先进材料制备技术论文

合集下载

先进制造技术论文

先进制造技术论文

先进制造技术先进制造技术AMT(Advanced Manufacturing Tecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。

随着经济技术的高速发展以及顾客需求和市场环境的不断变化,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。

改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,对先进制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,实现我国机械制造业跨入世界先进行列之梦想。

一、先进制造技术的体系结构及分类先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。

三个层次:一是优质、高效、低耗、清洁的基础制造技术。

二是新型的制造单元技术。

三是先进制造的集成技术。

四个大类:一是现代设计技术二是先进制造工艺技术三是制造自动化技术四是系统管理技术。

1、现代设计技术现代设计技术是先进制造技术的一个组成部分,是制造技术的第一个环节。

根据德国工程师协会文件VDI2225 的调查分析,产品设计成本约占产品成本的5% 7%,但却决定了产品制造成本的75%- 80%。

为此,世界各国都非常重视产品的设计问题。

而现代设计技术在机械设计技术中的地位同样重要。

机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算,并将其转化为具体的描述以人为制造依据的工作过程。

纳米复合材料与技术论文3000字纳米复合材料论文

纳米复合材料与技术论文3000字纳米复合材料论文

纳米复合材料与技术论文3000字纳米复合材料论文纳米复合材料与技术论文3000字纳米复合材料论文纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。

下面给大家分享一些纳米材料与技术3000字论文,希望能对大家有所帮助![摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。

纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。

纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。

[关键词]高聚物纳米复合材料一、纳米材料的特性当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:1、尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。

如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。

若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。

2、表面效应一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。

纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。

由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与其它原子结合。

若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。

碳纤维复合材料论文

碳纤维复合材料论文

碳纤维复合材料论文标题:碳纤维复合材料:制备、性能与应用摘要:碳纤维复合材料是一种重要的先进材料,在航空航天、汽车制造、体育器材以及其他领域具有广泛的应用前景。

本文综述了碳纤维复合材料的制备方法、性能特点以及其在不同领域的应用研究,旨在为碳纤维复合材料的研究和应用提供一定的参考。

1.引言随着科技的进步和产品性能需求的提高,新型材料的研究和应用成为一个重要的研究方向。

碳纤维复合材料以其高强度、低密度、优异的机械性能和化学稳定性等特点,受到了广泛关注。

2.碳纤维复合材料的制备方法2.1碳纤维的制备工艺2.2树脂基体的制备方法2.3复合材料的制备工艺2.4其他制备方法的研究进展3.碳纤维复合材料的性能特点3.1机械性能3.2热性能3.3电性能3.4耐腐蚀性能4.碳纤维复合材料在航空航天领域的应用4.1飞机结构件4.2发动机部件4.3航空航天用复合材料板5.碳纤维复合材料在汽车制造领域的应用5.1车身材料5.2引擎附件5.3车内装饰材料6.碳纤维复合材料在体育器材领域的应用6.1网球拍6.2高尔夫球杆6.3自行车车架7.碳纤维复合材料的未来发展趋势对碳纤维复合材料未来的发展趋势进行展望,并提出了一些研究方向和应用前景。

包括在材料性能的进一步提高、制备工艺的优化、成本的降低等方面。

结论:碳纤维复合材料以其出色的性能和广泛的应用领域,成为了当今研究热点。

本文综述了碳纤维复合材料的制备方法、性能特点以及在航空航天、汽车制造和体育器材等领域的应用情况,并对其未来的发展趋势进行了展望。

碳纤维复合材料在各个领域的应用前景广阔,值得进一步深入研究和应用。

关于材料成型的论文4篇

关于材料成型的论文4篇

关于材料成型的论文精选4篇关于材料成型的论文篇一浅谈新型金属材料成型加工技术【摘要】随着现代科学技术的发展以及新型金属材料的应用,新型金属材料成型加工技术也得到了相应的发展。

在本文中,笔者将基于金属材料成型加工的实际工作经验,在对新型金属材料固有特性与加工特性深入分析的基础上,对当前的七种成型加工技术进行综合探究,以期促进新型金属材料成型加工技术的发展。

【关键词】新型金属材料;成型加工;加工技术;技术创新当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。

除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。

那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。

1 关于新型金属材料的综述1.1 新型金属材料的固有特性新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。

当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。

1.2 新型金属材料的加工特性1.2.1 焊接性焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。

新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。

新型金属材料具有好的焊接性通常收缩小、导热性能好。

1.2.2 锻压性锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。

除此之外,金属的锻压性还会受到加工条件的影响。

1.2.3 铸造性金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。

《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》贵金属-MXene纳米复合材料的研制及性能研究摘要:随着科技的不断发展,纳米材料的研究已成为当今科学界关注的焦点。

