太网数据发送流程冲突:多个站点同时利用总线发送数据,导致数据接收不正确。

总线网没有控制中心,如果一个站点发送数据帧,以广播方式通过总线发送,每一个站点都能收到数据帧,其它站点也可以同时发送,因此冲突不可避免。

CSMA/CD发送流程可简单概括为:先听后发,边听边发,冲突停止,延迟重发。

实现公共传输介质的控制策略,需要解决的问题是:载波侦听,冲突检测,冲突后的处理方法。

(a)载波侦听结点利用总线发送数据时,首先侦听总线是否空闲,以太网规定发送数据采用曼彻斯特编码。

判断总线是否空闲可以判断总线上是否有电平跳变。

不发生跳变总线空闲。

此时如果有结点已准备好发送数据,可以启动发送。

(b)冲突检测方法载波侦听不能完全消除冲突,原因是数字信号是以一定的速率传输的。

例如:结点A发送数据帧时,离他1000m距离的结点在一定的时间延迟后才能收到数据帧,此时间段内如果B也发送数据,造成冲突。

从物理层上看,冲突时多个信号叠加,导致波形不同于任何结点的波形信号。

解决方案:结点A发送数据前,先发送侦听信号,如果侦听信号在最大距离传输时间2倍时,没有冲突信号出现,结点A肯定取得总线的访问权。

冲突信号的延迟时间=2*D/V。

其中:D是结点到最远结点的距离,V表示信号传输速度,信号往返的时间为延迟时间。

进行冲突检测的方法有两种:比较法和编码违例法。

比较法:将发送信号波形与从总线上接收的信号比较,如果不同说明有冲突。

以太网简要教程

以太网简要教程

以太网简要教程一、概述通常我们所说的以太网主要是指以下三种不同的局域网技术:以太网/IEEE 802.3—采用同轴电缆作为网络媒体,传输速率达到10Mbps;100Mbps以太网—又称为快速以太网,采用双绞线作为网络媒体,传输速率达到100Mbps;1000Mbps以太网—又称为千兆以太网,采用光缆或双绞线作为网络媒体,传输速率达到1000Mbps(1Gbps)以太网以其高度灵活,相对简单,易于实现的特点,成为当今最重要的一种局域网建网技术。

虽然其它网络技术也曾经被认为可以取代以太网的地位,但是绝大多数的网络管理人员仍然把将以太网作为首选的网络解决方案。

为了使以太网更加完善,解决所面临的各种问题和局限,一些业界主导厂商和标准制定组织不断的对以太网规范做出修订和改进。

也许,有的人会认为以太网的扩展性能相对较差,但是以太网所采用的传输机制仍然是目前网络数据传输的重要基础。

二、以太网工作原理以太网是由Xeros公司开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和碰撞检测(CSMA/CD)机制,数据传输速率达到10Mbps。

