江苏省南通市崇川区2019-2020学年八年级上学期期末数学试题(word无答案)
2019-2020学年江苏省南通一中八年级(上)期末数学试卷
2019-2020学年江苏省南通一中八年级(上)期末数学试卷一、选择题1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .2.(3分)下列运算正确的是( ) A .236a a a =g B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-3.(3分)下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=- B .3(1)(1)x x x x x -=+- C .2(1)(3)43x x x x ++=++D .221(2)1x x x x ++=++4.(3分)下列根式中是最简二次根式的是( ) A 23B 3C 9D 125.(3分)下列各式从左到右变形正确的是( ) A .0.220.22a b a ba b a b++=++B .231843214332x yx y x y x y ++=--C .n n am m a -=- D .221a b a b a b+=++6.(3分)若分式22xyx y +中的x ,y 的值同时扩大到原来的2倍,则此分式的值( )A .扩大到原来的4倍B .扩大到原来的2倍C .不变D .缩小到原来的127.(3分)1(1)1a a--变形正确的是( ) A .1-B .1a -C .1a --D .1a --8.(3分)已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( ) A .22320m mn n -++= B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --=9.(3分)如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,已知ABC ∆的面积为28.6AC =,4DE =,则AB 的长为( )A .6B .8C .4D .1010.(3分)如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B 2C .2D 6二、填空题11.(3112242= . 12.(31x -在实数范围内有意义的条件是 .13.(3分)对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b += .14.(3分)已知3a b +=,2ab =,求代数式32232a b a b ab ++的值 . 15.(3分)已知22139273m ⨯⨯=,求m = . 16.(3分)已知113a b-=,则分式232a ab ba ab b +-=-- . 17.(3分)如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长 .18.(3分)阅读理解对于任意正整数a ,b ,Q 2()0a b …,20a ab b ∴-…,2a b ab ∴+…a b =时,等号成立;结论:在2(a b ab a +…、b 均为正实数)中,只有当a b =时,a b +有最小值ab 1m >1m m +-有最小值为 .三、解答题19.已知25a =+,25b = (1)22a b ab +; (2)223a ab b -+.20.先化简,再求值:3(2)(1)2m m m ++÷+-.其中22m -剟且m 为整数,请你从中选取一个喜欢的数代入求值.21.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB CB =,AD CD =.对角线AC ,BD 相交于点O ,OE AB ⊥,OF CB ⊥,垂足分别是E ,F .求证OE OF =.22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.已知a、b23440a b b--+=.(1)求a,b的值;(2)若a,b为ABC∆的两边,第三边c5,求ABC∆的面积.25.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?26.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =代入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式(1)x -,于是可设32245(1)()x x x x mx n +-=-++,分别求出m ,n 的值.再代入32245(1)()x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--. 27.阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形. 小华:等边三角形一定是奇异三角形! 小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确? 填“是”或“否” )问题(2):已知Rt ABC ∆中,两边长分别是5,52,若这个三角形是奇异三角形,则第三边长是 ;问题(3):如图,以AB 为斜边分别在AB 的两侧作直角三角形,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.试说明:ACE ∆是奇异三角形.28.如图,在平面直角坐标系中,点B 坐标为(6,0)-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为(,0)m .(1)点A的坐标为;(2)当ABP∆是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE AB⊥交线段AB于点E,连接OE,若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=.(直接写出答案)2019-2020学年江苏省南通一中八年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .【解答】解:A 、是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:D .2.(3分)下列运算正确的是( ) A .236a a a =g B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-【解答】解:A 、235a a a =g ,故A 错误;B 、236()a a -=-,故B 错误;C 、109(0)a a a a ÷=≠,故C 正确;D 、4222()()bc bc b c -÷-=,故D 错误;故选:C .3.(3分)下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=-B .3(1)(1)x x x x x -=+-C .2(1)(3)43x x x x ++=++D .221(2)1x x x x ++=++【解答】解:因式分解是指将一个多项式化为几个整式的乘积, 故选:B .4.(3分)下列根式中是最简二次根式的是( ) ABCD【解答】解:A=BC、3,故此选项错误;D,故此选项错误;故选:B .5.(3分)下列各式从左到右变形正确的是( ) A .0.220.22a b a b a b a b++=++B .231843214332x yx y x y x y ++=--C .n n am m a -=- D .221a b a b a b+=++ 【解答】解:A .分式的分子和分母同时乘以10,应得210102a ba b++,即A 不正确,26(3)1843.21436()32x y x y B x y x y ⨯++=-⨯-,故选项B 正确,C .分式的分子和分母同时减去一个数,与原分式不相等,即C 项不合题意,22.a bD a b ++不能化简,故选项D 不正确.故选:B . 6.(3分)若分式22xyx y +中的x ,y 的值同时扩大到原来的2倍,则此分式的值( )A .扩大到原来的4倍B .扩大到原来的2倍C .不变D .缩小到原来的12【解答】解:22444xyx y +22xyx y =+,故选:C . 7.(3分)1(1)1a a--变形正确的是( ) A .1- B .1a -C .1a --D .1a --【解答】解:Q 11a-有意义, 10a ∴->, 10a ∴-<, 211(1)(1)111a a a a a∴-=--=----g . 故选:C .8.(3分)已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( ) A .22320m mn n -++= B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --=【解答】解:如图,222()m m n m +=-,22222m n mn m =-+, 2220m mn n +-=.故选:B .9.(3分)如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,已知ABC ∆的面积为28.6AC =,4DE =,则AB 的长为( )A .6B .8C .4D .10【解答】解:作DF AC ⊥于F ,AD Q 是ABC ∆的角平分线,DE AB ⊥,DF AC ⊥, 4DF DE ∴==,112822AB DE AC DF ⨯⨯+⨯⨯=,即114642822AB ⨯⨯+⨯⨯=, 解得,8AB =, 故选:B .10.(3分)如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .6【解答】解:如图,在AC 上截取AE AN =,连接BE ,BAC ∠Q 的平分线交BC 于点D , EAM NAM ∴∠=∠,在AME ∆与AMN ∆中,AE AN =,EAM NAM ∠=∠,AM AM =,()AME AMN SAS ∴∆≅∆,ME MN ∴=.BM MN BM ME BE ∴+=+…,当BE 是点B 到直线AC 的距离时,BE AC ⊥,此时BM MN +有最小值,2AB =Q ,45BAC ∠=︒,此时ABE ∆为等腰直角三角形,BE ∴=,即BEBM MN ∴+.故选:B .二、填空题11.(3=【解答】解:原式==,故答案为:12.(3在实数范围内有意义的条件是 1x > .【解答】解:由题意可知:10x ->,1x ∴>,故答案为:1x >13.(3分)对于分式23x a b a b x ++-+,当1x =时,分式的值为零,则a b += 1-且53a ≠-,23b ≠, . 【解答】解:将1x =代入23x a b a b x ++-+, ∴1023a b a b ++=-+, 1a b ∴+=-且230a b -+≠,即53a ≠-且23b ≠, 1a b ∴+=-故答案为:1-且53a ≠-,23b ≠,. 14.(3分)已知3a b +=,2ab =,求代数式32232a b a b ab ++的值 18 .【解答】解:3a b +=Q ,2ab =,32232a b a b ab ∴++22(2)ab a ab b =++2()ab a b =+223=⨯18=故答案为:18.15.(3分)已知22139273m ⨯⨯=,求m = 8 .【解答】解:22139273m ⨯⨯=,即223213333m ⨯⨯=,2232133m ++∴=,22321m ∴++=,解得8m =.故答案为:816.(3分)已知113a b-=,则分式232a ab b a ab b +-=-- 34 . 【解答】解:由题意可知:3b a ab -=,∴原式2()3a b ab a b ab-+=-- 633ab ab ab ab -+=-- 34=, 故答案为:34 17.(3分)如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A落在F 处,折痕为MN .连接FN ,并求FN【解答】解:设NC x =,则8DN x =-.由翻折的性质可知:8EN DN x ==-. 在Rt ENC ∆中,由勾股定理可知:222EN EC NC =+,222(8)4x x -=+,解得:3x =,即3NC cm =,5DN ∴=,如图所示,连接AN .在Rt 三角形ADN 中,22228589AN AD DN =++= 由翻折的性质可知89FN AN == 8918.(3分)阅读理解对于任意正整数a ,b ,Q 2()0a b …,20a ab b ∴-…,2a b ab ∴+…a b =时,等号成立;结论:在2(a b ab a +…、b 均为正实数)中,只有当a b =时,a b +有最小值ab 1m >1m m +-有最小值为 3 . 【解答】1111m m m m +--, 112(1)11m m m m +---g 121m m -+-, 31m m -,3.故答案为3.三、解答题19.已知2a =+,2b =(1)22a b ab +;(2)223a ab b -+.【解答】解:2a =+Q 2b =22(221ab ∴=+=-=-,224a b +==,(1)22a b ab +()ab a b =+14=-⨯4=-;(2)223a ab b -+2()5a b ab =+-245(1)=-⨯-165=+21=.20.先化简,再求值:3(2)(1)2m m m ++÷+-.其中22m -剟且m 为整数,请你从中选取一个喜欢的数代入求值.【解答】解:3(2)(1)2m m m ++÷+- (2)(2)3121m m m m +-+=-+g 243121m m m -+=-+g (1)(1)121m m m m +-=-+g12 mm -=-,22m-Q剟且m为整数,∴当0m=时,原式011 022-==-.21.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB CB=,AD CD=.对角线AC,BD相交于点O,OE AB⊥,OF CB⊥,垂足分别是E,F.求证OE OF=.【解答】证明:Q在ABD∆和CBD∆中,AB CB AD CD BD BD=⎧⎪=⎨⎪=⎩,()ABD CBD SSS∴∆≅∆,ABD CBD∴∠=∠,BD∴平分ABC∠.又OE AB⊥Q,OF CB⊥,OE OF∴=.22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【解答】解:(1)如图①所示:(2)如图②③所示.23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【解答】解:(1)方程两边同时乘以(2)x -得53(2)1x +-=-解得0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以(2)x -得3(2)1m x +-=-由于2x =是原分式方程的增根,所以把2x =代入上面的等式得3(22)1m +-=-,1m =-所以,原分式方程中“?”代表的数是1-.24.已知a 、b 23440a b b --+=.