高三数学第一轮复习——数列(知识点很全)

合集下载

新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

所以 an=aan-n 1·aann- -12·…·aa21·a1=n+n 1·n-n 1·nn- -21·…·23=n+2 1.
2,n=1, 所以 an=2nn-1,n≥2.
已知 Sn 求 an 的步骤 (1)利用 a1=S1 求出 a1. (2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn- 1(n≥2)求出当 n≥2 时 an 的表达式. (3)检验 n=1 时的值是否符合 n≥2 时的表达式,再写出通项公 式 an.
式 an=59(10n-1).
1.错误地表示符号规律致误:项正负相间的数列可以用(-1)n, (-1)n+1 表示符号,要分清是先负后正还是先正后负.
2.未对项变形致误:若已知的项的形式不统一,则不便求通项 公式,因此可以先将项通过变形统一形式后再观察求通项公式,如题 (3).
3.求通项公式时要注意联想:对于如题(4)这样的数列,可以通 过联想 10,100,1 000,10 000→9,99,999,9 999→1,11,111,1 111 进而得 到通项公式.
考点2 由Sn与an的关系求通项——综合性
(1)若数列{an}的前 n 项和 Sn=n2-10n,则此数列的通项 公式为 an=________.
(2)若数列{an}的前 n 项和 Sn=2n+1,则此数列的通项公式为 an =________.
3,n=1, (1)2n-11 (2)2n-1,n≥2.
解:(1)这个数列的前 4 项的绝对值都等于序号与序号加 1 的乘 积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式 an=(- 1)n·nn1+1.
(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为 1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数 的乘积,故所求数列的一个通项公式 an=2n-12n2n+1.

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是高中数学中的一个重要知识点,对于高三学生来说,熟练掌握数列的概念、性质和应用是至关重要的。

