高压单芯电力电缆金属护套感应电压计算表(水平排列)
110kV电力电缆感应电压分析及控制

110kV电力电缆感应电压分析及控制城市要发展,电力要先行。
随着生产力的发展、城市化进程的加快,生产生活对供电可靠性的要求越来越高。
电力电缆由于其占地省、供电可靠、有利于美化城市等诸多优点,在电力系统中占比越来越大,很多城市电缆化率越来越高,有些城市甚至实现了全电缆线路供,电力电缆的可靠运行直接影响整个电网的可靠供电。
110kV电力电缆由于其电压等级较高,且为了便于运输和现场施工,一般采用单芯电缆,单芯电缆由于其结构特点,投入运行后其金属护套上会产生感应电压,本文主要就110kV电缆感应电压产生的原理及金属护套的接地方式进行分析讨论。
标签:110kV电缆;感应电压;接地方式单芯是指在一个绝缘层内只有一路导体。
当电压超过35kV时,大多数采用单芯电缆,它的线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组中线圈与铁芯的关系。
当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。
因单芯电缆金属护层与芯线中交流电流产生的磁力线相铰链,使其两端出现较高的感应电压,因此要求护层有良好的绝缘,同时要求电缆金属护套接地可靠。
当单芯电缆过马路或者是过墙时应穿管保护,应用的这种保护管应该是非磁性材料的金属管或非金属管。
一、110kV电力电缆在运行中的感应电压110kV电力电缆在三相交流电网中运行时,当电缆导体中有电流通过时,导体电流产生的一部分磁通与金属护套相交链,与导体平行的金属护套中必然产生纵向感应电压,产生的感应电压数值与电缆排列中心距离和金属护套平均半径之比的对数成正比,并且与导体负荷电流,频率以及电缆的长度成正比。
在等边三角形排列的线路中,三相感应电压相等;在水平排列线路中,边相的感应电压较中相感应电压高。
在实际的运行过程中,如果把110kV电力电缆两端金属护套直接接地,护套中的感应电压将产生以大地为回路的循环电流,此电流大小与电缆线芯中负荷电流大小密切相关,同时,还与间距等因素有关。
110kV高压单芯电缆线路金属护套接地方式

110kV高压单芯电缆线路金属护套接地方式110kV高压电缆线路护套必须接地运行,并且考虑限制其护套感应电压,文章讲解其不同的接地方式和原理,以便运行人员更好地巡查、维护和消缺,以免造成高压电缆过电压导致电缆外护层击穿,从而形成环流和腐蚀,最终影响电缆线路物载流量、运行寿命及人身安全。
标签:电缆护套不接地危害;护套接地方式;中点接地方式;交叉互联接地方式近年来,随着城市改造建设的加快,110kV高压电缆线路大量投入运行,并且大量110kV高压电缆线路敷设在人群密集区,其运行的安全性倍感重要。
《电力安全规程》规定:电气设备非带电的金属外壳都要接地,因此电缆的金属屏蔽层都要接地。
通常35kV及以下电压等级的电缆都采用两端接地方式,按照GB50217-1994《电力工程电缆设计规程》的要求,35kV及以下电压等级的电缆基本上为三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在金属屏蔽层两端基本上没有感应电压,所以采用两端接地不会有感应电流流过金属屏蔽层,两端就基本上没有感应电压,所以两端接地后不会有感应电流流过金属屏蔽层。
但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%~95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
电缆护套感应电压计算

110kVXX 输变电工程电缆护套感应电压计算(隧道) 资料准备:本工程一回110kV 电缆极限输送容量:135MW功率因数:0.9 则输送电流A U p I 3.7879.01103135000cos 3=⨯⨯=⨯⨯=ϕ 电缆截面:1000mm ²电缆外径:101.3mm(参照中天科技海缆有限公司产品样本) 则护套的几何平均半径mm GMR s 585.4529.03.101=⨯=3145014.322=⨯⨯==f πω一.两回垂直排列1.A 相护套感应电压mm S AB 400==2800=−−→−==n mm ns AC 推出75.0300=−−→−=='P mm PS A A 推出25.150040030022=−−→−=+=='q mm qS B A 推出136.24.85480030022=−−→−=+=='r mm rS C A 推出 根据公式()⎥⎦⎤⎢⎣⎡⨯+⨯=-2242123102S SA GMR P nqrs In j q nr In I E ω代入参数 ()⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯+⨯⨯⨯⨯=−−→−-224585.4575.0400136.225.122125.1136.2223103.7873142In