(1)求a ,b 的值;(2)若a ,b 为ABC ∆的两边,第三边c 5,求ABC ∆的面积.【解答】解:(1)Q 23440a b b --+=, ∴23(2)0a b --=,3a ∴=,2b =;(2)22459b c +=+=Q ,29a =,222b c a ∴+=,ABC ∴∆是直角三角形,ABC ∴∆的面积122=⨯. 25.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【解答】解:(1)设乙骑自行车的速度为/xm min ,则公交车的速度是3/xm min ,甲步行速度是1/3xm min , 由题意得:320020032002008133x x x --=+. 解得200x =.经检验200x =原方程的解答:乙骑自行车的速度为200/m min .(2)当甲到达学校时,乙同学还要继续骑行8分钟,所以82001600()m ⨯=.答:乙同学离学校还有1600m .26.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =代入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式(1)x -,于是可设32245(1)()x x x x mx n +-=-++,分别求出m ,n 的值.再代入32245(1)()x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.【解答】解:(1)把1x =代入多项式3245x x +-,多项式的值为0,∴多项式3245x x +-中有因式(1)x -,于是可设3223245(1)()(1)()x x x x mx n x m x n m x n +-=-++=+-+--,14m ∴-=,0n m -=,5m ∴=,5n =,(2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式(1)x +,于是可设3223299(1)()(1)()x x x x x mx n x m x n m x n +--=+++=++++-,11m ∴+=,9n m +=-,0m ∴=,9n =-,32299(1)(9)(1)(3)(3)x x x x x x x x ∴+--=+-=++-.27.阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形. 小华:等边三角形一定是奇异三角形!小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确? 是 填“是”或“否” )问题(2):已知Rt ABC ∆中,两边长分别是5,边长是 ;问题(3):如图,以AB 为斜边分别在AB 的两侧作直角三角形,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.试说明:ACE ∆是奇异三角形.【解答】(1)解:设等边三角形的一边为a ,则2222a a a +=, ∴符合奇异三角形”的定义.∴ “等边三角形一定是奇异三角形”是真命题; 故答案为:是.(2)解:①当5222(52)55- 2(52)∴+(5)2225≠⨯或(5)22252(52))+≠⨯, Rt ABC ∴∆不是奇异三角形.②当25是直角边时,斜边225(52)53=+= 2(53)+Q (5)2100=22(52)100∴⨯=2(53)∴+(5)222(52)=⨯Rt ABC ∴∆是奇异三角形. 故答案为53(3)证明:90ACB ADB ∠=∠=︒Q , 222AC BC AB ∴+=,222AD BD AB +=, AD BD =Q ,222AD AB ∴=,AE AD =Q ,CB CE =,2222AC CE AE ∴+=,ACE ∴∆是奇异三角形.28.如图,在平面直角坐标系中,点B 坐标为(6,0)-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为(,0)m .(1)点A 的坐标为 (0,8) ;(2)当ABP ∆是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE = .(直接写出答案)【解答】解:(1)Q 点B 坐标为(6,0)-,10AB =, ∴22221068AO AB OB =-=-=. ∴点A 的坐标为(0,8).故答案为:(0,8);(2)ABPQ为等腰三角形,∆∴可分三种情况:当PB AB=时,如图1,∴=-=-=,1064OP BP BOP∴,(4,0)当AP AB=时,如图2,OP BO∴==,6P∴,(6,0)当AP BP=时,如图3,第21页(共23页)设OP a=,则6AP a=+,222OP OA AP+=Q,22228(6)a a∴+=+,解得:7 3a=.∴7(,0)3P.综合上述可得,点P的坐标为(4,0)或(6,0)或7(,0)3;(3)当ABP∆为钝角三角形时,点A'不存在,当ABP∆是锐角三角形时,如图4,连接OA',PE AB⊥Q,点A'在直线PE上,AEG∴∆和GOP∆是直角三角形,EGA OGP∠=∠,EAG OPG∴∠=∠,Q点A,A'关于直线OE对称,8OA OA'∴==,EA EA'=,FAO FA O'∴∠=∠,FAE FA E'∠=∠,EAG EA O'∴∠=∠,OPG EA O'∴∠=∠,∴△A OP'是等腰三角形,8OP OA'∴==,∴22228882AP OA OP=+=+,设BE x=,则6AE x=-,第22页(共23页)222BP BE EP-=Q,222EP AP AE=-,2222(68)(10)x x∴+-=--.解得:425x=.425BE∴=.故答案为:425.第23页(共23页)。
江苏省南通市2019-2020学年数学八上期末模拟调研试卷(1)
江苏省南通市2019-2020学年数学八上期末模拟调研试卷(1)一、选择题1.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A 和B 分别代表的是( )A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠02.小明步行到距家2km 的图书馆借书,然后骑共享单车返家,骑车的平均速度比步行的平均速度每小时快8km ,若设步行的平均速度为xkm/h ,返回时间比去时省了20min ,则下面列出的方程中正确的是( ) A .212103x x =⨯+ B .12238x x ⨯=+C .21283x x+=+ D .21283x x-=+ 3.如果关于x 的一次函数y =(a+1)x+(a ﹣4)的图象不经过第二象限,且关于x 的分式方程11222ax x x-+=--有整数解,那么整数a 值不可能是( ) A .0B .1C .3D .44.根据图①的面积可以说明多项式的乘法运算(2a+b )(a+b )=2a 2+3ab+b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a+3b )(a+b )=a 2+4ab+3b 2B .(a+3b )(a+b )=a 2+3b 2C .(b+3a )(b+a )=b 2+4ab+3a 2D .(a+3b )(a ﹣b )=a 2+2ab ﹣3b 25.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成下面的长方形.根据图形的变化过程写出的一个正确的等式是( )A. B.C.D.6.下列因式分解错误的是( )A.B.C.D. 7.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A .25B .25或32C .32D .198.把△ABC 各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的( )A .B .C .D .9.已知等腰三角形的一个角为72度,则其顶角为( ) A .36︒ B .72︒ C .48︒D .36︒或72︒10.如图,在△ABC 中,∠ACB =45°,AD ⊥BC 于点D ,点E 为AD 上一点,连接CE ,CE =AB ,若∠ACE =20°,则∠B 的度数为( )A .60°B .65°C .70°D .75°11.如图,在四边形ABCD 中,AB ∥CD ,点E ,F 分别为AC ,BD 的中点,若AB =7,CD =3,则EF 的长是( )A .4B .3C .2D .112.已知锐角三角形ABC ∆中,65A ∠=︒,点O 是AB 、AC 垂直平分线的交点,则BCO ∠的度数是( ) A .25︒ B .30° C .35︒D .40︒ 13.如图,在中,为边上一点,若,,则等于( )A. B. C. D.14.多边形每一个外角都是45︒,那么这个多边形是( ) A .六边形B .七边形C .八边形D .九边形15.如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD ,ON 平分∠AOC ,则∠MON 的度数是( )A.135°B.155°C.125°D.145°二、填空题16.一种病毒的长度要为0.0000403毫米,这个长度用科学记数法表示为______毫米。
江苏省南通市崇川中学2019-2020 学年第一学期第一次阶段性测试 初二数学试卷(word版)
2019-2020 学年第一学期第一次阶段性测试初二数学试卷一、选择题 1. 点)3,2(-P 关于x 轴的对称点是( )A .(-2,3)B .(2,3)C (-2,3)D .(2,-3)2. 下列运算中,正确的是()A . 6a ÷2a =3aB .333)(b a ab =C .2532a a a =+D .222)2)(2(b a b a b a -=-+3. 下列图形中不是轴对称图形的是() A . 有两个角相等的三角形B . 有两个角是 40°、70°的三角形C . 有一个角是 45°的直角三角形D . 三边之比为 2:3:4 的三角形4. 如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A . 锐角三角形B . 直角三角形C .钝角三角形D . 不能确定5. 到ABC ∆的三个顶点距离相等的点是() A . 三条中线的交点 B . 三条角平分线的交点 C . 三条高线的交点D . 三条边的垂直平分线的交点6. 下列说法:①若直线 PE 是线段 AB 的中垂线,则 EA =EB ,PA =PB ;②若 EA =EB ,PA =PB ,则直线PE 垂直平分线段 AB ;③若 PA =PB ,则点 P 必是线段 AB 的中垂线上的点;④若 AE =BE ,则经过点 E 的直线垂直平分线 AB ,其中正确的个数为( )A . 1 个B . 2 个C 3 个D .4 个7. 下列计算23893127a a a ÷÷的顺序不正确的是( )A .238)93127(--÷÷aB . 238)93127(--÷÷aC .)931(27238a a a ÷÷D . 32831)927(a a a ÷÷8. 若0)2(611---a a 有意义,则 a 的取值范围是( )9. 如图,E 是等边ABC ∆ 中 AC 边上的点,∠1=∠2,BE =CD ,则ADE ∆ 的形状是()A . 等腰三角形B . 等边三角形C . 不等边三角形D . 不能确定形状10. 如图,C 为线段 AE 上一动点(不与点 A 、E 重合),在 AE 同侧分别作正三角形 ABC 和正三角形CDE ,AD 与 BE 交于点 O ,AD 与 BC 交于点 P ,BE 与 CD 交于点 Q ,连接PQ ,以下七个结论:①AD =BE ;②PQ //AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°; ⑥PCQ ∆是等边三角形;⑦点C 在∠AOE 的平分线上,其中正确的有() A . 3 个B . 4 个C . 5 个D . 6 个二、填空题11. 计算:=-⋅)2(332xy x .12. 等腰三角形的周长为 14,其一边长为 3,那么,它的底边长为 . 13. 小明从镜子里看到镜子对面的钟表里的时间是 2 点 30 分,实际时间为 . 14. 设2)2)(1(cx bx a x x ++=-+,则=+c b .15. 已知:1)5(=-xx ,则整数 =x .16. 如图,1l //2l ,ABC ∆为等边三角形,∠ABD =35°,则 ∠ACE = . 17. 如图,在等腰ABC ∆ 中,∠BAC =120°,DE 是AC 的垂直平分线,线段 DE =1cm ,则 BD =cm .18. 如图,已知∠ABC =120°,BD 平分∠ABC ,∠D A C =60°,若 AB =2,BC =3,则 BD = .三、解答题 19. 计算(1)332)2(3xy y x -⋅(2))32()32(532435xy y x y x y x -÷+-20、先化简,再求值:)43(2)342(322+-+-a a a a a ,其中2-=a .21、若)3)(31(22q x x px x +--+的积中不含x 项与3x 项(1)求 p 、q 的值;(2)求代数式20202019022)3()2(q p pq q p ++-的值.22、作图题:(要求保留作图痕迹,不写做法)已知:如图,∠AOB 和线段 EF ,在平面内求作一个点 P ,使得点 P 到∠AOB 的两边距离相等,且到点 E 和点 F 的距离也相等。
2019-2020学年江苏省南通一中八年级上册期末数学试卷
2019-2020学年江苏省南通一中八年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A. a2⋅a3=a6B. (ab)2=a2b2C. (a2)3=a5D. a6÷a2=a33.下列等式从左到右的变形是因式分解的是()A. 2x(x+3)=2x2+6xB. 24xy2=3x⋅8y2C. x2+2xy+y2+1=(x+y)2+1D. x2−y2=(x+y)(x−y)4.下列二次根式是最简二次根式的是()A. √6B. √18C. √1325.下列各式中变形不正确的是()A. 2−3x =−23xB. −a−6b=a6bC. 3x−4y=−3x4yD. 5n3m=−5n3m6.如果把2y2x−3y中的x和y都扩大到5倍,那么分式的值()A. 扩大5倍B. 不变C. 缩小5倍D. 扩大4倍7.化简√2514等于()A. √1012B. ±√1012C. 52D. 5128.下列说法中,正确的个数有()①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为√10;②直角三角形的最大边长为√3,最短边长为1,则另一边长为√2;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5.A. 1个B. 2个C. 3个D. 4个9.如图,BD是△ABC的角平分线,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED=()A. 12B. 1C. 2D. 510.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M,N分别是BD,BC上的动点,则CM+MN的最小值是()A. √3B. 2C. 2√3D. 4第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11.计算:(√24+√16)×√6=______.12.当x________时,式子√x+1x在实数范围内有意义.13.当x=时,分式x2x+6的值为0.14.若x2+x−5=0,则代数式x3+6x2+3的值为.15.如果32×27=3n,则n=______.16.若1x −1y=3,则分式3x+xy−3y2x+5xy−2y=______.17.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.18. 将3+1化简得______.三、计算题(本大题共1小题,共6.0分) 19. 先化简,再求值:(1−2x−1)÷x 2−6x+9x 2−x,其中x 是从0,1,2,3中选取的一个合适的数.四、解答题(本大题共9小题,共72.0分) 20. 已知x =√5−√2y =√5+√2.(1)求x +y 与x −y 的值; (2)求x 2+xy +y 2的值.21.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:OB=OD;(2)如果AC=6,BD=4,求筝形ABCD的面积.22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点。