本篇论文致力于探索一种新型的贵金属/MXene纳米复合材料,通过对材料的合成、表征以及性能的深入研究,揭示了其在诸多领域潜在的应用价值。

一、引言贵金属因其独特的物理和化学性质,在众多领域中都有着广泛的应用。

而MXene作为一种新兴的二维材料,因其优异的电学、热学和力学性能,也受到了科研人员的广泛关注。

将贵金属与MXene结合,形成纳米复合材料,有望进一步提升材料的综合性能。

二、贵金属/MXene纳米复合材料的研制1. 材料选择与制备方法本部分详细描述了贵金属/MXene纳米复合材料的制备过程。

包括原料的选择、制备工艺的确定以及实验条件的控制等。

通过化学气相沉积法、溶胶凝胶法等手段,成功制备出具有优异性能的贵金属/MXene纳米复合材料。

2. 材料表征通过X射线衍射、扫描电子显微镜、透射电子显微镜等手段,对制备出的贵金属/MXene纳米复合材料进行表征。

从微观结构上分析材料的组成、形貌以及尺寸分布等。

三、性能研究1. 电学性能贵金属/MXene纳米复合材料具有优异的电导率和电化学性能。

通过电导率测试、循环伏安法等手段,研究材料的电学性能,并探讨其在实际应用中的潜力。

2. 磁学性能对贵金属/MXene纳米复合材料的磁学性能进行研究。

通过磁化曲线、磁滞回线等手段,分析材料的磁学特性,为进一步应用提供理论依据。

3. 催化性能研究贵金属/MXene纳米复合材料在催化领域的应用。

通过催化实验,探讨材料在化学反应中的催化活性、选择性以及稳定性等。

四、应用领域探讨结合贵金属/MXene纳米复合材料的优异性能,探讨其在能源、环保、生物医学等领域的应用潜力。

如作为锂离子电池的电极材料、催化剂、生物传感器等。

五、结论本论文成功研制出贵金属/MXene纳米复合材料,并通过一系列实验手段对其性能进行了深入研究。

碳化硅铝复合材料的制备

碳化硅铝复合材料的制备

论文题目:碳化硅铝复合材料的制备专业:材料科学与工程学生:段红伟签名:指导老师:王涛签名:摘要碳化硅颗粒增强铝基复合材料( SiCp / Al 复合材料) 具有高比强度和比刚度、耐磨、耐疲劳、低热膨胀系数、低密度、高微屈服强度、良好的尺寸稳定性和导热性、优异的力学性能和物理性能。

本文采用粉末冶金法制备SiCp复合材料。

使用X射线衍射仪(XRD)、扫描电镜(SEM),抗折强度试验,洛氏硬度实验以及密度,吸水率,气孔率实验等方法研究碳化硅铝复合材料的微观结构、性能特点和机理。

得到实验结果为SiCp复合材料组织均匀,致密,无杂质,气孔少等优良特点。

随着SiC复合材料质量分数的增加,SiCp的密度、抗折强度、硬度均相应增大,而气孔率、吸水率随之减小。

SiC质量分数一定的情况下,随着烧结温度的升高试样的性能也越来越好。

关键字:粉末冶金法碳化硅铝复合材料制备性能研究类型:实验型Subject: Preparation of Silicon Carbide Reinforced Aluminum CompositeSpeciality: Materials Science and EngineeringName:Duan hongwei Signature: Instructor: Wang Tao Signature:AbstractSilicon carbide particles reinforced aluminum matrix composites (SiCp / Al matrix composite) with high specific strength and stiffness, wear and fatigue resistance, low thermal expansion coefficient, low density and high micro-yield strength, good dimensional stability and thermal conductivity , excellent mechanical properties and physical properties.In this paper, Using method of powder metallurgy to preparation SiCp composite materials. Using X-ray diffraction (XRD),Scanning electron microscopy (SEM), bending strength and Rockwell hardness test and the density, water absorption, porosity of experimental methods research aluminum silicon carbide composite material microstructure, properties and mechanism. The experimental results obtained for the SiCp homogeneous, compact, no impurities, porosity and less good features. With the increase of SiC quality score, SiCp density, flexural strength and hardness, and all relevant porosity, bibulous rate is then decreased.SiC quality score certain situations, the sintering temperature elevatory sample properties and strengthened.Key words :Method of powder metallurgy; SiCp / Al matrixcomposite;Preparation; Performance;Thesis type:Experimental目录目录 (1)1文献综述 (1)1.1复合材料概述 (1)1.1.1 复合材料的定义 (1)1.1.2复合材料的分类 (1)1.1.3复合材料的性能 (2)1.1.4复合材料的成型方法 (3)1.1.5复合材料的应用 (3)1.1.6复合材料的发展和应用 (3)1.2金属基复合材料 (5)1.2.1 金属基复合材料的定义 (5)1.2.2 金属基复合材料分类 (5)1.3碳化硅铝复合材料 (7)1.3.1碳化硅铝复合材料引言 (7)1.3.2国外开发及应用研究现状 (7)1.3.3碳化硅铝复合材料的制备方法 (8)1.3.4国内开发与应用中存在的问题 (10)1.3.5碳化硅铝复合材料今后发展趋势 (11)1.4本文研究内容 (11)1.5工艺流程 (12)2 实验方法及内容 (13)2.1实验方法 (13)2.1.1实验方法介绍 (13)2.1.2原料计算称量及配置 (13)2.1.3冷压成型 (13)2.1.4低温排胶 (14)2.1.5高温烧结 (14)2.2实验原料 (14)2.3 实验设备 (15)2.4实验过程 (15)2.4.1试验配方 (15)2.4.2原料混合 (16)2.4.3冷压成型 (16)2.4.4高温烧结 (17)2.5试样测试 (18)3实验结果与分析 (19)3.1试样的微观形貌分析 (19)3.2试样XRD成分分析 (20)3.3 试样的抗折强度 (21)3.3.1温度对抗折强度的影响 (21)3.3.2 SiC 含量对抗折强度的影响 (21)3.4试样密度、吸水率、气孔率的测试 (22)3.4.1测试方法 (22)3.4.2温度对试样密度、吸水率、气孔率的影响 (23)3.4.3 SiC含量对试样密度、吸水率、气孔率的影响 (24)3.5试样洛氏硬度的测试 (27)3.5.1 烧结温度对洛氏硬度的影响 (27)3.5.2 SiC含量对试样洛氏硬度的影响 (28)3.6粘结剂、Mg粉以及真空热压烧结的作用 (28)3.6.1粘结剂的作用 (28)3.6.2 Mg粉的作用 (29)3.6.3热压烧结的作用 (29)4结论 (30)致谢 (31)参考文献 (32)1文献综述1.1复合材料概述1.1.1 复合材料的定义复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

【精品硕士论文】电子封装材料钼铜合金胡制备工艺及性能

【精品硕士论文】电子封装材料钼铜合金胡制备工艺及性能

摘要本课题着眼于制备生产成本低廉、操作工艺简单、容易实现规模化生产、性能优良的高致密度电子封装用钼铜复合材料。

在遵循以上原则的情况下,探讨了成型压力、烧结温度、机械合金化、活化法、铜含量对钼铜复合材料密度、热导率、电导率、热膨胀系数、宏观硬度的影响。

利用扫描电镜、X-衍射仪、能谱仪、透射电子显微镜对钼铜复合粉末和烧结后的钼铜合金进行了组织和结构分析。

实验结果表明:(1)经混合后的钼铜粉由单个颗粒堆积在一起,颗粒没有发生明显变形,粒度比较均匀。

机械合金化后的钼铜粉末完全变形,颗粒有明显的层片状,小颗粒明显增多并黏附在大颗粒上面,有部分小颗粒到达纳米级。

混合法和机械合金化法处理的钼铜粉比较均匀。

机械合金化后的钼铜粉末的衍射峰变宽和布拉格衍射峰强度下降。

Mo-30Cu 复合粉通过机械合金化后在不同温度下烧结的钼铜合金致密度较高,相对密度最高达到97.7%,其热膨胀系数和热导率的实测值分别为8.1×10-6/K和145 W/m·K左右;(2)晶粒之间相互连接的为Mo相,另一相为粘结相Cu相,两相分布较均匀。