虽然以太网是由Xeros公司早在70年代最先研制成功,但是如今以太网一词更多的被用来指各种采用CSMA/CD技术的局域网。

以太网被设计用来满足非持续性网络数据传输的需要,而IEEE802.3规范则是基于最初的以太网技术于1980年制定。

以太网版本2.0由Digital Equipment Corporation、Intel、和Xeros三家公司联合开发,与IEEE 802.3规范相互兼容。

太网结构示意图如下:以太网/IEEE 802.3通常使用专门的网络接口卡或通过系统主电路板上的电路实现。

以太网使用收发器与网络媒体进行连接。

收发器可以完成多种物理层功能,其中包括对网络碰撞进行检测。

收发器可以作为独立的设备通过电缆与终端站连接,也可以直接被集成到终端站的网卡当中。

以太网技术的前世今生

以太网技术的前世今生

以太网技术的前世今生从二十世纪八十年代开始以太网就成为最普遍采用的网络技术,它"统治"着世界各地的局域网和企业骨干网,并且正在向城域网发起攻击。

随着万兆以太网标准的推出,以太网为征服广域网、存储和宽带领域中的新领地做好了准备。

根据IDC的统计,以太网的端口数约为所有网络端口数的85%。

而且以太网的这种优势仍然有继续保持下去的势头。

从10M、100M、千兆到万兆以太网,以太网技术的发展,在速率呈数量级增长的同时,其应用领域也在不断拓宽。

而不同应用领域各自的应用需求,又促进了在这些领域内以太网技术的个性化发展。

一、以太网的发展历程1973年Metcalfe博士在施乐实验室发明了以太网,并开始进行以太网拓朴的研究工作。

1976年施乐公司构建基于以太网的局域网络,并连接了超过100台PC。

1980年DEC、Intel和施乐联手发布10Mbps以太网标准提议。

1983年IEEE 802.3工作组发布10BASE-5"粗缆"以太网标准,这是最早的以太网标准。

1986年IEEE 802.3工作组发布10BASE-2"细缆"以太网标准。

1991年加入了无屏蔽双绞线(UTP),传输速率是10Mbps,所以称为10BASE-T标准。

T 是双绞线的意思,它可运行在普通的电话双绞线上。

由于支持10BASE-T的集线器和交换机工作十分可靠,使得这种技术和10BASE-T标准得到了迅速推广。

这种标准支持在共享介质上的半双工传输。

并采用CSMA/CD协议来解决信息在共享介质上的冲突。

1995年,IEEE通过了802.3u标准,将以太网的带宽扩大为100Mbps。

对于无屏蔽双绞线的标准称为100BASE-T。

快速以太网(100Mbps以太网)除了继续支持在共享介质上的半双工通信外,还支持在两个通道上进行的双工通信。

双工通信进一步改善了以太网的传输性能。

另外,100Mbps以太网的网络设备的价格并不比10Mbps的设备贵多少。

以太网 ppt课件

以太网 ppt课件

t=
B B 检测到发生碰撞
IP 数据报 46 ~ 1500
数据
IP 层
4 FCS MAC 层
MAC 帧
物理层
以太网 V2 的 MAC 帧格式
当传输媒体的误码率为 1108 时, MAC 子层可使未检测到的差错小于 11014。
FCS 字段 4 字节
字节 6
6
目的地址 源地址
2 类型
IP 数据报 46 ~ 1500
数据
IP 层
A 不接受
只有 D 接受 B 发送的数据
B
B向 D 发送数据
C 不接受
D 接受
E 不接受
以太网的广播方式发送
总线上的每一个工作的计算机都能检测到 B 发 送的数据信号。
由于只有计算机 D 的地址与数据帧首部写入的 地址一致,因此只有 D 才接收这个数据帧。
其他所有的计算机(A, C 和 E)都检测到不是 发送给它们的数据帧,因此就丢弃这个数据帧 而不能够收下来。
具有广播特性的总线上实现了一对一的通信。
为了通信的简便 以太网采取了两种重要的措施
采用较为灵活的无连接的工作方式,即 不必先建立连接就可以直接发送数据。
以太网对发送的数据帧不进行编号,也 不要求对方发回确认。
这样做的理由是局域网信道的质量很好,因 信道质量产生差错的概率是很小的。
以太网提供的服务
无连接: 在发送和接收适配器之间没有握手 不可靠: 接收适配器不向发送适配器发送应答
或否定应答
传送给网络层的数据报流可能有丢包 如果应用程序使用TCP,将能弥补丢包 否则,应用程序将发现丢包
以太网的MAC协议:CSMA/CD
从总线拓扑到星型拓扑
直到20世纪90年代,总线拓扑流行 后来,星型的集线器 目前星型的交换机

以太网详细介绍

以太网详细介绍

Balanced Copper Xcvr Shielded Balanced Copper Cable
2005©
zqiangwu@
GBN支持的传输供介质
1000 Mbps MAC (Media Access Control) 802.3z CSMA/CD Ethernet
1000BaseLX (1300 nm)
多模光纤连接的最大距离为550米 单模光纤连接的最大距离为3000米
铜基连接距离最大为25米,基于5类无屏蔽双绞线的连接距离增至 100 米的技术
可选的千兆位介质无关接口(GMII) 基于光纤的全双工和半双工操作

2005©
zqiangwu@
GBN的优点

千兆以太网采用和以太网、快速以太网一样的可变长的 (64-1514byte)IEEE802.3帧格式 千兆以太网在不改变现有的网络结构的前提下得到更高的 带宽。千兆网和以前的以太网以及快速以太网几乎一样, 都支持相同的IEEE 802.3帧格式、全双工和流控制模式。 根据IEEE802.3x的定义,当两个节点以全双工通讯时,线 路上能同时发送和接收数据包。千兆以太网在全双工模式 下遵循该标准进行通讯 ,也遵循标准以太网的流控制模 式来避免冲突和拥挤简单、直接的转移低成本;支持新应 用程序能力强;弹性化的网络设计简单、直接的转移到高 性能平台
2005©
zqiangwu@
千兆网的技术规范
规范名称
1000BASE-LX
传输介质
62.5um 多模 50um 多模 10um 单模 62.5um 多模
编码方式
8B/10B 8B/10B 8B/10B 8B/10B
传输带宽
500MHz 400/500MHz

