系统结构第七章
以下习题来自《计算机系统结构》第七章 存储体系。
以下习题来自《计算机系统结构》第七章存储体系。
7.1解释下列术语直接映像:每个主存地址映像到Cache中的一个指定地质的方式称为直接映像。
全相联映像:任何主存地址可映像到任何Cache地址的方式称为全相联映像。
组相联映像:组相联映像指的是将存储空间的页面分成若干组,各组之间是直接映像,而组内各块之间是全相联映像。
全写法:全写法也称直达法,即写操作将数据同时写入Cache和缓存。
写回法:写Cache时不写主存,仅当被写Cache数据块要被替换出去时才写回主存。
虚拟存储器:虚拟存储器是主存的扩展,当主存的容量不能满足要求时,数据可存放在外存中,在程序中仍然按地址访问外存空间。
大小取决于计算机的访存能力。
段式管理:把主存按段分配的存储管理方式称为段式管理。
页式管理:把虚拟存储空间和实际存储空间等分成固定大小的页,各虚拟页可装入主存中不同的实际页面位置。
段页式管理:段页式管理式段式管理和页式管理的结合,他将存储空间按逻辑模块分成段,每段又分成若干个页,访存通过一个段表和若干个页表进行。
段的长度必须是页的长度的整数倍,段的起点必须是某一页的起点。
快表:为了提高页表中常用项的访问速度,采用快速硬件构成的比全表小的多的部分表格。
慢表:存放在主存中的整个页表。
高速缓存:高速缓冲存储器是位于CPU和主存之间的高层存储子系统。
时间局部性:如果一个存储项被访问,则可能该项会很快再次被访问。
空间局部性:如果一个存储项被访问,则该项及其邻近的相也可能很快被访问。
段表:在对虚拟内存进行管理时,系统中用于指明各段在主存中的位置的表,表中包括段名或段号、段起点、装入位和段长等。
页表:在对虚拟内存进行管理时,系统中用于指明各页在主存中的位置的表,表中包括页号、每页在主存中的起始位置、表示该页是否已装入主存的装入位等。
块表:存储系统中的一个用于解决块和页的定位、标志、和寻址问题的表。
7.2 有人认为,随着存储器芯片集成度的提高,主存的容量将越来越大,虚拟存贮器将被淘汰,未来的计算机中将不采用虚拟存储器。
计算机系统结构课后答案uint7
第七章课后题1.多处理机在结构、程序并行性、算法、进程同步、资源分配和调试上与并行处理机有什么差别?答:多处理机与并行处理机的主要差别是并行性的等级不同。
(1)结构灵活性。
多处理机制结构灵活性高于并行处理机。
(2)程序并行性。
多处理是指令、任务、作业并行,并行性的识别较难;并行处理机是操作级并行,并行性的识别较易。
(3)并行任务派生。
并行处理机工作能否并行工作由指令决定,多处理机必须有专门指令指明程序能否并行执行,派生的任务数是动态变化的。
(4)进程同步。
并行处理机的进程同步是自然的,而多处理机必须采取同步措施。
(5)资源分配和任务调度。
多处理机的资源分配和任务调度比并行处理机复杂得多。
2.多处理机有哪些基本特点?发展这种系统的主要目的可能有哪些?多处理着重解决哪些技术问题?答:○多处理机的基本特点:多处理机具有两台以上的处理机,在操作系统控制下通过共享的主存或输入/输出子系统或高速通讯网络进行通讯.结构上多个处理机用多个指令部件分别控制,通过机间互连网络通讯;算法上不只限于处理向量数组,还要实现更多通用算法中的并行;系统管理上要更多地依靠软件手段,有效解决资源分配和管理,特别是任务分配,处理机调度,进程的同步和通讯等问题.○使用多处理机的目的:一是用多台处理进行多任务处理协同求解一个大而复杂的问题来提高速度,二是依靠冗余的处理机及其重组来提高系统的可靠性,适应性和可用性.○多处理着重要解决的技术问题:(1)硬件结构上,如何解决好处理机、存储器模块及I/O子系统间的互连。
(2)如何最大限度开发系统的并行性,以实现多处理要各级的全面并行。