钼、铜相之间有明显的相界,有成卵形的单个钼晶粒和相互串联在一起的多个钼晶粒结合体,钼铜两相中均存在大量的高密度位错。

随着液相烧结温度的升高,钼晶粒明显长大;随着压制粉末成型压力的增大,液相烧结后钼晶粒长大;(3)随着粉末压制成型压力的增大,压制Mo-30Cu复合粉末的生坯密度增大,在1250℃烧结后,钼铜合金的密度、硬度、电导率、热膨胀系数和热导率变化都不大;(4)Mo-30Cu粉末中添加0.6%的Co时,在1250℃烧结1h后获得相对密度达到最高值97.7%。

随着钴含量的增大,合金电导率下降,硬度升高。

钼铜合金中加入钴时会形成金属间化合物Co7Mo6;(5)随着铜含量的增加,烧结体相对密度增大,铜含量在30%左右烧结体致密度达到最大值97.51%。

随着铜含量的增加,电导率、热导率和热膨胀系数增大,硬度下降;(6)随着孔隙度的增大,钼铜合金的导电导热性能急剧下降。

先进制造技术论文

先进制造技术论文

先进制造技术论文篇一:先进制造技术论文先进制造技术论文院专姓学号:时间:20xx年5月10日目录一、概述***************************** 1二、材料加工************************* 1三、先进制造工艺技术***************** 6四、先进制造自动技术***************** 8五、先进生产模式********************* 9六、生产与技术********************** 11七、参考文献************************ 13一:概述随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。

介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。

先进制造技术AMT(Advanced Manufacturing Technology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。

当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。

先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。

二:材料加工材料加工工程在先进制造技术中占有重要地位,是发展高新技术产业和传统工业更新换代的重要科学基础和共性技术。

其中包括高效、精密的加工工艺、装备和检测技术,低能耗、低成本产品的流程制造,集成、柔性、智能化制造系统,是工程可持续发展与绿色制造体系的重要组成部分。

纤维素先进功能材料论文

纤维素先进功能材料论文

纤维素先进功能材料论文摘要:通过对纤维素先进功能材料的分析可知,纤维素先进功能材料能够有效利用纤维素的价廉、量大、易获得、可再生等特点,拓展纤维素材料的使用领域。

相信纤维素先进功能材料的应用范围将会越来越广。

新技术和新溶剂的开发和使用,会极大地推动纤维素功能材料的开发。

纤维素是自然界中分布最广、存储量最大的天然高分子,它能够构成植物细胞壁,然后通过植物的光合作用继续产生大量的纤维素。

换句话讲,纤维素是一种优秀的可再生资源。

在使用过程中,纤维素与合成高分子相比,具有无毒、无污染、容易改性的特点,所以,它的存在更有利于社会的可持续发展。

1 纤维素材料随着石油、煤、天然气等不可再生能源的应用,环境问题日益严重,这些能源的用量也在逐渐减少,所以,纤维素材料的研究已经成为了国际重点研究领域,纤维素的先进功能材料也已经逐渐成为了纤维素的科研热点。

因为天然纤维素不能熔融,也很难在常规溶剂中溶解,所以,该材料的加工性能很差,这种情况限制了纤维素材料的运用。

在传统的纤维素材料生产中,主要采用黏胶法或铜氨溶液法。

虽然黏胶法一直在纤维素再生产中占有主要地位,但是,这种方法大量使用烧碱和硫酸,在生产过程中会释放有毒气体,严重污染环境。

2 物理法制备纤维素功能材料2.1 纯纤维功能材料纤维素中的纤维能够制造出性能优良的纺织品。

使用黏胶法制备再生纤维是目前最普遍的方法,但是,这种方法造成的污染很严重,所以,需要使用新工艺代替。

在制备工程中,氯化锂或二甲基乙酰胺受自身体系的制约,很难进行工业化生产,所以,开创了4-甲基吗啉-N-氧化物(NMMO)体系,实现了新的工业化生产。

利用这种方法生产出的再生纤维又被称为Lyocell纤维。

这种纤维不仅有天然纤维的手感,还具有模量高、湿度强和延展性好等特点。

再生纤维制造出的衣服不仅穿着舒服,而且耐磨,经常被应用于高档服装制造上。

但是,这种制作溶剂的价格非常高,并且对回收技术的要求也很高,需要大量的前期资金投入,所以,这种方法并没有被推广。

先进制造技术课程期末论文

先进制造技术课程期末论文

超精密加工摘要20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的加工技术。

超精密加工的精度比传统的精密加工提高了一个以上的数量级。

到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。

超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密加工、精密伺服系统、计算机控制以及其他先进技术。

超精密加工的精度比传统的精密加工提高了一个以上的数量级,除需要采用新的加工方法或新的加工机理之外,对工件材质,加工设备、工具、测量和环境条件等都有特殊的要求。

工件材质必须极为细致均匀,并经适当处理以消除内部残余应力,保证高度的尺寸稳定性,防止加工后发生变形。

加工设备要有极高的运动精度,导轨直线性和主轴回转精度要达到0.1微米级,微量进给和定位精度要达到0.01微米级。

对环境条件要求严格,须保持恒温、恒湿和空气洁净,并采取有效的防振措施。

加工系统的系统误差和随机误差都应控制在 0.1微米级或更小。

这些条件是靠综合应用精密机械、精密测量、精密伺服系统和计算机控制等各种先进技术获得的。

超精密加工机床的设计与制造超精密加工机床设计与制造的关键与核心问题是保证超精密加工工艺和目标的实现。

因此,超精密加工机床的设计和制造的基本原则和要求是:消除或减少机床上的热源和振源;提高机床的结构刚度和几何精度;减少机床的变形(含温度变形和力变形)对机床加工精度的影响等。