以太网简要教程

以太网简要教程

以太网简要教程一、概述通常我们所说的以太网主要是指以下三种不同的局域网技术:以太网/IEEE 802.3—采用同轴电缆作为网络媒体,传输速率达到10Mbps;100Mbps以太网—又称为快速以太网,采用双绞线作为网络媒体,传输速率达到100Mbps;1000Mbps以太网—又称为千兆以太网,采用光缆或双绞线作为网络媒体,传输速率达到1000Mbps(1Gbps)以太网以其高度灵活,相对简单,易于实现的特点,成为当今最重要的一种局域网建网技术。

虽然其它网络技术也曾经被认为可以取代以太网的地位,但是绝大多数的网络管理人员仍然把将以太网作为首选的网络解决方案。

为了使以太网更加完善,解决所面临的各种问题和局限,一些业界主导厂商和标准制定组织不断的对以太网规范做出修订和改进。

也许,有的人会认为以太网的扩展性能相对较差,但是以太网所采用的传输机制仍然是目前网络数据传输的重要基础。

二、以太网工作原理以太网是由Xeros公司开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和碰撞检测(CSMA/CD)机制,数据传输速率达到10Mbps。

虽然以太网是由Xeros公司早在70年代最先研制成功,但是如今以太网一词更多的被用来指各种采用CSMA/CD技术的局域网。

以太网被设计用来满足非持续性网络数据传输的需要,而IEEE802.3规范则是基于最初的以太网技术于1980年制定。

以太网版本2.0由Digital Equipment Corporation、Intel、和Xeros 三家公司联合开发,与IEEE 802.3规范相互兼容。

太网结构示意图如下:以太网/IEEE 802.3通常使用专门的网络接口卡或通过系统主电路板上的电路实现。

以太网使用收发器与网络媒体进行连接。

收发器可以完成多种物理层功能,其中包括对网络碰撞进行检测。

收发器可以作为独立的设备通过电缆与终端站连接,也可以直接被集成到终端站的网卡当中。

以太网总结

以太网总结

以太网总结:1、分层1) 链路层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。

2) 网络层,处理分组在网络中的活动,例如分组的选路。

在T C P / I P协议族中,网络层协议包括I P协议(网际协议),I C M P协议(I n t e r n e t互联网控制报文协议),以及I G M P协议(I n t e r n e t组管理协议)。