为了帮助同学们更好地复习和总结数列知识,下面将对高三数学数列知识点进行归纳总结,希望对同学们的学习有所帮助。

一、基础概念数列是按照一定的规律排列成的一列数,通常用字母a、b、c 等表示。

其中,a1为数列的第一个数,an为数列的第n个数,n为自然数。

二、等差数列1. 定义:等差数列是指数列中的相邻两项之差为常数,该常数称为公差,通常用字母d表示。

2. 求通项公式:设等差数列的首项为a1,公差为d,则第n项an可表示为an=a1+(n-1)d。

3. 求和公式:等差数列的前n项和Sn可表示为Sn=(a1+an)×n/2 或 Sn=n/2×[2a1+(n-1)d]。

三、等比数列1. 定义:等比数列是指数列中的相邻两项之比为常数,该常数称为公比,通常用字母q表示。

2. 求通项公式:设等比数列的首项为a1,公比为q,则第n项an可表示为an=a1×q^(n-1)。

3. 求和公式:等比数列的前n项和Sn可表示为Sn=a1×[1-q^n]/(1-q)。

四、等差数列与等比数列的比较1. 差别:等差数列的相邻两项之差为常数,等比数列的相邻两项之比为常数。

2. 公式:等差数列的通项公式中含有公差d,等比数列的通项公式中含有公比q。

3. 求和:等差数列的求和公式中含有首项a1、末项an和项数n,等比数列的求和公式中同样含有首项a1和项数n,但末项an与公比q有关。

五、数列的应用1. 等差数列的应用:等差数列常应用于描述一些增长或减少的情况,如成绩的变化、人口的增长等。

2. 等比数列的应用:等比数列常应用于描述指数增长或指数衰减的情况,如病毒传播、存款利息等。

六、数列的性质1. 递推关系:数列的递推关系是指通过前一项与公式计算得出后一项的关系。

2. 递归公式:数列的递归公式是指通过前一项与前两项计算得出后一项的关系。

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。

下面给出一些数列求和的方法指导,希望对高考复习有所帮助。

1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。

对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。

2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。

对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。

3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。

首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。

4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。

首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。

5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。

首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。

6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。

该公式是等差数列求和公式的一个变形。

首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。

高三数学数列知识点总结大全

高三数学数列知识点总结大全

高三数学数列知识点总结大全一、数列的概念和基本性质数列是由一列有序的数按照一定规律排列而成的序列。

数列的基本性质包括:1. 通项公式:根据数列的规律可以得到通项公式,用来表示数列中任意一项的公式。

2. 递增和递减:如果数列中的每一项都比前一项大,则这个数列是递增数列;如果数列中的每一项都比前一项小,则这个数列是递减数列。

3. 公差:对于等差数列,相邻两项的差值是一个常数,称为等差数列的公差。

4. 公比:对于等比数列,相邻两项的比值是一个常数,称为等比数列的公比。

二、等差数列等差数列是指在数列中,从第二项开始,每一项与前一项的差值都相等的数列。

等差数列的常见性质有:1. 通项公式:设等差数列的首项为a₁,公差为d,则第n项的通项公式为:an = a₁ + (n-1)d。

2. 求和公式:等差数列的前n项和公式为:Sn = n/2(a₁ + an) = n/2(2a₁ + (n-1)d)。

三、等比数列等比数列是指在数列中,从第二项开始,每一项与前一项的比值都相等的数列。

等比数列的常见性质有:1. 通项公式:设等比数列的首项为a₁,公比为q,则第n项的通项公式为:an = a₁*q^(n-1)。

2. 求和公式:当公比q不等于1时,等比数列的前n项和公式为:Sn = a₁ * (1 - q^n)/(1 - q)。

四、数列的应用1. 数列在排列组合中的应用:通过分析排列组合问题中的数列规律,可以解决一些复杂的计数问题。

2. 数列在几何问题中的应用:数列常常用于解决几何中的问题,如等差数列可以用于求解等差数列的和,等比数列可以用于求解等比数列的和或比率等。

3. 数列在金融问题中的应用:数列在金融领域中有广泛应用,如利率计算中的等比数列,投资回报等问题都可以用数列进行分析和求解。

五、常见数列的分类1. 斐波那契数列:斐波那契数列是指从第三项开始,每一项都是前两项的和,即Fn = Fn-1 + Fn-2,其中F1 = 1,F2 = 1。

第01讲 数列的基本知识与概念(六大题型)(课件)高考数学一轮复习(新教材新高考)

第01讲 数列的基本知识与概念(六大题型)(课件)高考数学一轮复习(新教材新高考)
【变式2-1】(2024·天津南开·二模)设数列 的通项公式为2 4 = 43 + 1,若数列
是单调递增数列,则实数b的取值范围为(
A. −3, +∞
B. −2, +∞
).
C. −2, +∞
D. −3, +∞
【答案】A
【解析】由题意可得+1 − > 0恒成立,
即 +1
2
报数的乘积的个位数字,则第2024个被报出的数应该为(
A.2
B.4
C.6
D.8

【答案】A
【解析】报出的数字依次是1,2,2,4,8,2,6,2,2,4,8,2,6 ⋯,除了首项以外是个周期为6的
周期数列.
去掉首项后的新数列第一项为2,
因为2023 = 337 × 6 + 1,所以原数列第2024个被报出的数应该为2.故选:A.
所以2024 = 2021 = ⋯ = 2 = 2.
【方法技巧】
故选:A.
解决数列周期性问题的方法
先根据已知条件求出数列的前几项,确定数
列的周期,再根据周期性求值.
题型突破·考法探究
题型一:数列的周期性
【变式1-1】(2024·陕西榆林·三模)现有甲乙丙丁戊五位同学进行循环报数游戏,
从甲开始依次进行,当甲报出1,乙报出2后,之后每个人报出的数都是前两位同学所
所以1 > 2 > 3 > 4 > 5 > 6 = 7 < 8 < 9 <⋅⋅⋅,显然 的最小值是6 .
又+1 − = − 6,
所以6 = 1 + 2 − 1 + 3 − 2 + 4 − 3 + 5 − 4 + 6 − 5