(3)如何选择任务和子任务的大小,即任务的粒度,使并行度高,辅助开销小。
(4)如何协调好多处理机中各并行执行任务和进程间的同步问题。
(5)如何将任务分配到多处理机上,解决好处理机调度、任务调度、任务调度和资源分配,防止死锁。
(6)一旦某个处理发生故障,如何对系统进行重新组织,而不使其瘫痪。
第七章-呼吸系统结构与功能
(一)鼻
(三)喉
1.喉软骨 有一块甲状软骨、一块环状软骨、一块会厌软 骨、一对杓状软骨。
2.喉肌 喉肌均为骨骼肌,其主要作用是使声带紧张和松 驰,声门开大和缩小。
3.喉腔 上通咽腔喉部,下通气管
(四)气管和支气管
❖气管 长11-13cm。分为左、 右主支气管。
❖ 气管和支气管由“C”形软骨 环和连于其间的环状韧带构 成。气管软骨具有支架作用, 具有弹性,使管腔保情开放 状态,以维持呼吸功能的正 常进行
二、肺
❖ 肺由各级支气管和无数肺泡组成,同 时肺还具有分泌功能。
1、位置:左右两肺位于胸腔内,纵隔 两侧,隔的上方。左肺窄长;右肺宽 短。
形态:幼儿呈淡红色;吸入杂质沉积, 颜色变深。
❖ 肺密度小于1,可浮于水面;未呼吸 过的胎儿肺不含空气,密度大于1, 入水沉。
❖ 肺内侧面中部的凹陷-肺门,是支气 管、肺动脉、肺静脉出入肺的门户。
混合静脉血PCO2是6.12kPa(46mmHg),比肺泡气 的5.32 kPa(40mmHg)高,血液中CO2向肺泡中 扩散,血液的PCO2逐渐下降,最后接近肺泡气的 PCO2。
影响因素
1、呼吸膜的厚度 呼吸膜很薄; 表面积大; 交换迅速
2、呼吸膜的面积 气体扩散速率与扩散面积成正比。 运动时,呼吸膜面积增加; 肺不张、肺实变、肺气肿或肺毛细管关闭和阻塞,
因此,呼吸运动是肺通气的原动力,由此造成的肺 内压与大气压的压差是推动气体进出肺的直接动 力。
3)呼吸运动的形式
(1) 平静呼吸:吸气主动,呼气被动; 用力呼吸:吸气、呼气均为主动; 呼吸困难临床的表现:呼吸深大,鼻翼扇动,胸
部困压感等。 (2) 胸式和腹式呼吸:临床诊断中的意义
2. 肺内压
计算机操作系统【第七章】 汤子瀛版
计算机操作系统【第七章】1.试画出微机和主机中常采用的I/O系统结构图。
微机中常采用的I/O系统结构图为:主机中常采用的I/O系统结构图为:2.试说明设备控制器的构成。
设备控制器的构成如图所示:由上图可见,设备控制器由以下三部分组成:(1)设备控制器与处理机的接口,该接口用于实现CPU与设备控制器之间的通信,提供有三类信号线:数据线、地址线和控制线。
(2)设备控制器与设备的接口,可以有一个或多个接口,且每个接口连接一台设备。
每个接口都存在数据、控制和状态三种类型的信号。
(3)I/O逻辑,用于实现对设备的控制。
其通过一组控制线与处理机交互,处理机利用该逻辑向控制器发送I/O命令,I/O逻辑对收到的命令进行译码。
3.为了实现CPU与设备控制器之间的通信,设备控制器应具有哪些功能?为了实现CPU与设备控制器之间的通信,设备控制器应具有如下功能:(1)接受和识别命令。
CPU可以向控制器发送多种不同的命令,设备控制器应能接收并识别这些命令。
设置控制寄存器来存放所接收的命令和参数。
(2)数据交换,指实现CPU与控制器之间、控制器与设备之间的数据交换。
设置数据寄存器来存放有关数据。
(3)设备状态的了解和报告。
控制器记录下所连接设备的状态以供CPU了解。
为此,要在控制器中设置一状态寄存器,用其中的每一位反映设备的某一状态。
(4)地址识别。
配置地址译码器以便于正确识别设备地址。
4.分别就字节多路通道、数据选择通道和数组多路通道进行解释。
①字节多路通道含有许多非分配型子通道分别连接在低、中速I/O设备上,子通道按时间片轮转方式共享主通道,按字节方式进行数据传送。