3 ) 运输层主要为两台主机上的应用程序提供端到端的通信。

在 T C P / I P协议族中,有两个互不相同的传输协议:T C P(传输控制协议)和U D P(用户数据报协议)。

T C P 为两台主机提供高可靠性的数据通信。

它所做的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。

由于运输层提供了高可靠性的端到端的通信,因此应用层可以忽略所有这些细节。

而另一方面,U D P则为应用层提供一种非常简单的服务。

它只是把称作数据报的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。

任何必需的可靠性必须由应用层来提供。

这两种运输层协议分别在不同的应用程序中有不同的用途,这一点将在后面看到。

4 ) 应用层负责处理特定的应用程序细节。

几乎各种不同的 T C P / I P实现都会提供下面这些通用的应用程序:• Telnet 远程登录。

• FTP 文件传输协议。

• SMTP 简单邮件传送协议。

• SNMP 简单网络管理协议。

2、在T C P / I P协议族中,网络层I P提供的是一种不可靠的服务。

也就是说,它只是尽可能快地把分组从源结点送到目的结点,但是并不提供任何可靠性保证。

而另一方面, T C P在不可靠的I P层上提供了一个可靠的运输层。

为了提供这种可靠的服务, T C P采用了超时重传、发送和接收端到端的确认分组等机制。

一个路由器具有两个或多个网络接口层(因为它连接了两个或多个网络),它的功能只是单纯地把分组从一个接口传送到另一个接口。

以太网保护技术

以太网保护技术
设置端口属性:一般交换端口属性
保护端口添加:将各端口添加到LAG组内,并配置8031)概述

ELPS(Ethernet liner protection switching) :以太网线性保护倒换 保护对象
端口设置:与一般交换端口设置相同 CFM功能设置:在业务涉及的板卡和端口上启动CFM功能 。包括配置其维护域、服务实例、实例VLAN映射、配置静 态远端MEPLIST等内容。最后使能所有MEP的CCM。 保护功能设置:指定工作及保护端口号、保护模式(1+1 还是1:1)、保护的业务VLAN、保护协议报文(APS)的 VLAN、故障检测类型。
• • 基于端口Link状态来检测故障 基于CFM来检测故障 通过CCM报文实现。有效的检测单向或跨接设备故障,支持 跨网络组线性保护,实现基于VLAN的倒换/恢复 • 基于端口Link状态或CFM检测故障(系统自动选择,那个快, 用那个)
/ 23
ELPS保护模型
SWD
7-0-0
Ring 1
||
6-0-0
SWB
4-0-0
RPL(Ring Protection Link)链路
SWC
5-0-0
这段正常状态下被阻塞的链路被称为环路保护链路(RPL,Ring
Protection Link)。
/ 27
RPL链路
RPL(Ring Protection Link)链路
配置范围:配置值为5到12分钟,默认值5 分钟,步长1分钟。


Guard Timer:该定时器是在环网保护中,在该定时器时效内不处理保 护倒换协议消息。 作用:防止因为循环发送而导致收到过时消息。 配置范围:取值10ms-2s,步长10ms,缺省500ms / 12

以太网详解

以太网详解

以太网详解1.以太网是什么?以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。

虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。

以太网是应用最广泛的局域网技术。

根据传输速率的不同,以太网分为标准以太网(10Mbit/s)、快速以太网(100Mbis)千兆以太网(1000Mbs)和万兆以太网(10Gbit/s),这些以太网都符合IEEE 802.3是兼容的。

2、标准以太网标准以太网是最早期的以太网,其传输速率为10Mbts,也称为传统以太网。

此种以太网的组网方式非常灵活,既可以使用粗、细缆组成总线网络,也可以使用双绞线组成星状网络,还可以同时使用同轴电缆和双绞线组成混合网络。

这些网络都符合EE8023标准,EEE8023中规定的一些传统以太网物理层标准如下。

①10 Base-2:使用细同轴电缆,最大网段长度为185m。

②10 Base-5:使用粗同轴电缆,最大网段长度为500m。

③10 Base-T:使用双纹线,最大网段长度为100m。

④10 Boad-36:使用同轴电缆,最大网段长度为3600m。

⑤10 Base-F:使用光纤,最大网段长度为2000m,传输速率为10Mb/s。

以土标准中首部的数字代表传输速率,单位为Mbis;末尾的数字代表单段网线长度(基准单位为100m);Base表示基带传输,Broad表示宽带传输。

3、快速以太网随着网络的发展和各项网络技术的普及,标准以太网技术已难以满足人们对网络数据流量和速率的需求。

1993年10月以前,人们只能选择价格昂贵、基于100Mbs光缆的FDD技术组建高标准网络,1993年10月,Grand Junction 公司推出了世界上第一台快速以太网集线器FastSwitch10/100和百兆网络接口卡Fast NIC 100,快速以太网技术正式得到应用。

以太网

以太网

4.2.2 网络接口和传输媒介
1 、物理层 规 范
IEEE 802.3 规定 了以太网的 MAC 层和物理层,其中物理层 规定 了其 接口特 性 和传输媒介,其 规 范 名称 的简 写格 式包括 三 部 分 : 传输速率( Mbps ) + 信号方式(基带 还 是 频 带) + 传输距离( 或 介 质类 型)
第 4章 局域网
以太网标准: IEEE802.3
引出:回头看看 4 号 楼 办 公 网 集线器 402 403 404 405 406 楼层接入交换机 万 里 校 园 网
301
302
303
304
305
306 大楼出口交换 机
楼层接入交换机 201 202 203 204 205 206
hub
stations
hub
station
Switch
Server farm
4.1.1 局域网的标准与参考模型
局域网的数据链路层:
• 为了使数据链路层能更好地适应多种局域网标准, IEEE802 委员会就将局域网的数据链路层拆成两个 子层:
– 逻辑链路控制 LLC 子层 – 媒体接入控制 MAC 子层。
C
a (D c) a 面( 向 c) 连面 接
4.1.3
局域网的拓扑结构
集线器
星形网
总线网
匹配电阻
干线耦合器
环形网
树形网
以太网是最常用最常见的局域网技 术
4.2 以太网: IEEE802.3
4.2.1 以太网的 发展历史
• 最 早 的采用共享媒体的 争 用型网络 ALOHA • 70 年代 中期 由 Xerox Palo Alto 研究中 心提 出,数据率为 2.94M , 称 为 Ethernet (以太网)。 • 经 DEC, Intel and Xerox 公 司改 进为 10M 标准 (DIX 标准 ) 。 • 1985 年定名 为 IEEE 802.3 , 即 使用 CAMA/CD 协议的 LAN 标 准,数 据率 从 1M 到 10M ( 现 已发展到 1000M) , 支持 多种传输媒体 。