数列高三理科知识点归纳

数列高三理科知识点归纳

数列高三理科知识点归纳数列是高中数学中的重要内容,也是高三数学考试中常见的知识点。

理解和掌握数列的性质及相关概念对于高考数学的顺利解题至关重要。

本文将对高三数学中与数列相关的知识点进行归纳和概述。

一、数列的基本概念:数列是由一串按特定规律排列的数所组成的有序集合。

数列的一般形式为:an=a1+(n-1)d,其中an表示第n个数,a1为首项,d 为公差。

二、等差数列:等差数列是最基本的数列之一,其特点是每一项与前一项之差都相等。

常见的等差数列有以下几个重要概念:1. 公差:等差数列中相邻两项之间的差值,用d表示。

2. 通项公式:等差数列的通项公式为an=a1+(n-1)d,通过该公式可以求得任意一项的值。

3. 求和公式:等差数列的前n项和公式为Sn=n/2(a1+an),通过该公式可以求得前n项的和。

三、等比数列:等比数列是指数列中相邻两项之比都相等的数列。

常见的等比数列有以下几个重要概念:1. 公比:等比数列中相邻两项之比,用q表示。

2. 通项公式:等比数列的通项公式为an=a1*q^(n-1),通过该公式可以求得任意一项的值。

3. 求和公式:等比数列的前n项和公式为Sn=a1(1-q^n)/(1-q),通过该公式可以求得前n项的和。

四、数列的性质:数列具有一些重要的性质和特点,这些性质对于解题和理解数列的本质起到了重要的作用。

1. 有界性:数列可以是有界的,即存在上界和下界,也可以是无界的。

2. 单调性:数列可以是递增的,即每一项都比前一项大,也可以是递减的,即每一项都比前一项小。

还可以是常数列,即每一项都相等。

3. 极限:数列可能有极限,即当项数趋近于无穷时,数列的值趋于一个确定的常数。

4. 递推关系:数列的每一项都可以通过前一项或前几项来确定。

五、常见数列:高三数学中常见的数列有以下几种:1. 等差数列:每一项与前一项之差相等。

2. 等比数列:每一项与前一项之比相等。

3. 斐波那契数列:每一项等于前两项之和。

数列高三知识点总结

数列高三知识点总结

数列高三知识点总结数列在高中数学中占据重要地位,是许多高考数学题的基础。

本文将对高三数学中涉及的数列知识点进行总结,包括数列的概念、常见数列的特点和求解方法等。

一、数列的概念及基本术语数列是按照一定顺序排列的一组数,通常用字母表示。

数列中的每一个数称为该数列的项,而项的位置称为项数。

根据项数的不同,数列可以分为首项、末项、通项和项数等几个基本术语。

首项(a₁)是数列中的第一个数,末项(aₙ)则是数列中的最后一个数。

通项(aₙ)是数列中任意一项的一般表示形式,通常用数学表达式来表示。

项数(n)表示数列中某一项的位置,可以是自然数或整数。

二、常见数列的特点和求解方法1.等差数列(Arithmetic Progression, AP)等差数列指的是数列中任意两项之差都相等的数列。

其通项公式为:aₙ = a₁ + (n-1)d,其中a₁为首项,d为公差,n为项数。

求解等差数列有以下几个常用方法:- 求首项和公差:已知数列的前几项,可通过观察找规律,利用已知项之间的关系来确定首项和公差。

- 求前n项和:使用等差数列的部分和公式 Sₙ = (a₁ + aₙ) * n / 2,其中Sₙ表示前n项和。

- 求任意一项:利用通项公式,根据已知的首项、公差和项数,计算出所需的项。

2.等比数列(Geometric Progression, GP)等比数列指的是数列中任意两项之比都相等的数列。

其通项公式为:aₙ = a₁ * r^(n-1),其中a₁为首项,r为公比,n为项数。

求解等比数列的方法如下:- 求首项和公比:根据题目中已知的条件,可以得到首项和公比的值。

- 求前n项和:利用等比数列的部分和公式 Sₙ = a₁ * (1 - rⁿ) / (1 - r),其中 Sₙ 表示前n项和。

- 求任意一项:根据通项公式和已知的首项、公比以及项数,计算出所要求的项。

3.斐波那契数列(Fibonacci Sequence)斐波那契数列是一种特殊的数列,前两项都是1,后续的每一项都是其前两项之和。

数列知识点 高三数学

数列知识点 高三数学

数列知识点高三数学数列是数学中非常重要的一个概念,广泛应用于各个领域。

在高三数学中,数列是一个重点内容,本文将针对数列的定义、性质和应用进行论述。