江苏省南通市崇川区2019-2020学年八年级上学期期末数学试题
南通市崇川区2019-2020学年度第一学期期末考试八年级数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形是轴对称图形的是( )A. B.C. D.2.有意义,则x 的取值范围是( )A. 1x >-B. 0x ≥C. 1x ≥-D. 任意实数 3.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( )A. 21B. 22或27C. 27D. 21或27 4.计算021( 3.14)()2π--+=( ) A. 5 B. -3 C. 54 D. 14- 5.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A. 1B.C. 2D. 6.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=o ,则ABC ∠=( )A 70oB. 71oC. 74oD. 76o 7.若分式242x x --的值为0,则x 的值为 ( ) A. ±2 B. 2 C. -2 D. 08.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( ) A. 7 B. 8 C. 9 D. 10 9.若2149x kx ++是完全平方式,则实数k 的值为( ) A. 43 B. 13 C. 43± D. 13± 10.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A. 0条B. 1条C. 2条D. 3条二、填空题((第11-13每小题3分,第14-18每小题4分,共29分,将答案填在答题纸上) .11.计算:32()x y -=__________.12.因式分解:24ax ay -=__________.13.点(2,1)P 关于x 轴对称的点P'的坐标是__________.14.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .15.如图,在ABC ∆中,90C =o ∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=o ,2CD =,则ABC ∆周长等于__________.16.已知关于x 的方程211x m x -=-的解是正数,则m 的取值范围为__________. 17.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.18.若12a =,则352020a a -+=__________. 三、解答题:本大题共8题,共91分.解答应写出文字说明、证明过程或演算步骤.19.(1+(2)因式分解:3312x x -(3)计算:2(1)(2)(3)x x x x -+-+(4)计算:2(21)2(1)(1)x x x +-+-20.先化简,再求值:35(2)362x x x x -÷+---,其中3x = 21.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标;(2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .22.如图,在ABC ∆中,110ACB ∠=o ,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =. (1)若30A ∠=o ,求DCE ∠的度数;(2)DCE ∠度数会随着A ∠度数的变化而变化吗?请说明理由.23.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用时间相同,求小明每小时加工零件的个数.24.如图,在ABC ∆中,4AB =,8BC =,AC垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.的25.观察下列等式: 112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;…… 根据上面等式反映的规律,解答下列问题: (1)请根据上述等式的特征,在括号内填上同一个实数: 2⨯( )-5=( )5⨯;(2)小明将上述等式的特征用字母表示为:2x y xy -=(x 、y 为任意实数).①小明和同学讨论后发现:x 、y 的取值范围不能是任意实数.请你直接写出x 、y 不能取哪些实数. ②是否存在x 、y 两个实数都是整数情况?若存在,请求出x 、y 的值;若不存在,请说明理由.26.已知ABC ∆中,AB AC =. (1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE = (2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=o ,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=o ,连接AD ,若45CAB ∠=o ,求AD AB 的值.的。
江苏省南通市2019-2020学年数学八上期末模拟调研试卷(2)
江苏省南通市2019-2020学年数学八上期末模拟调研试卷(2)一、选择题1.已知x 为整数,且222218339x x x x ++++--为整数,则符合条件的x 有( ) A .2个B .3个C .4个D .5个 2.使得分式2233x x x +---的值为零时,x 的值是( ) A .x=4 B .x=-4 C .x=4或x=-4 D .以上都不对3.若(-2x+a)(x-1)的展开式中不含x 的一次项,则a 的值是( )A .-2B .2C .-1D .任意数 4.已知ab =﹣2,a ﹣3b =5,则a 3b ﹣6a 2b 2+9ab 3的值为( ) A .﹣10 B .20 C .﹣50 D .405.根据图①的面积可以说明多项式的乘法运算(2a+b )(a+b )=2a 2+3ab+b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a+3b )(a+b )=a 2+4ab+3b 2B .(a+3b )(a+b )=a 2+3b 2C .(b+3a )(b+a )=b 2+4ab+3a 2D .(a+3b )(a ﹣b )=a 2+2ab ﹣3b 26.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是( )A .140或44或80B .20或80C .44或80D .80°或1407.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为25和17,则△EDF 的面积为( )A.4B.5C.5.5D.68.已知如图所示的两个三角形全等,则∠1=( )A.72B.60C.50D.589.下列四个图形中,轴对称图形的个数是( )\A .1个B .2个C .3个D .4个10.下列图形中,不是轴对称图形的是 ( )A .①⑤B .②⑤C .④⑤D .①③11.如图,两个三角形是全等三角形,x 的值是( )A .30B .45C .50D .8512.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠=,则下列结论正确的是( )A.342∠=B.4138∠=C.542∠=D.258∠= 13.如图,在锐角中,分别是边上的高,交于点,,则的度数是( )A. B.C. D. 14.若从长度分别为2 cm 、3 cm 、4 cm 、6 cm 的四根木棒中,任意选取三根首尾顺次相连搭成三角形,则搭成的不同三角形共有( )A .1个B .2个C .3个D .4个15.若xy =x+y≠0,则分式11yx +=( ) A .1xy B .x+yC .1D .﹣1 二、填空题16.分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为__________。
江苏省南通市2019-2020学年度上期八年级数学期末测试(无答案)
2019-2020学年度第一学期八年级期末调研考试数学一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置.......上.1.(3分)下列各式①、②、③、④中,是分式的有()A.①②③B.②④C.③④D.②③④2.(3分)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条3.(3分)下列各题的计算,正确的是()A.(a2)3=a5B.(﹣3a2)3=﹣9a6C.(﹣a)•(﹣a)6=﹣a7D.a3+a3=2a64.(3分)下列命题中,正确的是()A.三角形的一个外角大任何一个内角B.等腰三角形的两个角相等C.三个角分别对应相等的两个三角形全等D.三角形的三条高可能在三角形内部5.(3分)下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+16.(3分)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.(3分)若x2+bx+c=(x+5)(x﹣3),其中b、c为常数,则点P(b,c)关于y轴对称的点的坐标是()A.(﹣2,﹣15)B.(2,15)C.(﹣2,15)D.(2,﹣15)8.(3分)如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定9.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=210.(3分)如图,在等边△ABC中,AB=2,N为AB上一点,且AN=1,AD=,∠BAC的平分线交BC于点D,M是AD上的动点,连接BM、MN,则BM+MN的最小值是()A .B .2C .1D .3二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题..纸.相应位置....上. 11.的结果是 ▲ . 12.分式2313a b c ,214ab的最简公分母是 ▲ . 13.已知(x +5)(x +n )=x 2+mx +5,则m +n 的值为 ▲ . 14.当m =3+n 时,式子3-m 2+2mn -n 2的值为 ▲ .15.如图是两个全等三角形,图中字母表示三角形的边长,则∠1的度数为 ▲ .16.若2xy =x -y ≠0,则分式11x y-的值为 ▲ .17.将一个有30°角的三角板的直角顶点放在一张宽为5cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成45°角,如图,则三角板的最大边的长为 ▲ .18.如图,过射线OA 上一点M 作MN ⊥OB 于点N ,交∠AOB 的平分线于点P .若MP =5,NP =3.则OP 的长为 ▲ .三、解答题:本大题共9小题,共64分.请在答题纸指定区域.......内作答,解答时应写出文字(第17题)45(第18题)bcb1a c60° 54(第15题)说明、证明过程或演算步骤. 19.(本题满分8分)分解因式:(1)3ax 2-6axy +3ay 2; (2)(3m +2n )2-(2m +3n )2.20.(本题满分10分) 计算:(1)(2)--221.(本题满分6分)先化简,再求值:(m +12m +)÷(m -2+32m +),其中,m 满足m1=0.22.(本题满分6分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?23.(本题满分6分)如图,在△AFD 和△CEB 中,点A ,E ,F ,C 在同一直线上,AE =CF ,∠B =∠D ,AD ∥BC . 求证:AD =BC .ADBEFC24.(本题满分6分)如图,在4×3的正方形网格中,每个小正方形的边长都为1. (1)线段AB 的长为 ▲ ;(2)在图中作出线段EF ,使得EFAB ,CD ,EF 三条线段能否构成直角三角形,并说明理由.BACD(第24题)在棋盘中建立如图1所示直角坐标系,现将A ,O ,B 三颗棋子分别放置在(-2,2),(0,0),(1,0)处.(1)如图2,添加棋子C ,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请在图1中标出棋子P 所在的位置,并写出它的坐标.26.(本题满分6分)观察下列关于自然数的等式: 32-4×12=5 ① 52-4×22=9 ② 72-4×32=13 ③ ……根据上述规律解决下列问题:(1)根据上面的规律,第四个等式为 ▲ ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(第25题)图1图2在△ABC中,∠C=90º,AC=BC=8.在边AB,AC分别取点D,E,连接DE,将△ADE 沿DE翻折得△A'DE,且点A'恰好落在△ABC的边上.(1)如图1,点A'在边AB上,若BA'=A'D的长;(2)如图2,点A'在边AC上,连接BA',若BA'平分∠ABC,求折痕DE的长;(3)如图3,点A'在边BC上,当△A'DE为等腰三角形时,求其腰长。
江苏省南通市崇川区2019-2020八年级上学期期末数学试卷 及答案解析