以太网接入技术

以太网接入技术

在宽带接入络中,需要对用户的广播信息进行保护,进行单一性的标识认证,从而保证数据的安全性。以太技 术的OAM能力较差,在大型的分散型络中内置保护功能缺失,所以对于电信级的数据信息传送安全性有一定的缺陷。 而且以太接入结构复杂,故障点较多,因此在后期的维护中较为困难,维护方式与传统接入方式也有一定的差 别。
时下全球企事业用户的90%以上都采用以太接入,已成为企事业用户的主导接入方式。然而,由于认证计费、 服务质量、可管理性、信息安全、可靠性以及实装率低等多种因素,以太作为公用电信接入方式尚需进一步改进。 主要问题是以太还没有机制保证端到端性能,无法提供实时业务所需要的QoS和多用户共享节点及络所必需的计 费统计能力。其次,以太尚不能提供电信级公用电信所必需的硬件和软件可靠性,特别是由于以太交换机的光口 以点到点方式直接相连,省掉了传输设备,不具备内置的故障定位和性能监视能力,使以太中发生的故障难以诊 断和修复。以太也不能像SDH那样分离管信息和用户信息,安全性不如SDH。事实上以太原来就根本没有也无须内 安全机制,而一旦用于公,情况就完全不同了,安全机制成为必不可少的关键要求。以太原来主要用于小型局域 络环境,OAM&P能力很弱,而且只有元级的管理系统,其管理工具也不足以支持公用电信所必需的络范围的管理。
优势
就络接入的发展来看,用户技术的不断扩展使得络应用的范围越发广泛,这种发展必然会出现运营价格与用 户的接受能力之间的冲突,想要解决这种冲突,就需要降低络接入成本从而降低使用价格,而且IP接入方式也是今 后络发展的主流方向,以太接入技术明显符合这种要求。
以太技术本身正是由于安全性等方面的问题而保证了带宽,而且非常适用于用户较为密集的区域,这样使得其 络铺设成本大幅降低,从而使用户的络接入和使用价格大幅下降,而不会影响用户的具体使用,性价比极高。

以太网技术的现状及应用趋势

以太网技术的现状及应用趋势

以太网技术的现状及应用趋势统计数字表明,目前全球85%的网络采用以太网技术。

以太网技术的优势是成本低、灵活,在接入领域使用以太网技术作为产品开发平台已经成为一个必然的发展趋势,有一统天下之势。

以前用以太网技术开发的相关产品,比如以太网交换机和无线局域网等设备,主要应用于企业环境,不能很好地满足商业应用领域或企业客户业务与网络融合更加紧密的需要,比如管理性不强、对业务的识别控制能力不强,无论是在企业网还是在电信网中,以太网产品都需要加以变革才能真正地适应用户的需求。

一、以太网技术的发展趋势1.端到端QoS是未来的发展方向经过十几年的发展,以太网的新业务和新应用不断涌现,这意味着更多的网络资源耗费,仅仅保证高带宽已经无法满足要求。

如何保证网络应用的端到端QoS已经成为以太网面临的最大挑战。

传统的建网模式无法满足现有业务的QoS要求,网络应用迫切要求设备对QoS的支持向边缘层和接入层发展。

在过去,高QoS意味着高价格,但是ASIC技术的发展使具备强大QoS能力的低端设备成为可能,使网络的QoS从集中保证逐渐向端到端保证过渡。

目前,网络边缘设备已经可以根据端口、MAC地址、VLAN信息、IP地址甚至更高层的信息来识别应用类型,为数据包打上优先级标记(如修改IEEE802.1P、IP DiffServ 域),核心设备不必再对应用进行识别,只需根据IP DiffServ、IEEE802.1P进行交换,提供相应的服务质量即可。