j In E SA 推出()km V E j j SA 295.171012.1636216.52297.30643.144244.49=−−→−+=+⨯=取模2.B 相护套感应电压mm S BA 400==1400=−−→−==m mm mS BC 推出25.1500='−−→−='='q mm S q A B 推出75.0300=−−→−=='t mm tS B B 推出25.1500=−−→−=='y mm yS C B 推出⎥⎦⎤⎢⎣⎡-⨯⨯=-S S SA m tyGMR S q In j GMR t m sy In I E 242123102ω ⎥⎦⎤⎢⎣⎡'-⨯⨯=S S m tyGMR S q In j GMR t m sy In 2212344244.49 ⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯-⨯⨯⨯⨯=585.4525.175.0140025.121585.4575.025.140012344244.492In j In ()322.6687.1143414.13233.244244.49j j -=-⨯=km V E SB 64.132=3.C 相护套感应电压2800=−−→−==n mm nS AC 推出1400=−−→−==m mm mS BC 推出136.24.854='−−→−='='='r mm S r C A A C 推出25.1500='−−→−='='='y mm S y C B B C 推出75.0300=−−→−=='z mm zS C C 推出⎥⎦⎤⎢⎣⎡⨯''-⨯'-⨯=-S S SC GMR z y m S r n In j GMR y m s In I E 22421223102ω⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯-⨯⨯⨯-⨯=585.4575.025.11400136.2221585.45225.140012344244.4922In j In()082.127872.7257.2474.144244.49j j --=-⨯=km V E SC 493.146=二.两回三角排列(一)1.A 相护套感应电压mm S AB 300==667.1500=−−→−==n mm nS AC 推出667.2800=−−→−=='q mm qs B A 推出848.24.854=−−→−=='r mm rS C A 推出()⎥⎦⎤⎢⎣⎡⨯+⨯=-2242123102S SA GMR p nqrS In j q nr In I E ω ()⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯+⨯⨯=22585.45333.1300848.2667.2667.121667.2848.2667.12344244.49In j In ()7055.141672.24866.2499.044244.49j j +=+⨯= km V E SA 837.143=2.B 相护套感应电压mm S BA 300==333.1400=−−→−==m mm mS BC 推出667.1500='−−→−='='q mm S q A B 推出848.24.854=−−→−=='t mm ts B B 推出667.2800=−−→−=='y mm ys C B 推出⎥⎦⎤⎢⎣⎡'-⨯⨯=-S S SB m tyGMR S q In j GMR t m sy In I E 242123102ω ⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯-⨯⨯⨯⨯=585.45667.2848.2333.1300667.121585.45848.2667.2300333.12344244.492In j In ()6165.14173.902956.08238.144244.49j j -=-⨯= km V E SB 35.91=3.C 相护套感应电压667.1500=−−→−==n mm nS AC 推出1300='−−→−='='r mm S r A C 推出667.1500='−−→−='='y mm S y B C 推出333.1400=−−→−=='z mm zS C C 推出⎥⎦⎤⎢⎣⎡⨯''-⨯'-⨯=-S S SC GMR z y m S r n In j GMR y m s In I E 22421223102ω ⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯-⨯⨯⨯-⨯=585.45333.1667.1333.13001667.121585.45333.1667.130012344244.4922In j In ()45252.909102.08254.144244.49j j --=--⨯=km V E SC 85.100=三.