江苏省南通市崇川区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中一定是轴对称图形的是()A. B.C. D.2.若√x−2有意义,则x的取值范围是()A. x≥2B. x≥−2C. x>2D. x>−23.等腰三角形的两边长分别为5和11,则这个三角形的周长为()A. 16B. 21C. 27D. 21或274.计算(−π)0÷(13)−2的结果是()A. 16B. 0 C. 6 D. 195.在平面直角坐标系中,点A(−3,2),B(3,5),C(x,y),若AC//x轴,则线段BC的最小值及此时点C的坐标分别为()A. 6,(−3,5)B. 10,(3,−5)C. 1,(3,4)D. 3,(3,2)6.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=80°,那么∠EBC等于()A. 15°B. 25°C. 15°或75°D. 25°或85°7.分式x2−1x+1的值为零,则x的值为()A. −1B. 0C. ±1D. 18.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A. 15B. 225C. 81D. 259.如果x2−(m+1)x+1是完全平方式,则m的值为()A. −1B. 1C. 1或−1D. 1或−310.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 5条B. 4条C. 3条D. 2条二、填空题(本大题共8小题,共24.0分)11.计算:−(−2ab3)2=_______________.12.分解因式:xy−x=______.13.点P(−5,2)关于x轴对称的点坐标是______.14.已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是______ .15.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E,且△ACD的周长为30,AD=13cm,则斜边AB长为______cm.16.若关于x的方程x+mx−2+2m2−x=2的解是正数,则m的取值范围是______.17.在平面直角坐标系中,若点M(−2,6)与点N(x,6)之间的距离是7,则x的值是______.18.若m=2015√2016−1,则m3−m2−2017m+2015=______.三、解答题(本大题共8小题,共64.0分)19.(1)计算:(−a)7÷(−a)4×(−a)3;(2)利用乘法公式计算:2014×2016−20152;(3)因式分解:x3−4x.20. 先化简,再求值:(a −9+25a+1)÷(a −1−4a−1a+1),其中a =√2.21. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(−2,−1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出A 1,B 1,C 1的坐标;(3)在x 轴上是否存在点P ,使得PA +PB 最小,若存在,请直接写出点P 的坐标.22.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.23.小张和小李两人加工同一种零件,小李每小时比小张少加工5个,小李加工100个零件与小张加工120个零件时间相同,小张和小李每小时各加工多少个零件?24.如图,在△ABC中,AB=8cm,AC=6cm,BC=10cm,点D在AB上,且BD=CD,求△BDC的面积.25.观察下列等式:第1个等式:a1=11×5=14×(1−15);第2个等式:a2=15×9=14×(15−19);第3个等式:a3=19×13=14×(19−113);第4个等式:a4=113×17=14×(113−117);…请解答下列问题:(1)按以上规律列出第5个等式:a5=____=____(2)用含n的代数式表示第n个等式:a n=____=____(n为正整数);(3)求a1+a2+a3+a4+⋯+a100的值.26.已知:如图,在△ABC中,AD⊥BC,垂足是D,E是线段AD上的点,且AD=BD,DE=DC.⑴求证:∠BED=∠C;⑴若AC=13,DC=5,求AE的长.-------- 答案与解析 --------1.答案:A解析:此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A.是轴对称图形,故此选项正确;B.不是轴对称图形,故此选项错误;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误;故选A.2.答案:A解析:解:依题意,得x−2≥0,解得,x≥2.故选:A.二次根式有意义,被开方数是非负数.本题考查了二次根式有意义的条件.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.答案:C解析:本题考查了等腰三角形两腰长相等的性质,要分情况讨论并利用三角形的三边关系判断是否能组成三角形.根据①11是腰长时,三角形的三边分别为11、11、5,②11是底边时,三角形的三边分别为11、5、5,分别计算即可.解:①11是腰长时,三角形的三边分别为11、11、5,能组成三角形,周长=11+11+5=27;②11是底边时,三角形的三边分别为11、5、5,∵5+5=10<11,∴不能组成三角形,综上所述,三角形的周长为27.故选C .4.答案:D解析:利用零指数幂和负整数指数幂的性质即可解答。
江苏省南通市八年级(上)期末数学试卷(含答案)
江苏省南通市八年级(上)期末数学试卷(含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( ) A .80° B .90° C .100° D .110° 2.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1- B .0C .1D .23.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===4.对函数31y x =-,下列说法正确的是( ) A .它的图象过点(3,1)- B .y 值随着x 值增大而减小 C .它的图象经过第二象限 D .它的图象与y 轴交于负半轴 5.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .56.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒7.在下列各数中,无理数有( )33224,3,8,9,07π A .1个B .2个C .3个D .4个8.下列各点中,位于平面直角坐标系第四象限的点是( ) A .(1,2) B .(﹣1,2) C .(1,﹣2) D .(﹣1,﹣2)9.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体 B .个体 C .样本 D .样本容量 10.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( )A .2B .1.9C .2.0D .1.90二、填空题11.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”). 12.点A (3,-2)关于x 轴对称的点的坐标是________.13.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.14.4的平方根是 .15.计算:32()x y -=__________.16.点(2,1)P 关于x 轴对称的点P'的坐标是__________.17.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.18.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.19.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.20.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.三、解答题21.已知y 与2x -成正比例,且当1x =时,2y =-. (1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.22.如图,在△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为15cm,AC=6cm,求DC长.23.某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):分组频数频率50.5~60.5200.0560.5~70.548△70.5~80.5△0.2080.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在 90.5 ~ 100.5 分之间的学生进行奖励,请你估算出全校获奖学生的人数.24.(新知理解)如图①,若点A、B在直线l同侧,在直线l上找一点P,使AP BP+的值最小.作法:作点A关于直线l的对称点A',连接A B'交直线l于点P,则点P即为所求.(解决问题)如图②,AD是边长为6cm的等边三角形ABC的中线,点P、E分别在AD、AC上,则PC PE+的最小值为 cm;(拓展研究)如图③,在四边形ABCD的对角线AC上找一点P,使APB APD∠=∠.(保留作图痕迹,并对作图方法进行说明)25.阅读下列材料:∵4<5<9,即2<5<3∴5的整数部分为2,小数部分为5﹣2请根据材料提示,进行解答:(1)7的整数部分是.(2)7的小数部分为m,11的整数部分为n,求m+n﹣7的值.四、压轴题26.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明. 29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.3.D解析:D【解析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.4.D解析:D 【解析】 【分析】根据一次函数的性质,对每一项进行判断筛选即可. 【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确. 故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质.5.C解析:C 【解析】试题分析:A 1,故错误;B <﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C . 【考点】估算无理数的大小.6.C解析:C 【解析】 【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.C解析:C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.10.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.二、填空题11.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.12.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.13.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y -=-= 故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键. 16.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x 轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P 关于x 轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x 轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;17.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m =,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.19.3;【解析】【分析】过D 作DE⊥AB 于E ,DF⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE⊥AB 于E ,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题21.(1)y=2x-4;(2)-6<y<0.【解析】【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),把x=1,y=-2代入y=k(x-2),得k(1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y随x的增大而增大,∴当-1<x<2时,y的范围为-6<y<0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.22.(1)35°;(2)4.5cm.【解析】【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=8cm,即可得出答案.【详解】解:(1)∵AD⊥BC,BD=DE∴AD垂直平分BE,∵EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=12∠AED=35°;(2)∵△ABC周长15cm,AC=6cm,∴AB+BE+EC=9cm,即2DE+2EC=9cm,∴DE+EC=DC=4.5cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.23.(1)见解析;(2)见解析;(3)740人【解析】【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,则60.5~70.5的频率为48÷400=0.12,70.5~80.5的频数为400×0.2=80,90.5~100.5的频率为148÷400=0.37,补全频数分布表如下:(3)2000×0.37=740(人),答:估算出全校获奖学生的人数约为740人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,根据第1组的数据求出被抽查的学生数是解题的关键,也是本题的突破口.24.(1)33;(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--cm),∴PC+PE的最小值为3cm;(2)【拓展研究】方法1:如图③,作B 关于AC 的对称点E ,连接DE 并延长,交AC 于P ,点P 即为所求,连接BP ,则∠APB=∠APD .方法2:如图④,作点D 关于AC 的对称点D',连接D'B 并延长与AC 的交于点P ,点P 即为所求,连接DP ,则∠APB=∠APD .25.(1)2;(2)1【解析】【分析】(1479<(291116<<,进而得出答案.【详解】解:(1479<∴273<<,72. 