具体而言,当第一个子通道控制其I/O 设备完成一个字节的交换后,便立即腾出字节多路通道(主通道),让给第二个子通道使用;当第二个子通道也交换完一个字节后,又依样把主通道让给第三个子通道使用,以此类推。
转轮一周后,重又返回由第一个子通道去使用主通道。
②数组选择通道只含有一个分配型子通道,一段时间内只能执行一道通道程序、控制一台设备按数组方式进行数据传送。
计算机系统结构
加速比可以表示如下:
Ws + G(n)Wp S = * = * Ws +Wp / n Ws + G(n)Wp / n
* n * s * p
W +W
其中:
在单个处理机上顺序执行的工作负载与问题的规模 或系统的规模无关,即:
Ws = Ws' = W
* s
而G(n)反映的是存储容量增加n倍时并行工作负载增 加的倍数。
增大问题规模的办法使所有处理机保持忙碌状态,在问题扩大到 与可用的计算能力匹配时,程序中的顺序部分就不再是瓶颈了。 当处理器数目n=1024,加速比Sn随α变化的情况如下:
S1024' = n −α(n −1 =1024 −1023 ) α
Sn’
1100
1050
1024
1000
1014 1004
993 983
W +W s p Sn = W +W / n s p
设串行因子α为串行部分所占的比例。即
W s W p α= 或 −α = 1 W +W s p W +W s p
代入即得Amdahl’law:
W +W s p 1 W +W s p ∴Sn = = W s W /n p α + (1−α) / n + W +W s p W +W s p
2.1.3 三种加速比性能模型
1.固定负载加速比性能模型—Amdahl定律
在许多实时应用领域,计算负载的大小常固 定。在并行机中,此负载可分布至多台并行执行, 获得的加速比称为fixed-load speedup。一个问题的 负载可表示如下: W = Ws + Wp 其中,Ws代表问题中不可并行化的串行部分负载, Wp表示可并行化的部分负载。 则n个节点情况下,加速比可以表示如下:
计算机组成与体系结构ch7指令系统a
第七章指令系统内容简介:本章主要介绍机器指令系统的分类、常见的寻址方式、指令格式以及指令系统的设计;此外对RISC、CISC技术也作了简要的介绍。
要求:掌握指令的格式、基本的寻址方式和指令格式的设计初步掌握指令的分类和指令格式的优化设计理解指令系统结构以及RISC、CISC结构的特点7.1指令格式指令:指示计算机执行某种操作的命令。
指令系统:一台计算机能执行的全部指令的集合。
计算机的指令系统与计算机的硬件结构关系密切,决定着计算机硬件的主要性能和基本功能,直接影响到系统软件和应用软件。
7.1.1指令格式每条指令由操作码和地址码两部分组成7.1.2操作码操作码:是用来指明该指令所要完成的操作,CPU中有专门的电路来解释每个操作码。
通常,操作码的长度(位数)反映了机器的操作种类,也即机器允许的指令条数,如操作码占7位,则该机器最多包含27=128条指令。
操作码的长度可以是固定的,也可以是变化的。
固定长度操作码:便于进行指令译码和分析、存储可变长度操作码:在满足需要的前提下,能有效地缩短指令字长,提高指令的读取与执行速度,但也增加了指令译码和分析的难度,使控制器的设计复杂。
7.1.3地址码地址码:指出指令中操作数所在的存储器地址或寄存器地址,根据指令中操作数地址码的数目的不同,可将指令分成三地址指令、二地址指令、一地址指令、零地址指令等多种格式(地址结构逐步简化)。
三地址指令:(A1)OP(A2)A3分别按A1与A2地址读取操作数,按操作码OP进行运算操作,然后将结果存入A3地址所指定的主存单元或寄存器中。