为了实现这些基本原则和要求,超精密加工机床设计时,经常采取的一些原则措施有:首先是尽量不用或少用摩擦发热量大的传动装置(如机械无级调速器),并把工作过程中发热量大的热源(如电机、冷却润滑油箱等)与机床本体结构分离或隔热,以避免热量落入机床本体引起机床结构的热变形。

选用热胀系数α和导热系数λ值低的材料作机床的重要零部件材料。

这样的材料如表1所示。

与此同时也要尽量采用热物理特性相同或相近的材料来制造机床的构件和零部件。

自然辩证法结课论文

自然辩证法结课论文

自然辩证法结课论文论文题目:先进材料的研究与社会发展院系:材料科学与工程学院专业:先进材料及其制备技术学生姓名:***学号:************摘要先进材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。

先进材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。

材料特别是高性能、多用途先进材料是人类社会发展的重要推动力,人类的发展过程伴随着材料科学技术的发展,每一个特定时期的人类时期,都有能促进人类社会快速发展的材料,因此在未来的社会中能够促进科学技术发展的先进材料将成为特别重要的研究对象。

关键词:材料科学;先进材料;人类发展;可持续发展;建议;一、材料科学技术与人类发展人类社会的发展历程,是以材料为主要标志的。

材料科学是研究、开发、生产和应用金属材料、无机非金属材料、高分子材料和复合材料的工程领域。

1.1 人类社会与材料的伴随发展100万年以前,原始人以石头作为工具,称旧石器时代。

1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。

新石器时代后期,出现了利用粘土烧制的陶器。

人类在寻找石器过程中认识了矿石,并在烧陶生产中发展了冶铜术,开创了冶金技术。

公元前5000年,人类进入青铜器时代。

公元前1200年,人类开始使用铸铁,从而进入了铁器时代。

1.2 近现代材料科学的发展随着技术的进步,又发展了钢的制造技术。

18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。

19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。

与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。

直到20世纪中叶,金属材料在材料工业中一直占有主导地位。

20世纪中叶以后,科学技术迅猛发展,新材料又出现了划时代的变化。

首先是人工合成高分子材料问世,并得到广泛应用。

先进制造工艺与装备技术的研究与应用

先进制造工艺与装备技术的研究与应用

先进制造工艺与装备技术的研究与应用摘要:随着科技的不断进步和全球经济的发展,先进制造工艺与装备技术成为推动制造业转型升级的关键。

本论文旨在探讨先进制造工艺与装备技术的最新研究与应用,涵盖了数字化制造、智能制造、增材制造、传感器技术、人机协作等方面。

首先,分析了先进制造工艺与装备技术的背景和意义,探讨了其对提高生产效率、降低成本和优化产品质量的重要作用。

此外,还讨论了先进制造工艺与装备技术在各个产业领域的应用案例,并评估了其对环境保护和可持续发展的影响。

最后,展望了未来先进制造工艺与装备技术的发展方向和挑战,并提出了相关政策和战略建议。

关键词:先进制造;工艺技术;装备技术引言随着全球制造业的快速发展和科技的进步,先进制造工艺与装备技术在促进制造业转型升级、提高生产效率、优化产品质量和降低成本方面发挥着重要作用。

先进制造工艺包括数字化制造、增材制造等技术,而先进装备技术涵盖了高精度机械装备、自动化设备和先进材料加工技术等。

这些技术的研究与应用对于提高制造过程的灵活性、精确性和效率具有重要意义。

1.传感器技术在先进制造中的应用1.1系统监测与控制利用各类传感器采集数据,如温度、压力、湿度等,以实现对制造系统的实时监测和数据采集。

通过网络连接和远程监控设备,对制造系统进行远程实时监测和控制,提高生产过程的灵活性和效率。

应用数据分析和人工智能技术,对采集到的实时数据进行快速处理和分析,从而实现生产过程的优化和预测性维护。

基于先进的控制算法和控制器,实现制造系统的自动化控制,包括生产线的自动调节和优化,以及对关键参数的实时调节。

应用机器人进行生产作业和装配过程的自动化,提高生产速度和精确度。

利用大数据和机器学习技术,通过对历史数据的分析和模式识别,实现对制造系统的控制和优化,以实现更高的生产效率和质量。

通过有效的系统监测和控制技术,制造企业可以及时获取关键信息,实现生产过程的全面掌控和优化,减少资源浪费和人工错误,提高生产效率和产品质量。

先进制造技术课程的论文(精选)

先进制造技术课程的论文(精选)

先进制造技术课程的论文(精选)先进制造技术内涵广泛、学科交叉,并且不断地发展与完备,在激烈的国际市场竞争中,制造业要求生存和发展,必须掌握并科学运用最先进的制造技术。

先进制造技术也是改造传统产业的有力武器。

先进制造技术的发展与产业化,将对国民经济的发展产生越来越大的影响。

本文主要分析了当今我国先进制造技术的特点及发展趋势,介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。

制造业在国家企业生产力构成中占很大比重,因此若想增强综合国力,大力发展制造技术是必由之路。

关键词:先进制造特点发展现状趋势0引言:先进制造技术(Advanced Manufacturing Technology,简称为AMT)是指微电子技术、自动化技术、信息技术等先进技术给传统制造技术带来的种种变化与新型系统[1]。

具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。

主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。

AMT是制造业企业取得竞争优势的必要条件之一,但并非充分条件,其优势还有赖于能充分发挥技术威力的组织管理,有赖于技术、管理和人力资源的有机协调和融合。

1先进制造技术的特点:1.1实用性:首先先进制造技术应该能够为我们所用,是实用的,而不是观念上得东西,能够真正为人类造福的。

其是一项面向工业应用并且兼备有实用性的新技术,它的发展是针对其中一具体制造业的需求而发展起来的先进的、适用的制造技术,它有明确的需求导向的特征,其应用特别注意产品最好的实际效果,以提高制造业的综合经济效益和社会效益为最终目的。