故答案为:2;(2)由(1)可得出,72m =, 91116<,∴n =3,∴772371m n +-=+=.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根. 四、压轴题26.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时,∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A,B四个点能构成一个菱形,此时Q点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.27.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG ⊥AG ,FH ⊥DH ,∴∠CGA =∠FHD =90°.∵∠CBG =180°-∠ABC ,∠FEH =∠180°-∠DEF ,∠ABC =∠DEF ,∴∠CBG =∠FEH .在△BCG 和△EFH 中,∵∠CGB =∠FHE ,∠CBG =∠FEH ,BC =EF ,∴△BCG ≌△EFH .∴CG =FH .又∵AC =DF .∴Rt △ACG ≌△DFH .∴∠A =∠D .在△ABC 和△DEF 中,∵∠ABC =∠DEF ,∠A =∠D ,AC =DF ,∴△ABC ≌△DEF .(3)如图②,△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.29.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解.②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解. (2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090AMC ︒︒︒-+∠=,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣13;(3)设点E的坐标为(a,a+2),则点T的坐标为(33a+,23a+),当∠THD=90°时,点E与点T的横坐标相同,∴33a+=a,解得,a=32,此时点E的坐标为(32,72),当∠TDH=90°时,点T与点D的横坐标相同,∴33a+=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.。
2019-2020学年江苏省南通市崇川区八年级数学上第一次阶段试题含答案
南通市2019~2020学年度第一学期第一次阶段测试卷八年级数学试卷共4页 总分:120分 时间:100分钟一、选择题(本大题共有9小题,每小题3分,共27分.) 1. 计算23()a 的结果是( )A .a 6B .a 5C .a 8D .3 a 22. 下列“表情图”中,属于轴对称图形的是( )A .B .C .D .3. 10x 不可能写出如下式子( ) A.()2242x x x⋅⋅ B. ()55xC.()()()352x x x -⋅-⋅- D. 33()x x ⋅4. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A.125. 下列运算结果正确的是( ) A . 2a 3•a 4b =2a 12b B .(a 4)3=a7C .(3a )3=3a 3D . a (a +1)=a 2+a6. 下列尺规作图,能判断AD 是△ABC 边上的高是( )7. 如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法: ①△EBD 是等腰三角形,EB =ED ,②折叠后∠ABE 和∠CBD 一定相等,③折叠后得到的图形是轴对称图形 ,④△EBA 和△EDC 一定是全等三角形,其中正确的有( ) A .1个; B .2个; C .3个; D .4个第7题图 第8题图AB D第9题图8. 如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BC 相交于点P ,BE 与CD 相交于点Q ,连接PQ ,则∠CPQ 度数为( ) A .75° B .60° C .55° D .45°9.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC 长为( )cmA. 8B.9C.10D. 12 二、填空题(本大题共有6小题,每小题3分,共18分.)10.在平面直角坐标系中,点(4,-5)关于x 轴对称点的坐标为_________ 11. 已知m4x =,3nx =,则m nx+的值为_____________.12. 如图,在△ABC 中,090C ∠=,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E ;若030B ∠=,CD =1,则BD 的长为 .13. 在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是 .14. 如图,已知25ABC S m ∆=,AD 平分∠BAC ,且AD ⊥BD 于点D ,则ADC S ∆= _________2m .15. 如图,等边△ABC 的边长为3,点E 在BA 的延长线上,点D 在BC 边上,且ED =EC ,AE =2,则CD 的长为 .三、解答题(本大题共有9小题,共75分)16.(本题20分)计算:(1) 92()()b b -⋅- (2) 523()c c c -⋅+(3) 3223(3)[(2)]x x -+- (4)232223(2)8()()()x y x x y +⋅-⋅-17.(本题5分) 已知2(3)310a b -++= ,求20172018()a b-⋅的值18.(本题5分)已知:如图,AE 是△ABC 外角的平分线,且AE ∥BC .第12题ABDEC第14题图第13题第15题图求证:△ABC 是等腰三角形。
南通市2019-2020学年数学八上期末模拟考试试题(4)
南通市2019-2020学年数学八上期末模拟考试试题(4)一、选择题1.数﹣0.00000324,用科学记数法表示为()A.﹣324×10﹣8 B.3.24×10﹣6 C.﹣3.24×10﹣6 D.0.324×10﹣52.若关x的分式方程2133x mx x-=--有增根,则m的值为()A.3B.4C.5D.6 3.下列运算中,正确的是()A.4m-m=3 B.(-m3n)3=-m6n3C.m6÷m3=m2D.(m-3)(m+2)=m2-m-64.计算(﹣12)2019×(﹣2)2020的结果是()A.12B.-12C.2 D.﹣25.已知水星的半径约为2440000米,用科学记数法表示为()米.A.0.244×107 B.2.44×107 C.24.4×105 D.2.44×1066.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则△ABC是()A.直角三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.等腰直角三角形7.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.8.在下列图案中,不是..轴对称图形的是( )A.B.C.D.9.如图,在矩形ABCD中,AB=2,AD=3,E是BC边上一点,将沿AE折叠,使点B落在点处,连接,则的最小值是()A. B. C. D.10.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是( )A.3对B.4对C.5对D.6对11.如图,在△ABC中,已知AB=AC,D、E两点分别在边AB、AC上.若再增加下列条件中的某一个,仍不能判定△ABE≌△ACD,则这个条件是()A.BE ⊥AC ,CD ⊥ABB.∠AEB=∠ADCC.∠ABE=∠ACDD.BE=CD 12.如图,已知,那么添加下列一个条件后,能判定的是( )A.B. C.D. 13.用三种正多边形铺设地板,其中两种是正方形和正五边形,则第三种正多边形的边数是( )A .12B .15C .18D .20 14.如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P ,则α﹣5︒的值是( )A .35°B .40°C .50°D .不存在15.如图,在△ABC 中,AC=BC ,D 在BC 的延长线上,∠ABC 与∠ACD 的平分线相交于点P ,则下列结论中不一定...正确的是( )A .∠ACD=2∠AB .∠A=2∠PC .BP ⊥ACD .BC=CP 二、填空题16.化简分式:3()y x x y --=_____. 17.计算:()201820190.1258-⨯=________.18.如图,Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB,垂足为 E,若 AB=5cm ,AC=3cm,则 BE 的长是______.19.若a ,b ,c 分别为△ABC 的三边,化简:|a+b ﹣c|+|b ﹣c ﹣a|﹣|c ﹣a ﹣b|=_____.20.如图,在等边ABC V 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,且DE 长为1,则BC 长为______.三、解答题21.某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:(1)甲,乙两队单独完成各需多少天;(2)若施工方案是甲队先单独施工x 天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用y (万元)关于施工时间x (天)的函数关系式(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?22.计算:(1)(2)23.已知:如图,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F.求证:CE =CF .24.已知:△AOB 和△COD 均为等腰直角三角形,∠AOB=∠COD=90°.连接AD ,BC ,点H 为BC 中点,连接OH .(1)如图1所示,求证:1 OH AD 2= 且OH AD ⊥ (2)将△COD 绕点O 旋转到图2、图3所示位置时,线段OH 与AD 又有怎样的关系,并选择一个图形证明你的结论25.如图①,在ABC ∆中,AE 平分BAC ∠(C B ∠>∠),F 为AE 上一点,且FD BC ⊥于点D .(1)当45B ∠=︒,75C ∠=︒时,求EFD ∠的度数;(2)若B α∠=,C β∠=,请结合(1)的计算猜想EFD ∠、B Ð、C ∠之间的数量关系,直接写出答案,不说明理由;(用含有α、β的式子表示EFD ∠)(3)如图②,当点F 在AE 的延长线上时,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.【参考答案】***一、选择题题1 2 3 4 5 6 7 8 9 10 11 12 13 14 15号答C D D D D C B C A B D A D A C案16.-17.818.2cm.19.a﹣b+c20.2三、解答题21.(1)甲、乙两队单独完成分别需30天,20天;(2)y=0.5x+60;(3)甲队先施工10天,再甲乙合作8天,费用最低为55万元22.(1)4;(2)123.见解析.【解析】【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,根据等腰三角形的判定推出即可。
南通市八年级上学期期末数学试题
南通市八年级上学期期末数学试题一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-22.在平面直角坐标系中,下列各点在第二象限的是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)3.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .4.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠CB .BE =CDC .AD =AE D .BD =CE 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1) 6.计算021( 3.14)()2π--+=( ) A .5 B .-3 C .54 D .14- 7.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3)8.下列计算,正确的是( )A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 6 9.下列以a 、b 、c 为边的三角形中,是直角三角形的是( )A .a =4,b =5,c =6B .a =5,b =6,c =8C .a =12,b =13,c =5D .a =1,b =1,c =310.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.13.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.14.计算222m m m+--的结果是___________ 15.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)16.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____.17.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.18.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.19.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.20.在第二象限内的点P 到x 轴的距离是1,到y 轴的距离是4,则点P 的坐标是_________.三、解答题21.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B′的坐标,并求出直线AC对应的函数表达式;∆'是等腰直角三角形时,求点(2)点D在线段AC上,连接DB、DB'、BB',当DBBD坐标;(3)如图②,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几∆是等腰三角形.秒时ADQ22.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.(1)求y关于x的函数表达式;(2)若要求购进A水果的数量不少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?23.如图,△AB C中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.(1)若△BCD的周长为8,求BC的长;(2)若∠A=40°,求∠DBC的度数.24.