2.可控组播技术基本组播技术,存在以下问题:效率低:二层网络对组播支持不足,网络资源浪费严重。

认证难:组播在协议中没有提供用户认证支持,用户可以随意加入一个组播组,并可以任意离开。

管理难:组播源缺少有效的手段控制组播信息在网络上传送的方向和范围。

计费难:组播协议没有涉及到计费部分。

组播源无法知道用户何时加入,何时退出,无法统计出某个时间网络上共有多少个用户在收看组播节目,难以对用户进行准确计费。

以太网

以太网

Dest.
Src. Len
address (6B) Address (6B) (2B)
数据字段 (LLC)
Pad
FCS (4 B)
10
以太网
目的地址 (6B)
源地址 Len
Data field
(6B) (2B) (Logical link control)
Pad
FCS (4 B)
3) 两个地址 § 目的地址和源地址都允许为2字节或6字节,但在
以太网
一、 IEEE 802.3标准及以太网
§ 802.3协议使用于1-持续的CSMA/CD局域网 § 以太网使用CSMA/CD技术、采用总线结构
以太网的发展简史
ü 1980年9月提出以太网蓝皮书,DIX以太网1.0规范
ü 1981年6月IEEE802.3委员会成立
ü 1983年推出IEEE 10BASE-5规范
01-80-C2-00-00-00
5
以太网
三、以太网(Ethernet)特点
§ 占统治地位的有线局域网 § 第一个广泛使用的局域网形式 § 比令牌网、 ATM更简便且价廉 § 网速覆盖了10 Mbps – 10 Gbps
Metcalfe提出的 以太网草稿
6
以太网
1. 不可靠、无连接的服务 § 无连接:收发双方之间不存在握手协议 § 不可靠:接收方不发送确认或否认信息
1) 前导字段
§ 7个字节的10101010,实际上下一个字符也是前导字段, 只是最后的两位为1,表示紧接着的是真正的MAC帧
§ 7个字节的10101010的曼切斯特编码将产生10MHz,持 续5. 6 s的方波,周期为0.1s,可用于时钟同步
2) 数据字段长度和校验和

以太网的介绍

以太网的介绍

以太网的介绍以太网,属网络低层协议,通常在OSI模型的物理层和数据链路层操作。

接下来小编为大家整理了以太网的介绍,希望对你有帮助哦!以太网(Ethernet)是一种计算机局域网组网技术。

IEEE制定的IEEE 802.3标准给出了以太网的技术标准。

它规定了包括物理层的连线、电信号和介质访问层协议的内容。

以太网是当前应用最普遍的局域网技术。

它很大程度上取代了其他局域网标准,如令牌环网、FDDI 和ARCNET。

以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switch)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Derect 即带冲突检测的载波监听多路访问) 的总线争用技术。

历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心(Xerox PARC)的许多先锋技术项目中的一个。

人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。

但是梅特卡夫本人认为以太网是之后几年才出现的。

在1976年,梅特卡夫和他的助手David Boggs 发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。

1979年,梅特卡夫为了开发个人电脑和局域网(LANs)离开了施乐,成立了3Com公司。

3com对DEC, Intel, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。

这个通用的以太网标准于1980年9月30日出台。

当时业界有两个流行的非公有网络标准令牌环网(token ring)和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。

而在此过程中,3Com也成了一个国际化的大公司。

以太网接入技术(宽带接入技术课件)