1.2先进性:其次,从他的命名来看,他显然应当具有先进性,这符合社会的发展,能够带动社会的生产力的前进才是他的关键所在。

它从传统的工艺发展而来,既保留了过去制造技术中的有效要素,又吸收了各种高新技术的最新成果,并与新技术实现了局部或系统集成,先进制造技术的核心是优质、高效、低耗、清洁、灵活的工艺,这些工艺也必须是经过优化的先进工艺。

先进材料导论论文(先进结构陶瓷材料)

先进材料导论论文(先进结构陶瓷材料)

先进材料导论论文(先进结构陶瓷材料)学生姓名学号专业先进结构陶瓷材料摘要随着现代高新技术的发展,先进陶瓷已逐步成为新材料的重要组成部分,成为许多高技术领域发展的重要关键材料,备受各工业发达国家的极大关注,其发展在很大程度上也影响着其他工业的发展和进步。

先进陶瓷是“采用高度精选或合成的原料,具有精确控制的化学组成,按照便于控制的制造技术加工、便于进行结构设计,并且有优异特性的陶瓷”。

功能陶瓷在先进陶瓷中约占70%的市场份额,其余为结构陶瓷。

由于先进陶瓷各种功能的不断发现,在微电子工业、通讯产业、自动化控制和未来智能化技术等方面作为支撑材料的地位将日益明显,其市场容量将不断提升。

本文介绍先进结构陶瓷材料当前的发展背景,互联网和高新技术发展时代下陶瓷材料的发展前景。

关键词先进结构陶瓷高新技术功能陶瓷1、研究背景目前,全球范围内先进陶瓷技术快速进步、应用领域拓宽及市场稳定增长的发展趋势明显。

随着现代高新技术的发展,先进陶瓷已逐步成为新材料的重要组成部分,成为许多高技术领域发展的重要关键材料,备受各工业发达国家的极大关注,其发展在很大程度上也影响着其他工业的发展和进步。

【1】由于先进陶瓷特定的精细结构和其高强、高硬、耐磨、耐腐蚀、耐高温、导电、绝缘、磁性、透光、半导体以及压电、铁电、声光、超导、生物相容等一系列优良性能,被广泛应用于国防、化工、冶金、电子、机械、航空、航天、生物医学等国民经济的各个领域。

先进陶瓷的发展是国民经济新的增长点,其研究、应用、开发状况是体现一个国家国民经济综合实力的重要标志之一。

先进陶瓷是“采用高度精选或合成的原料,具有精确控制的化学组成,按照便于控制的制造技术加工、便于进行结构设计,并且有优异特性的陶瓷”。

2、国内外研究现状及发展趋势、国外研究发展情况先进结构陶瓷材料的研究,需要跟踪国际科技前沿,对新设想、新技术进行广泛探索。

自蔓延高温燃烧合成技术(SHS)、凝胶注模成形技术、微观结构设计已成为研究热点。

先进制造技术论文

先进制造技术论文

随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。

改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。

一.先进制造技术的概念(1)先进制造技术的内涵目前对先进制造技术尚没有一个明确的、一致公认的定义,经过近年来对发展先进制造技术方面开展的工作,通过对其特征的分析研究,可以认为:先进制造技术是制造业不断吸收信息技术和现代管理技术的成果,并将其综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。

(2)先进制造技术的特点先进制造技术最重要的特点在于,它首先是一项面向工业应用,具有很强实用性的新技术。

先进制造技术相对传统制造技术在应用范围上的一个很大不同点在于,传统制造技术通常只是指各种将原材料变成成品的加工工艺,而先进制造技术虽然仍大量应用于加工和装配过程,但由于其组成中包括了设计技术、自动化技术、系统管理技术,因而则将其综合应用于制造的全过程。

并且传统制造技术的学科、专业单一独立,相互间的界限分明;先进制造技术由于专业和学科间的不断渗透j交叉、融合,界线逐渐淡化甚至消失,技术趋于系统化、集成化、已发展成为集机械、电子、信息、材料和管理技术为一体的新型交叉学科。

随着微电子、信息技术的引入,使先进制造技术还能驾驭信息生成、采集、传递、反馈、调整的信息集成过程。

先进制造技术是可以驾驭生产过程的物质流、能量流和信息流的系统工程。

碳纤维论文

碳纤维论文

论述碳纤维的制造技术及在航天发射领域的应用王晓刚200905731.摘要:碳纤维是一种力学性能优异的新材,在过去的二三十年里得到广泛的研究。

其含碳量在90%以上,与其它高性能纤维相比具有最高比强度和最高比模量。

特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。

此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性、纺织加工性均优良等。

因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。

关键词:碳纤维,制造,航天领域,应用2.碳纤维的制造2.1发展历程碳纤维主要是由沥青、人造丝和聚丙烯腈为主要原料而制造的,目前结构材料中主要使用PAN碳纤维。

1950年,美国Wright-Patterson空军基地开始研制粘胶基碳纤维。

1959年,最早上市的粘胶基碳纤维Thornel-25就是美国联合碳化物公司(UCC)的产品。

与此同时,日本研究人员也在1959年发明了用聚丙烯腈(PAN)基原丝制造碳纤维的新方法。

在此基础上,英国皇家航空研究院开发出了制造高性能PAN基碳纤维的技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流,产量占世界总产量的90%左右。

20世纪70年代中期,UCC在美国空军和海军的资金支持下,研发高性能中间相沥青基碳纤维;1975年研发成功Thornel P-55(P-55),在1980~1982年之间,又研发成功P-75、P-100和P-120,年产量为230t。

P-120的模最高达965GPa,是理论值的94%,热导率是铜的1.6倍,线膨胀系数仅为-1.33×10-6/K,且在375℃空气中加热1000h仅失重0.3%~1.0%,显示出优异的抗氧化性能。

它们已广泛用于火箭喷管、导弹鼻锥、卫星构件、舰艇材料等方面。

AG-80环氧树脂的制备论文(1)