两回三角排列(二)1.A 相护套感应电压mm S AB 300==667.1500=−−→−==n mm nS AC 推出848.24.854=−−→−=='p mm ps A A 推出667.2800=−−→−=='q mm qs B A 推出333.1400=−−→−=='r mm rS C A 推出()⎥⎦⎤⎢⎣⎡⨯+⨯=-2242123102S SA GMR p nqrS In j q nr In I E ω()⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯+⨯⨯=22585.45848.2300333.1667.2667.121667.2333.1667.12344244.49In j In()4.85868.77273.1158.044244.49j j +-=+-⨯=km V E SA 763.85=2.B 相护套感应电压mm S BA 300==333.1400=−−→−==m mm mS BC 推出667.2800='−−→−='='q mm S q A B 推出848.24.854=−−→−=='t mm ts B B 推出667.1500=−−→−=='y mm ys C B 推出⎥⎦⎤⎢⎣⎡'-⨯⨯=-S S SB m tyGMR S q In j GMR t m sy In I E 242123102ω ⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯-⨯⨯⨯⨯=585.45667.1848.2333.1300667.221585.45848.2667.1300333.12344244.492In j In ()468.4906.701417.144244.49j j -=-⨯=km V E SB 764.85=3.C 相护套感应电压667.1500=−−→−==n mm nS AC 推出333.1400=−−→−==m mm mS BC 推出333.1400='−−→−='='r mm S r A C 推出667.1500='−−→−='='y mm S y B C 推出1300=−−→−=='z mm zS C C 推出⎥⎦⎤⎢⎣⎡⨯''-⨯'-⨯=-S S SC GMR z y m S r n In j GMR y m s In I E 22421223102ω⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯-⨯⨯⨯-⨯=585.451667.1333.1300333.1667.121585.451667.1300333.12344244.4922In j In ()319.66855.114341.1323.244244.49j j --=--⨯= km VE SC 627.132=。
单回路高压单芯电缆金属护套感应电压及限制措施

单回路高压单芯电缆金属护套感应电压及限制措施发表时间:2019-12-27T10:51:41.343Z 来源:《中国电业》2019年第18期作者:韦华[导读] 随着社会的发展和进步,现阶段社会各个行业越来越多的拓展了其发展规模摘要:随着社会的发展和进步,现阶段社会各个行业越来越多的拓展了其发展规模,因此大型企业对供电量的需求也越来越高,但由于化工行业在内的多种大型企业自身的供电需求以及生产限制,使得在企业内部不方便进行架空线路的建设,由此厂区内的主要供电线路会使用电缆在桥架中进行敷设的方法,以此满足企业的生产用电需求。
但对于类似110kv单回路高压单芯电缆线路的使用来说,在正常情况下会由于电缆的长度增加而产生更多的问题。
例如电缆金属护套的发热等问题。
从而需要对这些实际存在的问题进行有效的解决和控制,以此确保企业的生产稳定和生产安全。
关键词:单回路高压单芯电缆:电缆金属护套;感应电压及限制措施一、单回路高压单芯电缆金属护套感应电压概述随着社会各行业生产技术和生产规模的逐渐扩大,现阶段采用单回路高压单芯电缆进行供电的企业,在实际生产的整个过程中会由于单回路高压单芯电缆金属护套产生过高的感应电压,而切实影响到生产的稳定进行和生产过程的安全。
从而需要对这一问题进行有效的解决。
具体的,对于金属护套感应电压的产生,是因为当单芯电缆线中有相应的交变电流流过时,交变电流本身周围就会存在交变磁场,从而交变磁场会与电缆回路形成交变磁通,也从而使其与电缆的金属护套产生交链,至此,金属护套就会带有一定的感应电压,感应电压的实际存在会切实影响到线路的检修和维护,并且感应电压所引起的感应电流,会造成金属护套发热严重,进一步使得电能过多的浪费,并降低电缆的载流量,最终会使得电缆加速老化和出现绝缘方面的问题。
从而对于实际使用造成较大的安全隐患和威胁。
根据国标中制定的相关规范和要求,在GB50217-2017《电力工程电缆设计规范》中提出:在没有采取相应能够有效防止人员接触金属护套而产生安全事故的基础上,交流单芯电力电缆整个线路产生的感应电压不应该超过50V。