一、数列的定义数列是由一系列有序的数字按照一定规律排列而成的。

通常用字母表示数列的第n项,如a₁、a₂、a₃...。

数列可以分为等差数列和等比数列,其中:1. 等差数列:若一个数列的任意两个相邻项之差都相等,则称该数列为等差数列。

我们可以用常数d表示等差数列的公差。

2. 等比数列:若一个数列的任意两个相邻项的比值都相等,则称该数列为等比数列。

我们可以用常数q表示等比数列的公比。

二、数列的性质1. 通项公式:数列的通项公式是指能够表示数列第n项的公式。

对于等差数列,通项公式为an = a₁ + (n-1)d;对于等比数列,通项公式为an = a₁ * q^(n-1)。

2. 首项和末项:数列的首项是指数列的第一项,用a₁表示。

数列的末项是指数列的最后一项,用an表示。

3. 数列的和:数列的前n项和是指数列的前n项相加的结果,用Sn表示。

对于等差数列,前n项和公式为Sn = (a₁ + an) * n / 2;对于等比数列,前n项和公式为Sn = a₁ * (1 - q^n) / (1 - q)。

三、数列的应用数列在实际问题中有很多应用,以下列举几个例子说明:1. 财务规划:在财务规划中,人们需要根据未来的收入和支出情况来制订自己的理财计划。

如果收入或支出呈等差数列增长或减少,可以利用数列的概念和性质来计算出未来的财务状况。

2. 人口统计:在人口统计中,常常需要研究不同年份的人口数量变化情况。

如果人口数量呈等比数列增长或减少,可以通过数列的特点来预测未来的人口变化趋势。

3. 物理运动:在物理学中,许多物理量的变化规律可以通过数列来描述。

例如,自由落体运动中,物体每秒钟下落的距离就是一个等差数列;指数衰减过程中,物质的剩余量可以表示成一个等比数列。

综上所述,数列是高三数学中一个重要的知识点。

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。

掌握数列的相关知识点是高三学生成功应对数学考试的关键。

本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。

一、等差数列等差数列是高中数学中最常见的数列类型之一。

等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。

1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。

二、等比数列等比数列是另一种常见的数列类型。

等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。

1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。

对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。

2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。

有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。

3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。

如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。

四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。

高考数学第一轮复习知识点:数学数列公式大全

高考数学第一轮复习知识点:数学数列公式大全

高考数学第一轮复习知识点:数学数列公式大全当q1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{an}为等差数列,则(c0)是等比数列。

12、{bn}(bn0)是等比数列,则{logcbn} (c0且c1) 是等差数列。

13. 在等差数列中:(1)若项数为,则(2)若数为则,14. 在等比数列中:(1) 若项数为,则(2)若数为则关于2019年高考数学第一轮复习知识点:数学数列公式大全就介绍完了,更多信息请关注查字典数学网高考频道!。