AG-80环氧树脂的制备论文(1)
(3) TDE一85#环氧树脂
随着科学技术发展,国防工业对材料的要求越来越高,迫切希望科研部门能够提供一种工艺性好、耐高温、高强度、高粘接强度的环氧树脂[17]。天津市合成材料工业研究所研制成功一种三官能度TDE-85#环氧树脂,特点是工艺性好、反应活性高,固化物耐高温、高强度。这种环氧树脂的学名是4,5-二环氧环已烷1,2-二甲酸二缩水甘油酷。这种树脂的马丁耐热为180℃(间苯二胺固化),弯曲强度215MPa,拉伸强度100MPa,用其配制高温粘接剂在使用温度150℃以下时,粘接强度比通用环氧树脂提高约5-6倍[18]。通过使用TDE-85粘接剂,磁钢与铁因粘接剂在高温下强度不够而分离的难题得到圆满的解决。尤其是其机械强度可提高50~80%,拉伸强度可达1000MPa,耐热性也可提高20~30℃。实验结果表明,这种树脂的工艺性、耐热等级、物理机械性能和电绝缘性,在同样条件下均比其他类型的环氧树脂好,因此它是电子绝缘灌封的理想材料[19,20]。
目前,环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种(1)在环氧基体中加入橡胶弹性体,热塑性树脂或液晶聚合物等分散相来增韧;(2)用含”柔性链”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的,(3)用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧从而使环氧树脂韧性得到改善[9]。
1
环氧树脂的品种很多,除双酚A树脂外,还有下列几个品种:
1.2.1
(1)卤代双酚A环氧树脂
卤代双酚A环氧树脂以部分卤代双酚A代替双酚A和环氧氯丙烷在碱存在下缩聚,得到的环氧树脂称作卤代双酚A环氧树脂,简称为卤代环氧树脂。卤代一般指氯代、溴代等。卤代环氧树脂的最大特点是具有自熄性,用于航空、船舶上的层压板等。我国浙江省化工研究所试制成功了四溴双A二缩水甘油醚型环氧树脂既具有普通环氧树脂的特性,还有自熄性和燃烧时不生成剧毒物质等特点,是一种比较优良的难燃性环氧树脂[10]。

材料智能化制备范文

材料智能化制备范文

材料智能化制备范文随着信息技术和智能化技术的飞速发展,材料智能化制备在材料科学领域已经取得了显著的进展。

传统的材料制备过程往往依赖于人工操作和经验判断,这种方式存在着制备周期长、一致性差、产品质量不稳定等问题。

而材料智能化制备则能够利用先进的传感器和监测技术,实时采集和监测制备过程中的各项参数,通过智能算法和控制系统对制备过程进行实时监控和优化,从而实现对材料制备过程的精确控制和优化调节。

材料智能化制备的核心在于实时数据采集和分析。

通过传感器和监测设备,对制备过程中的温度、压力、流量、pH值等参数进行实时监测和采集,并将这些数据传输到中央控制系统进行分析和处理。

中央控制系统可以根据预设的制备工艺和质量要求,通过智能算法对数据进行分析和判断,及时调整和控制制备过程中的各项参数,以确保材料的制备过程符合要求。

首先,材料智能化制备可以提高材料制备的精确度和一致性。

利用传感器和监测设备,实时采集和监测制备过程中的各项参数,对数据进行实时分析和处理,及时调整和控制制备过程中的各项参数,以确保材料的制备过程符合要求。

通过精确控制和优化调节,可以实现材料制备的精确度和一致性的提高。

其次,材料智能化制备可以提高材料制备的效率和产能。

传统的材料制备过程往往依赖于人工操作和经验判断,而材料智能化制备则可以实现对制备过程的自动化管理和控制,从而提高制备效率和产能。

通过实时监控和优化调节,可以减少制备过程中的误操作和浪费,提高生产效率和节约能源。

另外,材料智能化制备可以提高产品质量和降低产品成本。

通过精确控制和优化调节,可以保证材料的制备过程符合质量要求,减少产品的次品率和废品率,提高产品的质量稳定性。

同时,材料智能化制备可以实现对制备过程的实时监控和优化调节,减少能源消耗和原材料消耗,降低产品的成本。

最后,材料智能化制备还可以实现材料制备过程的信息化管理和追溯。

通过实时数据采集和分析,可以实现对制备过程中各项参数的全面监控和记录,建立起完整的制备过程信息数据库。

单晶硅的制备及其太阳能电池中的运用毕业论文

单晶硅的制备及其太阳能电池中的运用毕业论文

昆明学院2015届毕业论文(设计)论文(设计)题目单晶硅的制备及其在太阳能电池中的运用子课题题目无姓名胡渐平学号 201117030207所属院系物理科学与技术系专业年级物理学2班指导教师张连昌2015年5月单晶硅的制备及其在太阳能电池中的运用摘要本文研究单晶硅材料的制备及其在太阳能电池中的运用。

制造太阳能电池的半导体材料已知的就有十几种,因此太阳电池的种类也很多。

硅材料分为单晶硅、多晶硅、铸造硅以及薄膜硅等许多形态。

虽然形态不一制作方法不尽相同,但是实现的目的是一样的。

都是尽可能多的将太阳光的光能转化为电能,硅是地球上储藏最丰富的元素之一。

目前作为单晶硅的制备方法分为直拉法(CZ)、区熔法(FZ),并且这两种方法是工业上运用最广的方法。

从多晶硅中提炼出单晶,然后通过拉硅单晶棒、切割得到单晶硅圆片,再经过刻蚀,最后生产成太阳能电池组件。

生产过程大致可分为五个步骤:(a)提纯过程(b)拉棒过程(c)切片过程(d)制电池过程(e)封装过程。

本文就单晶硅的制备和在太阳能电池中的运用略作讨论。

本文中提高单晶硅太阳能电池的绒面工艺及电化学刻蚀工艺的原理及应用于太阳能电池中对效率所带来的影响的研究。

单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,是当前开发得最快的一种太阳能电池。

它的构造和生产工艺已定型,产品已广泛用于空间和地面。

采用的来提高单晶硅太能电池效率的各种理论研究,首先采用了电化学刻蚀工艺和绒面工艺两者对太阳能电池效率的影响,从理论上的结果来看采用两者工艺结合所形成的抗反射层可以使太阳能电池的平均反射率降到2%,并进一步研究了在电化学刻蚀中各种参数对太阳能电池表面形貌的影响。

