统计概率思维导图(理科)
理数思维导图
十十五、平面面向量量
不不等式的基本概念
具有大大小小和方方向的量量叫做向量量
空间向量量
七、不不等式
同向不不等式与异向不不等式 同解不不等式与不不等式的同解变形
共线向量要不不等式 几几个著名不不等式 不不等式的解法
整式不不等式分式不不等式;指数不不等式;对数不不等式;含绝对值不不等式
平面面
集合的性质
两条平行行行线在同一一平面面内的射影图形是一一条直线或两条平行行行线或两点 异面面直线判定定理理:过平面面外一一点与平面面内一一点的直线和平面面内不不经过该点的直线是 异面面直线.(不不在任何一一个平面面内的两条直线) 平行行行公理理:平行行行于同一一条直线的两条直线互相平行行行 等⻆角定理理:若果一一个⻆角的两边和另一一个⻆角的两边分别平行行行并且方方向相同,那么这两个⻆角相等 相交、平行行行、在平面面内. 空间直线与平面面位置
直线与平面面平行行行、直线与平面面垂直
八八、立立体几几何
一一、集合与常 用用逻辑语言言
“或”、“且”、“非非”这些词叫做逻辑联结词;不不含有逻辑 联结词的命题是简单命题;由简单命题和逻辑联结 词“或”、“且”、“非非”构成的命题是复合命题。
平面面平行行行判定定理理:如果一一个平面面内有两条相交直线都平行行行于另一一个平面面,那么这两个平面面平行行行.(“线面面平行行行,面面面面平行行行”) 从n个不不同的元素中任取m(m≤n)个元素,按照一一 定顺序排成一一列列,叫做从n个不不同元素中取出m个 元素的一一个排列列. 如果,两个排列列相同,不不仅这两个排列列的元素必须完全相同,而而 且排列列的顺序也必须完全相同. 定义 相同排列列. 排列列数. 排列列公式 含有可重元素的排列列问题. 排列列 对排列列定义的理理解. ①棱柱的各个侧面面都是平行行行四边形,所有的侧棱都相等;直棱柱 的各个侧面面都是矩形;正棱柱的各个侧面面都是全等的矩形. ②棱柱的两个底面面与平行行行于底面面的截面面是对应边互相平行行行的全等多边形. ③过棱柱不不相邻的两条侧棱的截面面都是平行行行四边形. 棱柱具有的性质 平行行行六面面体 两个平面面平行行行的性质定理理:如果两个平面面平行行行同时和第三个平面面相交,那么它们交线平行行行.(“面面面面平行行行,线线平行行行”) 一一、两个平面面所成二二面面⻆角是直二二面面⻆角,则两个平面面垂直 二二、如果一一个平面面与一一条直线垂直,那么经过这条直线的平面面垂直于这个平面面.(“线面面垂直,面面面面垂直”) 1. 乘法原理理、加法原理理. 2. 可以有重复元素的排列列. 两个平面面垂直,那么在一一个平面面内垂直于它们交线的直线垂直于另一一个平面面。 两个原理理 两个平面面垂直的判定 两个平面面垂直性质定理理 直棱柱侧面面积 斜棱柱侧面面积
第25章《概率初步》思维导图
概率初步随机事件与概率
事件
必然事件
不可能事件
随机事件
概率的定义
定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值
称为随机事件A发生的概率,记为P(A)
在一定条件下必然要发生的事件
在一定条件下不可能发生的事件
在一定条件下,可能发生也可能不发生的事件
一般地,如果在一次试验中,有n种可能的结果,并且他们发生的可能性
都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n
P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1
用列举法求概率
直接列举法
列表法
画树状图法
用频率估计概率
在相同条件下,大量重复试验时,一个事件出现的频率,总是在一个固定数附近摆
动,显示出一定的稳定性。
根据一个随机事件发生的频率所逐渐稳定到的常数,可以
估计这个事件发生的概率。
2025届高考数学题型思维导图
专题01 集合与逻辑用语(选题题8种考法)
专题02 复数(选填题10种考法)
专题03 平面向量(选填题10种考法)
专题04 恒成立与存在性求参(选填题6种考法)
专题05函数性质的综合运用(选填题7种考法)
专题06 零点(选填题8种考法)
专题07 比较大小(选填题11种考法)
专题08 切线(选填题12种考法)
专题09 数列(选填题8种考法)
专题10 三角函数的性质与正余弦定理(选填题10种考法)
专题11 计数原理(选填题10种考法)
专题12 统计概率(选填题
专题01 解三角形(解答题)
专题02 数列(解答题12种考法)
专题03 空间几何(解答题10种考法)
专题04 统计概率(解答题11种考点)
专题05 解析几何(解答题10种考法)
专题06 导数(解答题10种考法)
31。
统计概率排列组合专题 高考数学复习思维导图
①先分类再分步②有无特殊条件的限制;③检验是否有重复或遗漏
特殊优先法优先安排特殊元素或特殊位置
1.并(和)事件包含三种情况:①事件A 发生,事件B 不发生;②事件A 不发生,事件B 发生;
③事件A ,B 都发生.即事件A ,B 至少有一个发生.2.互斥事件具体包括三种不同的情形:①事件A 发生且事件B 不发生;曲线与x 轴之间的面积为1
若Y =aX +b ,其中a ,b 为常数,X 是随机变量,①Y 也是随机变量;
随机变量的方差和标准差都反映了随机变量的取值偏离于均任何事件的条件概率都在0和1之间
“X 与Y 有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推。