高三数学数列知识点

高三数学数列知识点

高三数学数列知识点一、数列的概念和表示方法数列是指按照一定规律排列的一组数,其中每一个数都称为数列的项。

数列可以用以下两种方式来表示:1. 列出所有项数列可以写成形如 a1, a2, a3, ..., an 的形式,其中 ai 表示第 i 个项的数值。

2. 通项公式数列也可以用一个公式来表示,该公式称为数列的通项公式。

通项公式可以表示第 n 项的数值与 n 的关系,常用形式为 an = f(n),其中 f(n) 为关于 n 的函数。

二、等差数列1. 定义等差数列是指数列中相邻两项之差都相等的数列。

这个公共差称为等差数列的公差,通常用字母 d 表示。

2. 通项公式等差数列的通项公式为 an = a1 + (n - 1)d,其中 a1 为首项,d 为公差。

3. 常见性质(1)第 n 项的数值:an = a1 + (n - 1)d(2)前 n 项和的公式:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n - 1)d)三、等比数列1. 定义等比数列是指数列中相邻两项之比都相等的数列。

这个公共比称为等比数列的公比,通常用字母 q 表示。

2. 通项公式等比数列的通项公式为 an = a1 * q^(n - 1),其中 a1 为首项,q 为公比。

3. 常见性质(1)第 n 项的数值:an = a1 * q^(n - 1)(2)前 n 项和的公式(当q ≠ 1 时):Sn = a1 * (1 - q^n) / (1 - q)四、数列的求和1. 等差数列求和等差数列前 n 项的和可以使用前述的公式 Sn = (n/2)(a1 + an) 来求解。

2. 等比数列求和等比数列前 n 项的和有两种情况:(1)当q ≠ 1 时,可以使用公式 Sn = a1 * (1 - q^n) / (1 - q) 来求解。

(2)当 |q| < 1 时,可以使用 Sn = a1 / (1 - q) 来求解。

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是数学中常见且重要的概念,它在高三数学中扮演着非常重要的角色。

为了帮助大家更好地掌握数列的知识点,下面对高三数学数列知识进行归纳总结。

一、等差数列等差数列是指数列中相邻两项之差相等的数列。

常见的等差数列公式可以表示为An = a1 + (n - 1)d,其中a1为首项,d为公差,n为项数。

1. 等差数列求和公式等差数列求和公式是等差数列中一个非常重要且常用的公式,可以帮助我们快速计算等差数列的和。

等差数列前n项和公式为Sn = n/2 * (a1 + an),其中Sn表示前n项和,a1为首项,an为第n项。

2. 等差中项公式等差中项公式是指通过等差数列的首项、末项和项数来计算等差数列的中项。

根据等差数列的性质,中项可以通过求首项与末项的平均值来得到。

等差中项公式为An = (a1 + an)/2,其中An表示中项,a1表示首项,an表示末项。

3. 等差数列的性质(1)任意项等于前一项加上公差,即An = An-1 + d。

(2)任意项等于首项加上与该项的差数乘以公差,即An = a1 + (n- 1)d。

(3)等差数列中,相等距离的两个项之和等于首项与末项之和。

二、等比数列等比数列是指数列中相邻两项之比相等的数列。

常见的等比数列公式可以表示为An = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

1. 等比数列求和公式等比数列求和公式是等比数列中一个非常重要且常用的公式,可以帮助我们快速计算等比数列的和。

等比数列前n项和公式为Sn = a1 * (q^n - 1) / (q - 1),其中Sn表示前n项和,a1为首项,q为公比。

2. 等比中项公式等比中项公式是指通过等比数列的首项、末项和项数来计算等比数列的中项。

根据等比数列的性质,中项可以通过将首项与末项的平方根相乘来得到。

等比中项公式为An = sqrt(a1 * an),其中An表示中项,a1表示首项,an表示末项。

高三数列知识点归纳总结

高三数列知识点归纳总结

高三数列知识点归纳总结数列在数学中是非常重要的一种概念和工具。

在高三数学学习过程中,数列是一个重要的知识点,也是数学建模和应用题目中经常遇到的内容。

本文将对高三数列知识点进行归纳总结,以帮助同学们更好地理解和掌握数列相关的知识。

一、数列及其表示法1. 数列的定义数列是一列按照一定规律排列的数的集合,其中每个数称为该数列的项。

2. 数列的表示法常见的数列表示法有:(1) 通项公式:用an表示第n个数列项的数的表达式;(2) 递推公式:表示每一项与前一项之间的关系,常用an+1 = an + d (等差数列)和 an+1 = an * q (等比数列)来表示。