以太网接入技术(宽带接入技术课件)
或冲突窗口,竞争时间片、时间槽、冲突时间片。
四、以太网技术——CSMA/CD
争用期的长度
理论上,CSMA/CD协议的争用期为2
工程上,10 M以太网,取 51.2 s 为争用期的长度。
在争用期内可发送512 bit,即 64 字节。 争用期长度,又称为512位延迟(51.2us) 。
以太网在发送数据时,若前 64 字节没有发生冲突,则后 续的数据就不会发生冲突。
如果接收到对方的基页,则跟自 己发送的基页比较,找出支持能 力的交集,选取最优组合运行。
二、以太网的物理层
物理层规定了两个设备之间的物理接口、电气特 性、规程特性、机械特性等内容。
物理层标准:10BASE2、10BASE5、10BASE-T、 100BASE-TX、100BASE-T2、100BASE-T4、 100BASE-FX、1000BASE-SX、1000BASE-LX、 1000BASE-CX、1000BASE-TX
由此,保证了每个产品都具有唯一的MAC地址。
三、以太网的数据链路层——MAC子层
网卡上的硬件地址
1A-24-F6-54-1B-0E路由器
00-00-A2-A4-2C-02
20-60-8C-C7-75-2A
08-00-20-47-1F-E4
20-60-8C-11-D2-F6
路由器同时连接到两个网络上,因此它有两块网卡和两个硬件地址。
三、以太网分类
1.共享式以太网
共享式以太网中,所有的主机都平等地连接到同轴电缆上,所 有主机发出的信号都会被其他主机接收,如果主机数目较多, 则存在冲突与广播泛滥的严重问题,而且共享式以太网还会存 在介质可靠性差与无任何安全性的突出问题。
常用介质
10Base5:粗同轴电缆(5代表电缆的长度字段长度是500m); 10Base2:细同轴电缆(2代表电缆的长度字段长度是200m)。

以太网技术的使用教程

以太网技术的使用教程

以太网技术的使用教程随着科技的发展,以太网技术已经成为现代社会中最常见的网络通信方式之一。

无论是家庭、企业还是学校,几乎每个地方都离不开以太网。

在本文中,我们将探讨以太网技术的基本原理和使用教程,帮助读者更好地了解和应用这一技术。

一、以太网的基本原理以太网是一种局域网技术,它通过使用双绞线或光纤等传输介质,将计算机、服务器、打印机等设备连接起来,实现数据的传输和共享。

以太网采用的是分组交换的方式,将数据拆分成小的数据包,然后通过网络交换机进行传输。

这种方式能够提高网络的传输效率和可靠性。

二、以太网的硬件设备要使用以太网,我们首先需要准备一些硬件设备。

首先是网络交换机,它是连接各个设备的核心设备。

根据网络规模和需求,我们可以选择不同端口数量和速度的交换机。

其次是网线,它是连接设备和交换机的媒介。

常见的网线有Cat5、Cat6等不同规格,根据需要选择合适的网线。

最后是计算机、服务器和其他设备,它们是网络的终端设备,通过网线与交换机相连。

三、以太网的配置和连接在使用以太网之前,我们需要进行一些配置和连接。

首先,将交换机与电源连接,并连接上网线。

然后,将网线的一端插入交换机的端口,另一端插入计算机或其他设备的网口。

确保网线插入牢固,不松动。

接下来,打开计算机或设备的网络设置,选择以太网连接,并通过动态IP或静态IP方式进行配置。

配置完成后,我们就可以开始使用以太网进行数据传输和共享了。

四、以太网的应用以太网技术广泛应用于各个领域。

在家庭中,我们可以通过以太网连接多台计算机,实现文件共享和互联网访问。

在企业中,以太网连接了各个部门的计算机和服务器,实现了内部数据的快速传输和共享。

在学校中,以太网连接了教室、实验室和图书馆等地的计算机,方便师生进行教学和学习。

五、以太网的扩展和升级随着科技的不断进步,以太网技术也在不断发展。

目前,最常见的以太网标准是10/100/1000Mbps,即千兆以太网。

但随着网络需求的增加,千兆以太网已经无法满足高带宽的要求。

以太网的技术

以太网的技术

以太网的技术1以太网的发展以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。

Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。

在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。

基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。

在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。

以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。

以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术.以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON技术;在无线环境中,发展为WLAN技术.以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。

EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势.WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。