二地址指令:(A1)OP(A2)A1分别按A1与A2地址读取操作数,按操作码OP进行运算操作,然后将结果存入A1地址所指定的主存单元或寄存器中(A1地址所指定的主存单元或寄存器中原来存放的数据被覆盖)。
一地址指令:一地址指令有两种常见的形态,根据操作码含义确定它究竟是哪一种:1只有目的操作数的单操作数指令,如果操作码含义是加1、减1、求反、求补一类,则该指令是单操作数指令。
第七章儿童神经系统结构功能及发育(1和2)
神经系统的作用
对外界和内部各种刺激作出的反应:称反射 神经系统接收发生在你身体内和身体外的所有 信息,指导身体各器官对这些信息作出反应 有些反应是主动的,把急速朝你飞来的足球踢 出去,是主动的(受意识支配)。 许多生理过程:如心脏跳动的快慢、胃肠的活 动等不受意识支配(自发地受神经系统的控制) 维持内稳态:神经系统通过指导身体对接收到 的信息作出反应而维持内环境的稳定.
婴儿出生时脑细胞的数量已定
(3)脑重量:0至5岁发育最快
如出生时350克,脑回较少,脑沟也较浅.1岁时950克, 5岁1000克,6岁1200克, 7至8岁1300克,9岁1350克, 12岁达到1400克,接近成人的1450克。
(4)脑的发育 出生时脑干和小脑内神经纤维已髓鞘化,大脑内 神经纤维髓鞘化晚。 5岁: 1)神经纤维分支加深加长 2)大脑内部的多数神经纤维髓鞘化 6岁: 1)大脑皮层的各区接近成人的水平,成熟的顺 序是枕叶、颞叶、顶叶、额叶 2)大脑内神经纤维全部髓鞘化
2间脑
(1)结构:包括丘脑和下丘脑 (2)功能:丘脑是感觉传导的接替站,进行较高 级的整合。下丘脑是较高级的内脏调节中枢,调 节体温、摄食、水平衡、内分泌、情绪反应、生 物节律等。
3小脑
(1)结构:外部是灰质,内部是白质,白质中有神 经核。 (2)功能 调节和维持躯体平衡 调节肌紧张 协调随意运动
大脑皮层的背外侧面
第四节
觉醒与睡眠
是昼夜变化的正常的生理活动 1、觉醒是依靠脑干的网状细胞来维持 2、睡眠时机体的意识暂时的丧失,各种生理功 能减弱。 (1)慢波睡眠:是一种熟知的睡眠状态,即浅 睡眠,腺垂体分泌的生长素多,有利于儿童的 生长发育和体力恢复。 (2)异相睡眠(快波睡眠、深睡眠):脑内蛋 白质合成加快,有利于神经系统的发育成熟和 建立新的突触联系,增强记忆力,促进精力的 恢复。 儿童慢波和快波睡眠各占一半时间 一天需10小时,夜惊和夜游属于儿童睡眠障碍
第七章 UNIX 系统
copyright@2005.计算机学院软件教研室 张练兴等
江西师大精品课程课件-操作系统
第七章UNIX系统 第10页
UNIX的设计原理
• 做到尽量使得系统很小,许多算法采用了最简单 的,而不过多考虑速度和效率。使得内核短小, 系统调用方便。 • 为用户在需要时自己设计一个更为复杂高效的系 统而提供了条件。 • 灵活性是系统发展中一个关键的因素。 • 在程序设计时总是将其交互性和方便性放在最高 的优先级别上进行考虑。[所谓的方便性是体现在程序代码的选择上
copyright@2005.计算机学院软件教研室 张练兴等
江西师大精品课程课件-操作系统
第七章UNIX系统 第3页
7.1.1 UNIX系统的发展
• Ritchie 和 Thompson通过几年努力工作,他们将UNIX移 植到了PDP-11/20机器的环境下运行,产生了UNIX的第 二个版本。 • 第三个版本是使用C语言重写了所有的汇编语言代码而得 到,并移植到了PDP-11/45和PDP-11/70等机器的环境下 运行,加入了多道程序设计技术和其它一些增强的性能。 • 1978年又发表了UNIX 第七版本,它是在PDP-11/70上运 行的。1982年和1983年又先后宣布了UNIX System Ⅲ和 UNIX SystemⅤ;1984年推出了UNIX System V2.0, 1987年发布了V3.0版本,分别简称为UNIX SVR 2和UNIX SVR 3;1989年发布了UNIX SVR 4。目前使用较多的版 本是在1992年发布的UNIX SVR 4.2。