二、等差数列1. 等差数列的定义等差数列是指一个数列中,从第二个数开始,每一项与它的前一项之差都是一个固定的常数d。

2. 等差数列的通项公式对于等差数列an,其通项公式可以表示为an = a1 + (n - 1)d,其中a1为首项,d为公差。

3. 等差数列的性质和应用(1) 公差d的求解:已知等差数列前两项或者任意两项可以求出公差d;(2) 求等差数列的和:部分和Sn的计算公式为Sn = (a1 + an) * n / 2;(3) 等差数列的应用:等差数列在数学建模和应用题目中经常出现,如等差数列作为一种数值规律,可用于解决实际问题。

三、等比数列1. 等比数列的定义等比数列是指一个数列中,从第二个数开始,每一项与它的前一项之比都是一个固定的常数q。

2. 等比数列的通项公式对于等比数列an,其通项公式可以表示为an = a1 * q^(n - 1),其中a1为首项,q为公比。

3. 等比数列的性质和应用(1) 公比q的求解:已知等比数列前两项或者任意两项可以求出公比q;(2) 求等比数列的和:部分和Sn的计算公式为Sn = a1 * (1 - q^n) / (1 - q);(3) 等比数列的应用:等比数列在金融领域、自然科学等领域中有广泛的应用,如利润计算、天文学中的指数增长等。

高三数学总复习讲义——数列概念

高三数学总复习讲义——数列概念

高三数学总复习讲义——数列概念 知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。

高考数学(数列)第一轮复习

高考数学(数列)第一轮复习

高考数学(数列)第一轮复习资料知识点小结1. 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 11000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27)2. 等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 时应注意什么求由n n a S .3 (时,,时,)n a S n a S S n n n ==≥=--12111 4.. 你熟悉求数列通项公式的常用方法吗? 例如:(1)求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144== n a S S n n n n ≥=-==--23411时,……· (2)叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==(3)等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥-- ()()a n n=-1231 (4)等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1 ()⇒=+--a ca c x n n 11令,∴()c x d x dc -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-84311(5)倒数法例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为()()∴=+-=+11112121a n n n · ∴a n n =+215.. 你熟悉求数列前n 项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数 列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n n qa a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n qa a mn m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n nS n T n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

数列求和课件高三数学一轮复习(完整版)

数列求和课件高三数学一轮复习(完整版)

考点一 分组(并项)法求和
【点拨】分组求和法就是对一类既不是(或不明显是)等差数列,也不 是(或不明显是)等比数列的数列,若将这类数列适当拆开,分为几个 等差、等比数列或常见的数列,然后分别求和,最后将其合并的方法.
考点二 裂项相消法求和
考点三 倒序相加法求和
考点四 错位相减法求和
祝你学业有成
2024年5月3日星期五9时47分29秒
6.4 数列求和
【常用结论】
1.判断下列命题是否正确,正确的在括号内画“√”,错误的著,程大位著,共17卷,书中有这样一个 问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到 其关,要见次日行里数,请公仔细算相还.”大致意思是:有一个人要到距离 出发地378里的地方,第一天健步行走,从第二天起因脚痛每天走的路程为 _____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) 4、等差数列{}n a ,{}nb 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