随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。

同时,以太网技术的应用正在向城域网领域扩展。

IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。

对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。

10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能.随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前的Super VLAN技术在原有分组(仅有一个VLAN标记)中再加入一组VLAN标记,使得VLAN数目可以扩展到4096×4096,这就相当于将端对端的VLAN细切成骨干VLAN及边缘VLAN,骨干VLAN类似于ATM中的VPI,而边缘VLAN类似于ATM中的VCI一样。
VLAN的安全性与用户隔离
以二层VLAN作为VPN使用,跨VLAN的互联基本上已被阻断,从而提供了基本的安全功能,运营商甚至可以利用更多的手段如ACL、MAC地址过滤等来加强安全性能。如果有必要对相同VLAN下面的不同用户进行隔离,private VLAN也是可性的方法之一。
生成树协议(STP)的收敛、扩展与分流
非生成树协议技术
在更大型的网络中也可以考虑采用诸如RPR(Resilient Packet Ring)、MRP(Metro Ring Protocol)等环状拓扑技术或VSRP(Virtual Switch Redundant Protocol)星状拓扑技术来取代生成树协议,从而使得光纤资源得到更多的节省,网络的收敛达到次秒级的水准。
对用户或者对运营商来说,找到一个低成本、高带宽、具安全性能的VPN互连方案是个很关键的问题,而其答案其实就在最简单的802.1p/802.1q VLAN标准上头,我们可以采用二层的VLAN技术来提供VPN服务,但是也有几个问题需要解决。
末端用户的带宽管理
不同用户有不同的带宽需求,或者基于使用者付费原则,不同费用等级的用户可以享有不同的带宽,因此接入设备必须支持带宽限制功能。
服务质量(QoS)机制
不同的业务需要不同的服务质量保证,或者不同等级的用户享有不同的服务级别,这些不管是透过二层的802.1p还是三层的IP ToS技术来实现,网络设备都必须能够对流量进行分类、标记、甚至测量或整形,以实现QoS机制。
VLAN的扩展
基于802.1p/802.1q VLAN标准的VLAN数量只有4096个VLAN,对企业组网也许够用,但对运营商提供基于VLAN的VPN服务而言,4096个VP
端到端以太网方案以以太网作为接入技术,不但成本低,而且带宽比现行的Cable Modem、ADSL、ISDN、Modem接入都要高,因此不但可以作为一般用户Internet连接,或者多媒体点播或广播用途,更可以作为企业用户实现VPN虚拟私有专网互联使用; 大型企业各分支机构可以透过端到端的以太网实现企业内部VPN互联,企业与其合作伙伴也可以透过端到端的以太网实现企业外部VPN互联。
以太网技术大全——端到端以太网
黄明泰
不管是从需求面或者是从供应面来看,整体网络都朝着宽带的脚步迈进,这给予以太网一个很好的发展空间。从技术面来看,二十年来,以太网带宽由十兆、百兆、千兆,一直发展到2002年的万兆,甚至四万兆、十万兆都已经处于研究讨论阶段,这使得以太网技术有了很好的扩展性;从应用面来看,以太网不仅仅只局限在局域网的应用,不仅仅只局限在城域网的应用,万兆以太网更进一步将以太网延伸到广域网的应用,这使得我们过去推动的“全球以太网”概念变得更加实际而可行。若再配合IEEE于2000年底成立的EFM工作组(Ethernet in the First Mile)试图发展的新型宽带接入技术,或者目前已经流行的以太网小区接入、大楼接入,提供端到端的以太网解决方案变得更加可行。从而,不止IP统一了上层网络,以太网也统一了下层网络,透过IP,透过以太网,整个网络端到端形成从接入网、城域网到广域网间无缝的连接,从网络的投资成本、逻辑管理、兼容性、以及端到端的服务质量(QoS),以太网都具有相当的竞争优势。
以太网穿越SDH骨干网
端到端以太网穿越骨干网时,并不是所有骨干网都是百兆/千兆以太网所组成的城域网来支撑。更多时候,以太网必须穿越SDH骨干网到达另一边的以太网,因此提供以太网VLAN功能穿越SDH是必需的功能。
经过多年发展,以太网技术基本解决了上面几个主要问题,由于以太网的高度普及和VLAN技术的不断演进,在端到端以太网络中采取二层VLAN技术来实现VPN业务不但简单、低成本、高带宽,而且兼容性特别高,对个别用户或运营商来说,VPN互联增值服务在端到端以太网中是高度可行的方案,客户无需苦苦等待MPLS VPN。(本文作者为Foundry公司亚太区技术经理)
以端到端以太网的VLAN技术来提供二层的VPN服务将形成一张大型的二层网络,对STP来讲,不管是冗余链路的收敛时间,网络拓扑结构的扩展或者阻断链路(Block)的带宽利用都将造成很大的影响,因此必须引进快速生成树(RSTP)、超级生成树(Super STP)、VLAN群组生成树(RVGST)等技术来强化生成树协议(STP)在大型网络中的扩展性。
相关文档
最新文档