此外,论文还提出了另一种制备纳米硅抗反射层的方法及其在太阳能电池中的抗反射效果,研究发现这种制各纳米硅抗反射层的方法十分简单,且能够取得十分优异的降低反射率的效果,并且采用结合绒面工艺的纳米硅工艺所制得抗反射膜可以使得太阳能电池表面的反射率降到1%左右,甚至优于电化学刻蚀工艺和绒面工艺两者的结合。

现代先进制造技术论文2000字

现代先进制造技术论文2000字

现代先进制造技术论文2000字随着社会的先进技术的不断进步,制造技术也获得快速的发展,具有精密化、智能化、清洁化以及集成化的特点。

下面是精心推荐的先进制造技术2000字论文,希望能对大家有所帮助!先进制造技术2000字论文篇一:《浅析机械制造技术》摘要:随着社会科技的迅速发展,同时市场竞争日益激烈,传统的机械制造生产模式很难满足现实需要,因此,本文首先分析了现代机械制造的特点,然后就发展趋势展开论述。

关键词:机械制造;特点;发展趋势;随着社会的不断进步,机械制造技术也获得快速的发展,具有精密化、智能化、清洁化以及集成化的特点。

就目前而言,计算机、传感、自动化、新材料以及管理等技术与传统的机械制造技术进行结合,保证成为一体,在发展过程中,形成物质流、信息流和能量流的整体系统工程,不断保证生产规模的扩大和追求最佳的经济技术效果,实现机械制造过程中管理的简化和合理化,促进不断采用最新的生产方式。

一、现代机械制造技术发展的国内外现状从国外发展情况来看,发达国家的机械水平已经相当高,在进行实际的设计过程中,一般采油工计算机辅助和仿真等方法,同时对企业管理的方法和手段也日趋规范化和科学化,尤其在机械加工技术方面实现全面的自动化,采用数控技术和自动引导小车等技术。

发达国家主要制造了一系列新的系统,主要包括计算机集成制造、智能制造以及敏捷制造和并行工程等系统。

(一)计算机集成制造系统主要建立在自动化、信息技术等基础上,有效利用计算机软件,把企业内部的生产较为分散的自动化系统集成起来,在很大程度上可以提高机械制造的效率。

在利用计算机集成系统过程中,要注意以下几个方面,在功能方面来讲,要做好市场预测、产品设计、加工技术以及制造管理和售后服务等,这比传统机械企业自动化服务的范围要大的多,系统非常复杂。

这种计算机集成主要以信息和功能,在很大程度上可以有效不断缩短产品开发、保证产品质量,降低工程投资等。

(二)智能制造系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先进材料制备技术论文材料制备技术得到了不同类型的商业化制品。

下面是精心推荐的先进材料制备技术论文,希望你能有所感触!摘要综述了国内外块状纳米材料的制备技术进展及存在的问题。

提出了超短时脉冲电流直接晶化法和深过冷直接晶化法两类潜在的块状金属纳米晶制备技术,并对今后的研究及发展前景进行了展望。

关键词纳米晶块体材料制备非晶晶化机械合金化深过冷DEVELOPMENT OF BULK METAL NANOMETER MATERIALS PREPARATION TECHNOLOGIES AND THEiR ESTIMATEABSTRACT On the basis of the summarization of bulk metal nanocrystalline materials preparation methods,two potential technologies:super short false current directcrystallization method and high undercooling direct crystallization method are proposed.In the end,the development and application prospects of various methods are also estimated.KEYWORDS bulk nanometer material,preparation of materials,crystallization of amorphous alloys,mechanical alloying,high undercoolingCorrespondent:Zhang Zhenzhong Northwestern Polytechnical University,State key Laborotry of Solidification Processing Xi'an 710072自80年代初德国科学家H.V.GlEIter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后[1],纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。

由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能[2],使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。

为使这种新型材料既有利于理论研究,又能在实际中拓宽其使用范围,探索高质量的三维大尺寸纳米晶体样品的制备技术已成为纳米材料研究的关键之一。

本文综述国内外现有块状金属纳米材料的制备技术进展,并提出今后可能成为块状金属纳米材料制备的潜在技术。

1 现有块状金属纳米材料的制备技术1.1 惰性气体凝聚原位加压成形法该法首先由H.V.Gleiter教授提出[1],其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成形(烧结)系统组成。

其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10-6Pa高真空下,加压系统以1~5GPa的压力使纳米粉原位加压(烧结)成块。

采用该法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的块状纳米材料[3]。

近年来,在该装置基础之上,通过改进使金属升华的热源及方式(如采用感应加热、等离子体法、电子束加热法、激光热解法、磁溅射等)以及改良其它装备,可以获得克级到几十克级的纳米晶体样品。

纳米超饱和合金、纳米复合材料等也正在利用此法研究之中。

目前该法正向多组分、计量控制、多副模具、超高压力方向发展。

该法的特点是适用范围广,微粉表面洁净,有助于纳米材料的理论研究。

但工艺设备复杂,产量极低,很难满足性能研究及应用的要求,特别是用这种方法制备的纳米晶体样品存在大量的微孔隙,致密样品密度仅能达金属体积密度的75%~90%,这种微孔隙对纳米材料的结构性能研究及某些性能的提高十分不利。

近年来,尽管发展了一些新的纳米粉制备方法如电化学沉积[4]、电火花侵蚀(sparkerosion)[5]等方法,但与这些方法相衔接的纳米粉的分散、表面处理及成型方法尚未得到发展。

1.2 机械合金研磨(MA)结合加压成块法MA法是美国INCO公司于60年代末发展起来的技术。

它是一种用来制备具有可控微结构的金属基或陶瓷基复合粉末的高能球磨技术:在干燥的球型装料机内,在高真空Ar2气保护下,通过机械研磨过程中高速运行的硬质钢球与研磨体之间相互碰撞,对粉末粒子反复进行熔结、断裂、再熔结的过程使晶粒不断细化,达到纳米尺寸[6]。

然后、纳米粉再采用热挤压、热等静压等技术[7]加压制得块状纳米材料。

研究表明,非晶、准晶、纳米晶、超导材料、稀土永磁合金、超塑性合金、金属间化合物、轻金属高比强合金均可通过这一方法合成。

该法合金基体成分不受限制、成本低、产量大、工艺简单,特别是在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力,该法在国外已进入实用化阶段。