7、已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=且13k a =,则k =_________。

8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 .9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a 12、等差数列{}n a 中,已知848161,.3S S S S =求B 、求数列通项公式1) 给出前几项,求通项公式1,0,1,0,……,,21,15,10,6,3,13,-33,333,-3333,33333……2)给出前n 项和求通项公式1、⑴n n S n 322+=; ⑵13+=n n S . 2、设数列{}n a 满足2*12333()3n na a a a n N +++=∈n-1…+3,求数列{}n a 的通项公式3)给出递推公式求通项公式a 、⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----例:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; b 、已知关系式)(1n f a a n n ⋅=+,可利用迭乘法.1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----例、已知数列{}n a 满足:111(2),21n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; c 、构造新数列1°递推关系形如“q pa a n n +=+1”,利用待定系数法求解例、已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.2°递推关系形如“,两边同除1n p+或待定系数法求解例、n n n a a a 32,111+==+,求数列{}n a 的通项公式.3°递推已知数列{}n a 中,关系形如“n n n a q a p a ⋅+⋅=++12”,利用待定系数法求解 例、已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.4°递推关系形如"11n n n n a pa qa a ---=≠(p,q 0),两边同除以1n n a a -例1、已知数列{}n a 中,1122n n n n a a a a ---=≥=1(n 2),a ,求数列{}n a 的通项公式.例2、数列{}n a 中,)(42,211++∈+==N n a a a a nnn ,求数列{}n a 的通项公式.d 、给出关于n S 和m a 的关系例1、设数列{}n a 的前n 项和为n S ,已知)(3,11++∈+==N n S a a a n n n ,设nn n S b 3-=,求数列{}n b 的通项公式.例2、设n S 是数列{}n a 的前n 项和,11=a ,)2(212≥⎪⎭⎫⎝⎛-=n S a S n n n . ⑴求{}n a 的通项; ⑵设12+=n S b nn ,求数列{}n b 的前n 项和n T .C 、证明数列是等差或等比数列1)证明数列等差例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b nn .求证:数列{}n b 是等差数列. 例2、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. 求证:{nS 1}是等差数列;2)证明数列等比例1、设{a n }是等差数列,b n =na ⎪⎭⎫⎝⎛21,求证:数列{b n }是等比数列;例2、数列{a n }的前n 项和为S n ,数列{b n }中,若a n +S n =n .设c n =a n -1,求证:数列{c n }是等比数列;例3、已知n S 为数列{}n a 的前n 项和,11=a ,24+=n n a S .⑴设数列{}n b 中,n n n a a b 21-=+,求证:{}n b 是等比数列; ⑵设数列{}n c 中,nnn a c 2=,求证:{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和.例4、设n S 为数列{}n a 的前n 项和,已知()21nn n ba b S -=- ⑴证明:当2b =时,{}12n n a n --⋅是等比数列; ⑵求{}n a 的通项公式例5、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.D 、求数列的前n 项和基本方法: 1)公式法, 2)拆解求和法.例1、求数列n{223}n +-的前n 项和n S . 例2、求数列 ,,,,,)21(813412211n n +的前n 项和n S . 例3、求和:2×5+3×6+4×7+…+n (n+3)2)裂项相消法,数列的常见拆项有:1111()()n n k k n n k=-++;n n n n -+=++111;例1、求和:S =1+n ++++++++++ 32113211211 例2、求和:nn +++++++++11341231121 .3)倒序相加法,例、设221)(x x x f +=,求: ⑴)4()3()2()()()(213141f f f f f f +++++;⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++4)错位相减法,例、若数列{}n a 的通项nn n a 3)12(⋅-=,求此数列的前n 项和n S .5)对于数列等差和等比混合数列分组求和例、已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .E 、数列单调性最值问题例1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n . 例2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;例3、数列{}n a 中,12832+-=n n a n ,求n a 取最小值时n 的值.例4、数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.例5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.例6、已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由. 例7、非等比数列{}n a 中,前n 项和21(1)4n n S a =--, (1)求数列{}n a 的通项公式; (2)设1(3)n n b n a =-(*)n N ∈,12n n T b b b =+++,是否存在最大的整数m ,使得对任意的n 均有32n mT >总成立?若存在,求出m ;若不存在,请说明理由。

相关文档
最新文档