copyright@2005.计算机学院软件教研室 张练兴等
江西师大精品课程课件-操作系统
第七章UNIX系统 第7页
7.1.1 UNIX系统的发展
计算机组织与系统结构第七章习题答案
习题1.给出以下概念的解释说明。
指令流水线(Instruction pipelining)流水线深度(Pipeline Depth)指令吞吐量(Instruction throughput)流水线冒险(Hazard)结构冒险(Structural hazard)控制冒险(Control hazard)数据冒险(Data hazard)流水线阻塞(Pipeline stall)气泡(Bubble)空操作(nop)分支条件满足(Branch taken)分支预测(Branch predict)静态分支预测(Static predict)动态分支预测(Dynamic predict)延迟分支(Delayed branch)分支延迟槽(Delayed branch slot)转发(Forwarding)旁路(Bypassing)流水段寄存器(Pipeline register)IPC(Instructions Per Cycle)静态多发射(Static multiple issue)动态多发射(Dynamic multiple issue)超流水线(Superpipelining)超长指令字VLIW超标量流水线(Superscalar)动态流水线(Dynamic pipelining)指令预取(Instruction prefetch)指令分发(Instruction dispatch)按序发射(in-order issue)无序发射(out-of-order issue)存储站(Reservation station)重排序缓冲(Reorder buffer)指令提交单元(Instruction commit unit)乱序执行(out-of-order execution)按序完成(in-order completion)无序完成(out-of-order completion)2. 简单回答下列问题。
计算机系统结构第1-8章部分作业答案
第一章1.6 某台主频为400MHz 的计算机执行标准测试程序,程序中指令类型、执行数量和平均时钟周期数如下:求该计算机的有效CPI 、MIPS 和程序执行时间。
解:(1)CPI =(45000×1+75000×2+8000×4+1500×2) / 129500=1.776 (或259460) (2)MIPS 速率=f/ CPI =400/1.776 =225.225MIPS (或2595180MIPS) (3)程序执行时间= (45000×1+75000×2+8000×4+1500×2)/400=575μs1.9 假设某应用程序中有4类操作,通过改进,各操作获得不同的性能提高。
具体数据(1)改进后,各类操作的加速比分别是多少?(2)各类操作单独改进后,程序获得的加速比分别是多少? (3)4类操作均改进后,整个程序的加速比是多少? 解:根据Amdahl 定律SeFeFe S n +-=)1(1可得4类操作均改进后,整个程序的加速比:2.16)1(1≈+-=∑∑iii n S F F S1.10 第二章变长编码,哈夫曼编码第三章3.12 有一条指令流水线如下所示:(1)求连续输入10条指令的情况下,该流水线的实际吞吐率和效率。