如美国INCO 公司使用的球磨机直径为2m,长3m,每次可处理约1000kg粉体,这样的球磨机1993年在美国安装有七座,英国安装有二座,大多用来加工薄板、厚板、棒材、管材及其它型材。

近年来,该法在我国也获得了广泛的重视。

其存在的问题是研磨过程中易产生杂质、污染、氧化及应力,很难得到洁净的纳米晶体界面,对一些基础性的研究工作不利。

1.3 非晶晶化法该法是近年来发展极为迅速的一种新工艺,它是通过控制非晶态固体的晶化动力学过程使晶化的产物为纳米尺寸的晶粒。

它通常由非晶态固体的获得和晶化两个过程组成。

非晶态固体可通过熔体激冷、高速直流溅射、等离子流雾化、固态反应法等技术制备,最常用的是单辊或双辊旋淬法。

由于以上方法只能获得非晶粉末、丝及条带等低维材料,因而还需采用热模压实、热挤压或高温高压烧结等方法合成块状样品[8]。

晶化通常采用等温退火方法,近年来还发展了分级退火[9]、脉冲退火[10]、激波诱导[11]等方法。

目前,利用该法已制备出Ni、Fe、Co、Pd基等多种合金系列的纳米晶体,也可制备出金属间化合物和单质半导体纳米晶体,并已发展到实用阶段。

此法在纳米软磁材料的制备方面应用最为广泛。

值得指出的是,国外近年来十分重视块体非晶的制备研究工作,继W.Klement、H.S.Chen、H.W.Kui等采用真空吸铸法及合金射流法制备出Mg-La-TM、La-Al-TM、Zr-Al-TM系非晶块体之后,近几年日本以Inoue为代表的研究小组在非晶三原则指导下,又成功地采用合金射流成形及深过冷与合金射流成形相结合的方法制备了厚度分别为2mm、3mm、12mm、15mm、40mm、72mm的Fe-(Al,Ga)-(P,C,B,Si,Ge)[12]、(Fe,Co,Ni)70Zr8B20Nb2[13]、(Nd,Pr)-Fe-(Al,Ga)[14]、Zr-Al-Cu-Ni[15]、Pd-Cu-Si-B[16]系的非晶块体。

我国北京科技大学的何国、陈国良最近也采用合金射流成形法获得?8mm Zr65Al7.5Cu17.5Ni10[17]的非晶块体,这些研究结果为该法制备及应用块体纳米材料注入了极大生机。

该法的特点是成本低,产量大,界面清洁致密,样品中无微孔隙,晶粒度变化易控制,并有助于研究纳米晶的形成机理及用来检验经典的形核长大理论在快速凝固条件下应用的可能性。

其局限性在于依赖于非晶态固体的获得,只适用于非晶形成能力较强的合金系。

1.4 高压、高温固相淬火法该法是将真空电弧炉熔炼的样品置入高压腔体内,加压至数GPa 后升温,通过高压抑制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化,然后再从高温下固相淬火以保留高温、高压组织。

胡壮麒等利用此法已获得?4×3(mm)的Cu60Ti40及?3×3(mm)的Pd78Cu6Si16晶粒尺寸为10~20(nm)的纳米晶样品[18,19]。

该法的特点是工艺简便,界面清洁,能直接制备大块致密的纳米晶。

其局限性在于需很高的压力,大块尺寸获得困难,另外在其它合金系中尚无应用研究的报道。

1.5 大塑性变形与其它方法复合的细化晶粒法1.5.1 大塑性变形方法在采用大塑性变形方法制备块状金属纳米材料方面, ___科学院R.Z.Valiev领导的研究小组开展了卓有成效的研究工作,早在90年代初,他们就发现采用纯剪切大变形方法可获得亚微米级晶粒尺寸的纯铜组织[20],近年来他们在发展多种塑性变形方法的基础上,又成功地制备了晶粒尺寸为20~200(nm)的纯Fe、Fe-1.2%C 钢、Fe-C-Mn-Si-V低合金钢、Al-Cu-Zr、Al-Mg-Li-Zr、Mg-Mn-Ce、Ni3Al金属间化合物、Ti-Al-Mo-Si[21-23]等合金的块体纳米材料。

1.5.2 塑性变形加循环相变方法1996年我国赵明、张秋华等[24]将碳管炉中氩气保护下熔炼的Zn78Al22超塑性合金,经固溶处理后通过小塑性变形和循环相变(共析转变),获得了晶粒尺寸为100~300(nm)的块状纳米晶体。

该方法与其他方法相比具有适用范围宽,可制造大体积试样,试样无残留缩松(孔),可方便地利用扫描电镜详细研究其组织结构及晶粒中的非平衡边界层结构,特别有利于研究其组织与性能的关系等特点并可采用多种变形方法制备界面清洁的纳米材料,是今后制备块体金属纳米材料很有潜力的一种方法。

如将此法与粉末冶金及深过冷等技术相结合,则可望利用此法制备金属陶瓷纳米复合材料[21],并拓宽其所能制备的合金成份范围。

除以上主要方法外,近年来还发展的有喷雾沉积法、离子注入法等块体金属纳米材料制备技术,在此不再一一赘述。

2 直接制备块状纳米晶的潜在技术2.1 脉冲电流直接晶化法近年来,关于脉冲电流对金属凝固组织的影响已屡见报道:80年代,印度学者A.K.Mistra首先在Pb68Sb15Sn7共晶及Pb87Sb10Sn3亚共晶合金中通以40mA/cm2的直流电,发现凝固后组织明显细化[25],M.Nakada等人在Sn85Pb15合金凝固过程中通脉冲电流后,也发现凝固组织细化且发生枝晶向球状晶转变[26],J.P.Barnak等研究了高密度脉冲电流对Sn60Pb40和Sn63Pb37合金凝固组织的影响[27]。

结果证实,脉冲电流可增加过冷度,并可使共晶的晶粒度降低一个数量级,且晶粒度随脉冲电流密度增加而降低。

相关文档
最新文档