基于atp-emtp电缆金属外护套的感应电压分析计算及相关保护设备选型

2019年增刊1 69基于ATP -EMTP 电缆金属外护套的 感应电压分析计算及相关保护设备选型惠胜达1 张军强2(1. 中国电建集团河南省电力勘测设计院有限公司,郑州 450007;2. 河南省众慧电力工程咨询有限责任公司,郑州 450007)摘要 本文提供一种基于ATP-EMTP 计算高压电缆在雷电过电压、工频过电压时的计算方法和模型,并提出相应的限制措施,同时为相关设备的选型提供依据。
关键词:ATP-EMTP ;过电压计算及限制措施;金属外护套;电缆护套电压保护器(电压限制器)Induction voltage analysis and calculation of sheath and selection of relevant protective equipment based on ATP-EMTP cable overvoltageHui Shengda 1 Zhang Junqiang 2(1. China Power Construction Group He ’nan Electric Power Survey & Design Institute Co., Ltd,Zhengzhou 450007;2. He ’nan Zhonghui Power Engineering Consulting Co., Ltd, Zhengzhou 450007)Abstract This paper provides a calculation method and model for calculating over-voltage and power frequency over-voltage of high-voltage cable based on ATP-EMTP, and puts forward corresponding restrictive measures, at the same time, it provides a basis for the selection of related equipment.Keywords :ATP-EMTP; overvoltage calculation and restriction measures; metal outer sheath; cable sheath voltage protector目前在我国单芯结构的电缆多被用于110kV 及以上的高压电缆。
分析500KV超高压电力电缆选型方法 苏梓华

分析500KV超高压电力电缆选型方法苏梓华发表时间:2019-09-18T09:01:58.353Z 来源:《电力设备》2019年第7期作者:苏梓华[导读] 摘要:500KV超高压电缆在当前的电力工程中有着一定的应用,为了使城市用电需求得到满足,需要有效的进行电缆选型和施工,使电力供应水平提高。
(广州市电力工程有限公司 510260)摘要:500KV超高压电缆在当前的电力工程中有着一定的应用,为了使城市用电需求得到满足,需要有效的进行电缆选型和施工,使电力供应水平提高。
本文对500KV超高压电力电缆的选型进行了分析,通过计算的方法对电缆选型进行明确,包括结构、感应电压计算、载流量计算、损耗计算等方面,作为参考。
关键词:500KV电缆;电缆选型;计算引言在我国的电缆的应用中,500KV高压电缆具有较多的优势,能够使传输的效率提高,减少损耗,在城市建设中起到了重要的作用,属于一种用途广泛的器材。
通过对500KV高压电缆的参数以及性能等方面进行详细了解,可以结合负荷的特点、载流量、敷设以及运行情况等因素对高压电缆进行合理的选型。
电缆的选型能够使电力高层的建设质量提高,使电力传输的性能加强,并且节省了成本,具有积极的意义。
1电缆类型500KV电缆在电力工程中应用较多的为充油电缆和交联聚乙烯电缆,这两种电缆在性质上存在一定的差异,包括电缆的结构以及电缆材料,两者在材料中不同为充油电缆使用的是复合介质性质的油纸绝缘,而交联聚乙烯电缆是单一介质的挤塑性绝缘,不同的绝缘材料也存在不同的性能,因此两种电缆类型在使用中也需要根据实际情况进行选择。
1.1交联聚乙烯电缆。
交联聚乙烯电缆作为一种具有绝缘特点的材料,在正常温度中,聚乙烯树脂材料能够具有稳定的绝缘性,如果利用化学方法对材料进行处理,会使分子受到影响,导致材料的导电性出现变化。
由于这种材料属于干式绝缘结构材料,在高压电缆中进行应用,和其他绝缘材料有着一定的差异,因此可以不采用绝缘油进行处理。
5.1 高压电缆护套的工频过电压(2)

5.1 单芯电缆护套的工频电压
5.2 单芯电缆护层的冲击过电压
5.3 电缆外护层的保护及其保护器