(2)该流水线的瓶颈在哪一段?请采用两种不同的措施消除此瓶颈。
对于你所给出的两种新的流水线,连续输入10条指令时,其实际吞吐率和效率各是多少? 解:(1)本题主要考察对各功能段用时不等的线性流水线的性能计算公式的掌握情况。
2200(ns)2009200)10050(50t n t T maxki i =⨯++++=∆-+∆=∑=)1(1流水 )(ns 2201T nTP 1-==流水45.45%1154400TP ktTP E k1i i≈=⋅=∆⋅=∑= 注意:对于公式不能死记硬背,需要充分理解,注意公式的适用条件。
第七章 农业生态系统的结构调控(新高职)
二、农业生态系统的基本结构
农业生态系统的结构包括三个方面: 一是系统的构成组分 二是组分在系统空间和时间上的配置 三是组分间的联系特点和方式
(一)农业生态系统的物种结构
1.多样的复合型物种结构 由于构成农业生态系统环境组分包括自然 环境和人工环境,在不同区域,气候、地 藐、土壤、动植物群落和水文等自然因素 差别很大,加上人工形成的各种生产、加 工、贮存设备和生活设施,如温室、畜舍、 水库、渠道、鱼塘、防护林,加工厂,仓 库和住房等,都直接和间接影响农业生态 系统的物种构成,通过引种和选种育种方 式调整农业物种结构。
(3)技术成熟性原则。农业新技术具有较大 的变异性和不稳定性,不同年份可能得到不 同的技术效果,因此在选择新品种时要分析 种植技术的可靠性、成熟性和稳定性。 (4)农产品延伸产业连,提高附加值的原则。 农业结构调整要按照农业系统是生态经济连 加环原理,积极发展农产品加工、储藏、保 鲜以及废弃物综合利用
稻萍鱼 农田种菇
水体立体种模式
鱼的分层放养 鱼牧结合 基塘系统
养殖业立体模式
分层立体养殖 林鱼鸭立体种养
(四)农业生态系统的 营养结构调整
以营养为纽带,把生物与环境、 生物与生物紧密联系起来, 称为生态系统的营养结构或 食物链结构
1.食物链加环的作用
提高农业生态系统的稳定性 延长食物连,增加多样性和系统 组分,有利于增强生态系统的稳定 提高农副产品的利用率 一般农作物只有20%---30%的主 产品可供人类直接食用,而70%--80%则为副产品。
暖温带
水稻 800 玉米 700 谷子 250 小麦 300
温带
甜菜 450 马铃薯 400 大麦 250 扁豆 200
呼吸系统的结构与功能
形状:呈圆锥形,上为肺
尖在第一助骨以上,肺 底位于膈的上方。有膈 面(肺底)、肋面(邻 近助 )、 纵膈面(肺 门)。肺门有肺动脉、 肺静脉、支气管、淋巴 管、神经等出入
2,肺的内部结构
肺实质性器官,由主支气管 进入肺后,经多级分支形成 支气管树及支气管树的未 端—肺泡构成
肺泡
H2O CO2
血浆
第五节 呼吸的调节
一、各级呼吸中枢及其相互关系
1.呼吸中枢及其节律形成
在中枢神经系统内产生和调节呼吸运动的神 经细胞群称为呼吸中枢。从脊髓到大脑皮层 的各级中枢均存在有呼吸神经元,其中最基 本的呼吸中枢是延髓,而正常呼吸节律的形 成有赖于延髓与脑桥的共同配合。目前为大 多数人公认的呼吸节律的形成机制是吸气切 断机制。
方上皮结构。 肺的导气部功能: 具有输送气体的功能。
(二) 肺的呼吸部
终未细支气管再分支 为呼吸细支气管, 继续分支为肺泡 小襄,其壁上均 为肺泡开口连通 肺泡,总称为肺 的呼吸部。
肺的呼吸功能:
具有气体交换的功能。
三、胸膜及胸膜腔
胸膜是一层光滑 的浆膜,覆于肺 的表面、胸腔内 面。在肺表面的 胸膜叫脏胸膜, 在胸腔内面的胸 膜叫壁胸膜。
2、呼吸的本体感受性反射
感受器为肌梭——兴奋时传入冲动到达脊髓——反射性引 起所在肌肉收缩加强。
3、防御性反射
①咳嗽反射:感受器位于喉、气管、支气管黏膜,为防御 反射