如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为15cm,AC=6cm,求DC长.25.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长x 与等边△ABC 的周长y 的关系.(1)如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时x y= ; (2)如图2,点M 、N 在边AB 、AC 上,且当DM≠DN 时,猜想( I )问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M 、N 分别在边AB 、CA 的延长线上时,探索BM 、NC 、MN 之间的数量关系如何?并给出证明.四、压轴题26.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =27.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴正半轴于点C ,且OC =3.图1 图2(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;29.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.30.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.3.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A,∠B=∠C 利用 ASA 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项B,BE=CD 不能说明△ABE≌△ACD ,说法错误,故此选项正确;选项C,AD=AE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项D,BD=CE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.5.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.6.A解析:A【解析】【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】021( 3.14)()1452π--+=+= 故选:A【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.7.A解析:A【解析】试题解析:∵点P (3,-4)关于y 轴对称点P′,∴P′的坐标是:(-3,-4).故选A .8.D解析:D【解析】【详解】A 、a 2-a ,不能合并,故A 错误;B 、a 2•a 3=a 5,故B 错误;C 、a 9÷a 3=a 6,故C 错误;D 、(a 3)2=a 6,故D 正确,故选D .9.C解析:C【解析】【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可.【详解】解:A 、因为42+52=41≠62,所以以a 、b 、c 为边的三角形不是直角三角形;B 、因为52+62≠82,所以以a 、b 、c 为边的三角形不是直角三角形;C 、因为122+52=132,所以以a 、b 、c 为边的三角形是直角三角形;D 、因为12+12≠)2,所以以a 、b 、c 为边的三角形不是直角三角形;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.10.D解析:D【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.【解析】【分析】根据等腰三角形的性质得到∠A DC=70,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC =70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC =AD ,∠C =70︒,∴∠ADC =∠C =70︒,∵AD =DB ,∴∠B =∠BAD ,∴∠B =12∠ADC =35︒. 故答案为:35.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.12.(2,1)【解析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.13.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知13c ,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.14.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.15.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).16.2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三解析:2<AD<13【解析】【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE 中,15-11=4,15+11=26,∴4<AE <26,∴2<AD <13;故答案为:2<AD <13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD 延长得AD=DE ,构造全等三角形,然后利用三角形的三边的关系解决问题. 17.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =,∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.18.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.19.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+bmx+n的解集.【详解】∵当x2时,一次函数y=kx+b的x≥解析:2【解析】【分析】观察函数图象得到,当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+b≥mx+n的解集.【详解】∵当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,∴不等式kx+b≥mx+n的解集为x≥2.故答案是:x≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P 到x 轴的距离是1,到y 轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P 到x 轴的距离是1,到y 轴的距离是4,∴点P 的横坐标是-4,纵坐标是1,∴点P 的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度.三、解答题21.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒或102秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠, 把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴° 过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=, 90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a , 把点(,)D a a 代入132y x =-+, 得0.53a a =-+2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠ 又2,90DF DE PDF QDE ︒==∠=∠= PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=,204PF QE ∴==6(204)1020BP BF PF ∴=-=-=-∴点P 1020-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为11020-秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.22.(1)3245y =-+;(2)应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元【解析】【分析】(1)根据A 水果总价+B 水果总价=1200列出关于x 、y 的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为W 元,找出利润W 关于x 的函数关系式,由购进A 水果的数量不得少于B 水果的数量找出关于x 的一元一次不等式,解不等式得出x 的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)∵30501200x y∴y 关于x 的函数表达式为:3245y =-+. (2)设获得的利润为w 元,根据题意得510w x y , ∴240w x =-+∵A 水果的数量不得少于B 水果的数量,∴x y ≥,解得15x ≥.∵10-<,∴w 随x 的增大而减小,∴当15x =时,w 最大225=,此时120315155y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.23.(1)3cm ;(2)30°.【解析】【分析】(1)根据线段垂直平分线定理得出AD=BD ,根据BC+CD+BD=8cm 求出AC+BC=8cm ,把AC 的长代入求出即可;(2)已知∠A=40°,AB=AC 可得∠ABC=∠ACB ,再由线段垂直平分线的性质可求出∠ABC=∠A ,易求∠DBC .【详解】(1)∵D 在AB 垂直平分线上,∴AD=BD ,∵△BCD 的周长为8cm ,∴BC+CD+BD=8cm ,∴AD+DC+BC=8cm ,∴AC+BC=8cm ,∵AB=AC=5cm ,∴BC=8cm ﹣5cm=3cm ;(2)∵∠A=40°,AB=AC ,∴∠ABC=∠ACB=70°,又∵DE 垂直平分AB ,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.考点:(1)线段垂直平分线的性质;(2)等腰三角形的性质.24.(1)35°;(2)4.5cm.【解析】【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=8cm,即可得出答案.【详解】解:(1)∵AD⊥BC,BD=DE∴AD垂直平分BE,∵EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=12∠AED=35°;(2)∵△ABC周长15cm,AC=6cm,∴AB+BE+EC=9cm,即2DE+2EC=9cm,∴DE+EC=DC=4.5cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.25.(1)BM+NC=MN;23xy;(2)成立:BM+NC=MN;(3)BM+MN=NC.证明见解析.【解析】【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时2 =3xy;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.【详解】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.此时2 =3 xy.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE△≌△,写出证明过程和依据即可.【详解】解:过点E作//EF AC交BC于F,∴ACB EFB∠=∠(两直线平行,同位角相等),∴D OEF∠=∠(两直线平行,内错角相等),在OCD与OFE△中()()()COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C(3,0),设直线BC的解析式为y=kx+b,将B、C的坐标代入得:304k bb+=⎧⎨=⎩,解得:434kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为443y x=-+;(2)连接OM,∵S△AMB=S△AOB,∴直线OM平行于直线AB,故设直线OM解析式为:2y x=,将直线OM的解析式与直线BC的解析式联立得方程组2443y xy x=⎧⎪⎨=-+⎪⎩,解得:65125xy⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M;(3)∵FA=FB,A(-2,0),B(0,4),∴F(-1,2),设G(0,n),①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣或2m≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),。
江苏省南通市崇川区2023-2024学年八年级上学期期末数学试题
A.3
B. 7 2
C.4
D.
9 2
8.如图,在 VABC 中,C 90 ,以点 A 为圆心,任意长为半径画弧,分别交 AC,AB
于点 M,N ,再分别以 M,N 为圆心,大于 1 MN 长为半径画弧,两弧交于点 O ,作射 2
线 AO ,交 BC 于点 E .已知 AC 3,AB 5 ,则 CE 的长为( )
自驾车辆 乘坐地铁
路程/ km
15
12
平均速度/km / h
2a
a
3
若小李乘坐地铁比自驾车辆能节约 15 分钟,求小李乘坐地铁从甲站到乙站所用的时间
是多少小时?
24.如图, VABC 中, AD BC ,垂足为 D,BD 1,AD 2,CD 4 .
(1)求证: BAC 90; (2)点 P 为边 BC 上一点,连接 AP ,若 VABP 为等腰三角形,求 BP 的长.
江苏省南通市崇川区 2023-2024 学年八年级上学期期末数学 试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.习近平总书记强调:“推动中国制造向中国创造转变、中国速度向中国质量转变、中 国产品向中国品牌转变.”当前,越来越多的国货品牌获得了市场的认可.下列国货品 牌标志图案中是轴对称图形的是( )
试卷第 4 页,共 5 页
25.阅读:如果两个分式 A 与 B 的和为常数 k ,且 k 为正整数,则称 A 与 B 互为“关联分
式”,常数 k 称为“关联值”.如分式 A x ,B 1 ,A B x 1 1,则 A 与 B 互为
x 1
x 1
x 1
“关联分式”,“关联值” k 1.
江苏省南通市八年级上学期期末数学试卷 (解析版)
C. D.
5.若 是完全平方式,则实数 的值为()
A. B. C. D.
6.下列图案中,属于轴对称图形的是()
A. B.
C. D.
7.如图,折叠 ,使直角边 落在斜边 上,点 落到点 处,已知 , ,则 的长为()cm.
A.6B.5C.4D.3
8.如果 ,且 ,那么点 在()
A.第一象限B.第二象限C.第三象限D.第四象限
18.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为_____.
19.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
20.点P(3,-4)到x轴的距离是_____________.
三、解答题
21.如图,在 中, , , 是 边上的中线,那么 与 有怎样的数量关系?试证明你的结论.
(1)在如图2所示的平面直角坐标系 中,已知 , .
①在点P,点Q中,___________是点S关于原点O的“正矩点”;
②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:
点_________是点___________关于点___________的“正矩点”,写出一种情况即可;
(1)当点 运动到点 处,过点 作 的垂线交直线 于点 ,证明 ,并求此时点 的坐标;
(2)点 是直线 上的动点,问是否存在点 ,使得以 为顶点的三角形和 全等,若存在求点 的坐标以及此时对应的点 的坐标,若不存在,请说明理由.
29.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.
9.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于( )
南通市八年级上学期期末数学试卷 (解析版)
南通市八年级上学期期末数学试卷 (解析版)一、选择题1.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1B .3C .2D .56.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-7.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.5 8.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.59.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A .9cmB .12cmC .15cmD .18cm10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.12.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .13.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.14.若关于x 的方程233x mx +=-的解不小于1,则m 的取值范围是_______. 15.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.16.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________.17.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.18.分解因式:12a 2-3b 2=____.19.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题21.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD 的四边中点E ,F ,G ,H 依次连接起来得到的四边形EFGH 是平行四边形吗. 小敏在思考问题时,有如下思路:连接AC .结合小敏的思路作答:(1)若只改变图1中四边形ABCD 的形状(如图2),则四边形EFGH 还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题; (2)如图2,在(1)的条件下,若连接AC ,BD .①当AC 与BD 满足什么条件时,四边形EFGH 是菱形,写出结论并证明; ②当AC 与BD 满足什么条件时,四边形EFGH 是矩形,直接写出结论.22.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明): ①作B 的平分线BD 交边AC 于点D ; ②过点D 作DE AB ⊥于点E ;(2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.23.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ;(2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米? 24.求下列各式中x 的值: (1)240x -=; (2)3216x =-25.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE . (1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).28.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P点,如图3.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.29.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?30.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据无理数的定义解答即可. 【详解】227,0.101001是有理数;3. 故选B. 【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.B解析:B 【解析】 【分析】根据关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可. 【详解】∵P (2,-3)关于x 轴对称,∴对称点与点P 横坐标相同,纵坐标互为相反数, ∴对称点的坐标为(-2,-3). 故答案为(-2,-3). 【点睛】本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,3.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.4.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.5.D解析:D【解析】【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】P=在平面直角坐标系中,点(1,2)故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.6.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,22222222GH GE HE =+=+=,故选:B .【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为直角三角形且能够求出两条直角边的长是解题的关键.8.C解析:C【解析】【分析】直接把y =5代入y =2x+1,解方程即可.【详解】解:当y =5时,5=2x+1,解得:x =2,故选:C .【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.9.D解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成.12.【解析】【分析】设行驶xkm ,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm ,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.13.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.15.x<-1.【解析】【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A(m,3),∴∴∴解析:x <-1.【解析】【分析】由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.【详解】解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),∴33m =-∴1m =-∴交点坐标为A (-1,3),由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方, 即34x ax ->+∴不等式34x ax ->+的解集为x <-1.故答案是:x <-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.16.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值.【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的 解析:12【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n ⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+ 2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 17.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【解析:m +3n =120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【详解】解:∵点D 是BC 边的中点,DE ⊥BC ,∴PB=PC ,∴∠PBC=∠PCB ,∵BP 平分∠ABC ,∴∠PBC=∠ABP ,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,180,A ABC ACB ∠+∠+∠=︒∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.18.3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。
崇川区八年级数学期末试卷
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √9B. √16C. √-1D. π2. 若a=3,b=-2,则a+b的值是()A. 1B. 5C. -5D. -13. 下列函数中,是二次函数的是()A. y=2x+1B. y=x²-3x+2C. y=3x³+2x²D. y=5x²+4x+14. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的周长是()A. 18cmB. 20cmC. 22cmD. 24cm二、填空题(每题5分,共25分)6. 若a=5,b=-3,则a-b的值为______。
7. 若x²-5x+6=0,则x的值为______。
8. 函数y=2x+1的图象与x轴的交点坐标为______。
9. 在△ABC中,若∠A=70°,∠B=40°,则∠C的度数为______。
10. 一个等边三角形的边长为a,则它的周长为______。
三、解答题(共55分)11. (10分)已知一元二次方程x²-6x+9=0,求该方程的解。
12. (15分)已知函数y=-2x²+4x+1,求:(1)该函数的顶点坐标;(2)该函数的对称轴方程。
13. (15分)已知△ABC中,∠A=60°,∠B=45°,AB=8cm,求△ABC的周长。
14. (15分)已知等腰三角形ABC的底边AB=10cm,腰AC=BC=13cm,求该三角形的面积。
四、附加题(10分)15. (10分)已知函数y=ax²+bx+c(a≠0)的图象经过点(1,3)和(-2,-1),且该函数的对称轴为x=-1,求该函数的解析式。
江苏省南通市崇川区启秀中学2019-2020八年级上学期期末数学试卷 及答案解析
江苏省南通市崇川区启秀中学2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式的计算结果为a5的是()A. a7−a2B. a10÷a2C. (a2)3D. (−a)2⋅a32.式子在实数范围内有意义,则x的取值范围是()√x−1A. x<1B. x≤1C. x>1D. x≥13.下列运算正确的是()A. (x+3y)(x−3y)=x2−3y2B. (x−3y)(x−3y)=x2−9y2C. (−x+3y)(x−3y)=−x2−9y2D. (−x+3y)(−x−3y)=x2−9y24.下列各式能运用公式法进行因式分解的有()个(1)−a2+b2(2)16m2−25n2(3)9p2−24pq+16q2(4)(a+b)2+a+b+1.4A. 4B. 3C. 2D. 15.下列计算正确的是()A. √52=±5B. 3√5−2√5=√5C. (−√5)2=−5D. √8÷√2=46.比较3.5,3,√11的大小,正确的是()A. 3.5<√11<3B. √11<3.5<3C. 3<√11<3.5D. 3<3.5<√117.若a m=2,a n=3则a3m−2n等于D. 9A. 5B. −1C. 898.要使式子9x2+25y2成为一个完全平方式,则需加上()A. 15xyB. ±15xyC. 30xyD. ±30xy9.若代数式√2−x有意义,则x的取值范围是()1+xA. x≥−2且x≠−1B. x>−2且x≠−1C. x≤2且x≠−1D. x<2且x≠−110.如图,AB=12,C是线段AB上一点,分别以AC、CB为边在A的同侧作等边△ACP和等边△CBQ,连接PQ,则PQ的最小值是()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.用科学记数法表示:0.000204=______.12.在Rt△ABC中,∠C=90°,∠A=30°,AB=6cm,则BC=______cm.13.√12=______.14.分解因式:9−b2=______.15.已知一个Rt△的两边长分别为3和4,则第三边长是____.16.若分式2x−1x+1的值为整数,则整数x=_____________.17.化简:√127=.18.已知多项式3x2−4x+6的值为9,则多项式x2−43x+6的值为______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)2(x+y)2−(2x+y)(x−2y)(2)(a−1+2−2aa+1)÷a2−2a+1a2−1.四、解答题(本大题共9小题,共72.0分)20.分解因式:(1)ax−ay;(2)x2−y4;(3)−x2+4xy−4y2.21.先化简,再求值:a2−b2a ÷(a−2ab−b2a),其中a=2+√3,b=2−√3.22.解方程:16x2−4+1x+2=x+2x−223.当a+b+c=0时,求ac +ab+bc+ba+cb+ca+3的值。
南通市八年级上第一学期期末数学试卷
南通市八年级上第一学期期末数学试卷一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130° 3.若一个数的平方等于4,则这个数等于( ) A .2±B .2C .16±D .16 4.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .105.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .766.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .107.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组8. 4的平方根是( )A .2B .±2C .16D .±169.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-210.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 二、填空题11.49的平方根为_______ 12.2(5)-=_____.13.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.14.在实数22,4π,227-,3.14,16中,无理数有______个. 15.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.16.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 17.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.18.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,那么a 1+a 2+a 3+a 4=_____.19.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.20.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.三、解答题21.如图,ABC ∆的三个顶点都在格点上.(1)直接写出点B 的坐标;(2)画出ABC ∆关于x 轴对称的111A B C ∆,(3)直接写出点1A 的坐标22.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?23.如图,在ABC ∆中, AD BC ⊥,且AD BD =,点E 是线段AD 上一点,且BE AC =,连接BE.(1)求证:ACD BED ∆∆≌(2)若78C ∠=︒,求ABE ∠的度数.24.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?25.已知△ABC 中,AB =17,AC =10,BC 边上得高AD=8,则边BC 的长为________四、压轴题26.