②喷嚏反射:感受器位于鼻黏膜,为防御反射,以清除 鼻腔中刺激物。
呼吸肌的本体感受 性 反射弧示意图: 感受器-肌梭 传入神经-脊神经 传出神经-脊神经胸段 效N元,切断吸气,
从而使吸气转化为呼气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 25.简述多处理机的操作系统中主从型操作系统的优缺点和适用场合。 • 答: 优点:硬件结构简单控制简单 • 缺点:对主机地可靠性要求高,灵活性差 • 适用场合:工作负荷固定,从处理机的能力明显低于主处理机 • 26.简述超标量处理机的工作方式和特点。 • 答:处理机采用多指令流水线,每个△t同时流出m条指令(称为度m). • 线处理机中配置多套功能部件,指令译码电路和多组总线,寄存器 也备有多个端 口和多组总线。程序运行时由指令译码部件检测顺序取 出的指令之间是否存在数据相关和 功能部件争用,将可并行的相邻指 令送往流水线。若并行度为1时,就逐条执行。 • 量流水机主要靠编译程序来优化编排指令的执行顺序,将可并行的 指令搭配成组,硬件不调整指令顺序,这样实现起来比较容易些。
• • • • •
28.用霍纳法则给定的表达式如下: E=a(b+c(d+ef))+g 利用减少树高的办法加速运算,要求: (1)画出树形流程图; (2)计算运算级数TP,处理机机数P、加速 比SP和效率EP的值。
• • • • •
29.用霍纳法则给定的表达式如下: E=a+b(c+def+h)+g 利用减少树高的办法加速运算,要求: (1)画出树形流程图; (2)计算运算级数TP、处理机数目P、表达式为:E=a (b+c(d+e(f+gh))),利用减少树高 来尽可能加快运算速度,求 • (1)画出在3台处理机上并行运算的树形 流程图。 • (2)当处理机数P=3时,确定运算级数Tp、 单处理机级数T1、加速比SP和效率EP的值。
• 20.多处理机的机间互连一般采用总线、_环形互连_____、_交叉开关 _____、多端口存储器或开关枢纽结构等形式。【186页】 • 9.下列关于任务粒度的描述,正确的是 ( A ) • A.任务粒度的大小,会显著影响多处理机的性能和效率 • B.任务粒度小,并行度高,则性能和效率高 • C.任务粒度大,辅助开销小,则性能和效率高 • D.任务粒度与计算机系统的应用无关 • 19.多处理机机间互连一般采用总线形式、环形互连形式、多端口存 储器形式、和开关枢纽结构形式。 • 10.从计算机系统执行程序的角度看,并行性等级由低到高分为四级, 它们依次是( ) • A.指令之间、指令内部、任务或进程之间、作业或程序之间 • B.指令内部、指令之间、任务或进程之间、作业或程序之间 • C.指令内部、指令之间、作业或程序之间、任务或进程之间 • D.指令内部、任务或进程之间、作业或程序之间、指令之间
• 24.简述并行处理机与多处理机在结构灵 活性和程序并行性方面的差别。
• 27.在多处理机上,给定表达式为: E=a+b(c+def+g)+h,利用减少树高来尽可 能加快运算速度,要求 • (1)画出在3台处理机上并行运算的树形流程 图。 • (2)当处理机数P=3时,确定运算级数Tp, 单处理机级数T1,加速比Sp和效率Ep的值。
• 20.多处理机的操作系统有__主从型___、___各 自独立型__和浮动型三类。 • 8.多处理机主要实现( D ) • A.指令级并行 B.操作级并行 • C.主存操作的并行 D.作业、任务间并行 • 20.多处理机的机间互连一般采用__________、 环形互连、交叉开关、__________或开关枢纽结 构等形式。 • 11.使用多处理机的主要目的是用多个处理机 ___并发_执行多个任务来提高__解题速度___。