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足a 6b 80-+-=.(1)a = ;b = ;直角三角形AOC 的面积为 .(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOD ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180).27.如图,在平面直角坐标系中,直线334y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC 交BF 于点E .(1)求证:AD BE =;(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.28.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).(1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?29.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF,BP,BD三者之间的数量关系.30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t秒,则CP=12-3t,BQ=t,根据题意得到12-3t=t,解得:t=3,故选B.【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC≌△ADE,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键. 3.A解析:A【解析】【分析】平方为4,由此可得出答案.【详解】±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.4.C解析:C【解析】【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC 的长.【详解】在△ABC中,AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BC=2BD.∴∠ADB=90°在Rt△ABD中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.5.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.6.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.7.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定.【详解】①满足SSS ,能判定三角形全等;②满足SAS ,能判定三角形全等;③满足ASA ,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF △≌△全等的条件有3组.故选:C .【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.8.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.9.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.10.C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.二、填空题11.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根解析:2 3【解析】【分析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±2 3 .【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.12.5根据二次根式的性质知:5.解析:5【解析】=5.13.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.14.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】,4 属于无理数,所以无理数有2个. 故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键. 15.5【解析】【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度.【详解】解:在Rt △ACB 中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC ≌解析:5【解析】【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度.【详解】解:在Rt △ACB 中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC ≌△EDB ,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键.16.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y 随x 的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】 ∵一次函数312y x =-+中k=32-<0, ∴y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为:<.【点睛】 此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.17.【解析】试题分析:解:设y=x+b ,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.18.0【解析】【分析】令求出的值,再令即可求出所求式子的值.【详解】解:令,得:,令,得:,则,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.解析:0【解析】【分析】令0x =求出0a 的值,再令1x =即可求出所求式子的值.【详解】解:令0x =,得:01a =,令1x =,得:012341a a a a a ++++=,则12340a a a a +++=,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.15【解析】【分析】试题分析:过D 作DE⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE⊥BC 于E ,∵∠A=90°,∴DA⊥AB,∵BD 平分解析:15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠A=90°,∴DA ⊥AB ,∵BD 平分∠ABC ,∴AD=DE=3,∴△BDC 的面积是:12×DE×BC=12×10×3=15, 故答案为15.考点:角平分线的性质.20.6【解析】【分析】由已知可得到AB 比BC 长2,根据平行四边形的周长可得到AB 与BC 的和,从而不难求得AB 的长.【详解】解:∵△AOB 的周长比△BOC 的周长大2,∴OA+OB+AB -OB-解析:6【解析】【分析】由已知可得到AB 比BC 长2,根据平行四边形的周长可得到AB 与BC 的和,从而不难求得AB 的长.【详解】解:∵△AOB 的周长比△BOC 的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD 是平行四边形,∴OA=OC ,∴AB-BC=2,∵平行四边形ABCD 的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.三、解答题21.(1)(2,3)-;(2)画图见解析;(3)(1,1)-【解析】【分析】(1)根据平面直角坐标系中点与有序数对的对应关系解答即可;(2)ABC∆各顶点关于x轴对称的点A1,B1,C1,然后用线段顺次连接即可;(3)根据平面直角坐标系中点与有序数对的对应关系解答即可.【详解】解:(1)点B的坐标是(2,3)-;(2)如图,(3)点1A的坐标是(1,1)-.【点睛】本题考查了作图-轴对称变换,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.23.(1) 见详解 ; (2) 33°【解析】【分析】(1) 根据题意可得Rt ACD ≌ Rt BED (HL );(2) 根据Rt ABD △中 AD BD =得到ABD △为等腰直角三角形,得到45ABD BAD ∠=∠=,根据Rt ACD ≌ Rt BED 得到12DBE ∠=,即可求出答案.【详解】(1) ∵ AD BC ⊥∴ ADC BDE ∠=∠=90°∵ 在Rt ACD 和Rt BED 中AD BD BE AC =⎧⎨=⎩∴Rt ACD ≌ Rt BED (HL )(2)∵Rt ABD △中 AD BD =∴45ABD BAD ∠=∠=∵Rt ACD ≌ Rt BED∴C BED ∠=∠∵78C ∠=︒Rt BED 中,90DBE BED ∠+∠=∴12DBE ∠=∵45ABD ABE DBE ∠=∠+∠=∴ABE ∠=33° .【点睛】此题主要考查了全等三角形的性质和判定及三角形内角度数的计算,熟记概念是解题的关键.24.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩, ∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用, 主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.25.21或9【解析】【分析】由题意得出∠ADB=∠ADC=90°,由勾股定理求出BD 、CD ,分两种情况,容易得出BC 的长.【详解】分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,22222222BD AB AD CD AC AD=-=-==-=-=17815,1086∴BC=BD+CD=15+6=21;②如图2所示:同①得:BD=15,CD=6,∴BC=BD-CD=15-6=9;综上所述:BC的长为21或9.【点睛】本题考查了勾股定理、分类讨论思想;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.四、压轴题t=时,使得△ODP与△ODQ的面积相等;(3)26.(1)6;8;24;(2)存在 2.4∠GOD+∠ACE=∠OHC,见解析【解析】【分析】(1)利用非负性即可求出a,b即可得出结论,即可求出△ABC的面积;(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出结论.【详解】--=,解:(1) 解:(1)∵a6b80∴a-6=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);∴S△ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)详见解析;(2)36(04)2BDE t t S -+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.【解析】【分析】(1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,BC AC ∴=,在△BCE 和△ACD 中,CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (AAS ),BE AD ∴=;(2)解:在直线334y x =-+中, 令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3),D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M ,90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME ⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =, 综上所述,当78t =或43时,使得△BDE 是以BD 为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.28.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇【解析】【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案.【详解】(1)由题意知,BP=2t ,则PC=BC-BP=6-2t ,故答案为:6-2t ;(2)全等,理由如下:∵p Q V V =,t=1,∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点,∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ),在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS )故答案为:全等.(3)∵p Q V V ≠,∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm ,∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83;(4)设经过t 秒时,P 、Q 第一次相遇,∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t , 解得:t=24此时点Q 走了824643⨯=(cm ),∵ABC 的周长为:8+8+6=22(cm ),∴6422220÷=,∴20-8-8=4(cm ),经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,故答案为:24s ,在 BC 边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.29.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BC BP=+,BF BC BP∴=+,BC BD=,BF BD BP∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF∆≅∆,是一道中等难度的中考常考题.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)272【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南通市崇川区2019-2020学年八年级上学期期末数学试题
(word无答案)
一、单选题
(★★) 1 . 下列图形是轴对称图形的是()
A.B.
C.D.
(★★) 2 . 若有意义,则的取值范围是()
A.B.C.D.任意实数
(★★) 3 . 若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()
A.21B.22或27C.27D.21或27
(★★) 4 . 计算()
A.5B.-3C.D.
(★★) 5 . 在平面直角坐标系中,点到原点的距离是()
A.1B.C.2D.
(★★) 6 . 如图,在中,,的垂直平分线交于点,交于点,若,则()
A.B.C.D.
(★★) 7 . 若分式的值为0,则x的值为()
A.-2B.0C.2D.±2
(★★) 8 . 如图,以的三边为边,分别向外作正方形,它们的面积分别为、、,若,则的值为()
A.7B.8C.9D.10
(★★) 9 . 若是完全平方式,则实数的值为()
A.B.C.D.
(★★) 10 . 我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三
角形.已知中,,,,在所在平面内画一条直线,将分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画()
A.0条B.1条C.2条D.3条
二、填空题
(★★) 11 . 计算:__________.
(★★) 12 . 因式分解:__________.
(★★) 13 . 点关于轴对称的点的坐标是__________.
(★) 14 . 若等腰三角形的一个角为70゜,则其顶角的度数为 _____ .
(★★) 15 . 如图,在中,,平分,交于点,若,,则周长等于__________.
(★★) 16 . 已知关于的方程的解是正数,则的取值范围为__________.
(★★) 17 . 在平面直角坐标系中,、,点是轴上一点,且,则点的坐标是__________.
(★★) 18 . 若,则__________.
三、解答题
(★★) 19 . (1)计算:
(2)因式分解:
(3)计算:
(4)计算:
(★★) 20 . 先化简,再求值:,其中
(★★) 21 . 如图,在平面直角坐标系中,点,点,点.
(1)画出关于轴的对称图形,并写出点的对称点的坐标;
(2)若点在轴上,连接、,则的最小值是;
(3)若直线轴,与线段、分别交于点、(点不与点重合),若将沿直线翻折,点的对称点为点,当点落在的内部(包含边界)时,点的横坐标的取值范围是 .
(★★) 22 . 如图,在中,,,,为边上的两个点,且,.
(1)若,求的度数;
(2)的度数会随着度数的变化而变化吗?请说明理由.
(★★) 23 . 小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数. (★★) 24 . 如图,在中,,,的垂直平分线交于点,交于点,,连接.
(1)求证:是直角三角形;
(2)求的面积.
(★★) 25 . 观察下列等式:;;;……
根据上面等式反映的规律,解答下列问题:
(1)请根据上述等式的特征,在括号内填上同一个实数:()-5=();
(2)小明将上述等式的特征用字母表示为:(、为任意实数).
①小明和同学讨论后发现:、的取值范围不能是任意实数.请你直接写出、不能取哪些
实数.
②是否存在、两个实数都是整数的情况?若存在,请求出、的值;若不存在,请说明理由.
(★★★★) 26 . 已知中,.
(1)如图1,在中,,连接、,若,求证:
(2)如图2,在中,,连接、,若,于点,,,求的长;
(3)如图3,在中,,连接,若,求的值.。