当电缆导体中流过负荷电流时,工频负荷电流必然产生交 变的磁场,该磁场的磁链不仅和电缆的线芯导体相交链, 也和金属屏蔽层及铠装层相交链,必然会在金属屏蔽和铠 装层上产生感应电动势。 若金属护套感应电压过高,危及人身安全;严重时甚至击 穿外护层而使得金属护套与大地间形成回路,在金属护套 中将产生环流,引起电缆发热,降低电缆输送容量。 为保护电缆外护层,一般在金属护套不接地安装护层保护 器。感应电压是选择护层保护器参数的决定因素之一。
Usf I f R jX el
电缆护套与大地组 成回路的等值阻抗
2 De X e 2 ln 10 7 Ds
De 94 e
/ m
【例5.3】上图所示的电缆线路,已知单相短路电流为 7.5kA, 短路点距首端0.4km,接地点的接地电阻为0.2欧,电缆结构、 相间距与例5.1中的相同,大地等效深度510m。计算单相短路 时短路相金属护套中的感应电动势。 【解】: 2 De 2 510 7 7 4
5.1.1 正常运行(三相短路)时护套的工频感应电压 (1)两根单芯电缆组成的单相回路
护套电感和线芯电感计算方法(见第一章)相同,且金属护 套的厚度比导体直径小得多,其自感可忽略不计。单位长度金 属护套的电感为: 2s (5-1) Ls 2 ln 107 H / m
Ds
则单位长度金属护套的感应电压为:
三芯电缆统包金属屏蔽,屏蔽层中的感应电压相量和为零。不 必担心金属护套中的感应电压。 高压电缆一般采用单芯结构,其金属屏蔽层(或护套)一般采 用单点接地或交叉互联接地方式,金属屏蔽层上有感应电压。
金属护套感应电压计算

金属护套感应电压计算一、 护层的作用:必须保证在任何情况下,护层感应电压不能击穿护层,当超过时时要采取防护措施。
二、 正常工频电压下的护层感应电压计算。
三、 工频短路下的护层感应电压计算。
四、 冲击过电压下的护层感应电压计算。
五、 护层防护(感应电压),确定保护器的容量。
采用1×300 XLPE 电缆,电缆金属护层的平均直径 Ds=75.75 mm 根据设计院的系统资料,本回电缆的潮流估算为:0~40 WM ,则: 正常最大负荷电流为:210 A ,考虑两回同时带在最大负荷运行。
初步确定分段长度:L=450m I 、II 回电缆的排列方式如下:一、正常运行时的感应电压:m D S X S /102ln 272121Ω⨯⎪⎪⎭⎫ ⎝⎛=-ω771007575.06.0ln 5014.3221007575.03.02ln22--⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=f πm /1030.14Ω⨯=-m D S X S /102ln 273131Ω⨯⎪⎪⎭⎫ ⎝⎛=-ω771007575.02.1ln 5014.3221007575.06.02ln22--⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=f πm /10735.14Ω⨯=-m D S X S A A /102ln 2711Ω⨯⎪⎪⎭⎫ ⎝⎛=-ω771007575.04.0ln 5014.3221007575.02.02ln 22--⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=f πm /10045.14Ω⨯=-m D S X S B B /102ln 2711Ω⨯⎪⎪⎭⎫ ⎝⎛=-ω771007575.07212.0ln 5014.3221007575.03606.02ln22--⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=f πm /10415.14Ω⨯=-m D S X S C C /102ln 2711Ω⨯⎪⎪⎭⎫ ⎝⎛=-ω771007575.0265.1ln 5014.3221007575.06325.02ln 22--⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⨯⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=f πm /10768.14Ω⨯=-C C B B A A I jX I jX I jX I jX I jX U ••••••-----=1113312211根据向量图计算得:()()1113121111312112123A C B C B A IX j X X X X I j X X X X X I U ⨯++++⨯⨯-+-+-⨯⨯=•44.40614.1751j U -=•则:m V U /1026.4431-⨯=单个分段长度内(450m )的感应电压为:V U 9.194501026.443=⨯⨯=-二、短路时电缆金属护套中的感应电压计算: 公式:Ω⨯⎪⎪⎭⎫ ⎝⎛+=-410ln 2s S S r D j R Z ω/mΩ⨯⎪⎭⎫⎝⎛=-40110ln 2S D j Z ωΩ⨯⎪⎭⎫ ⎝⎛=-400102ln 2S D j Z ω0001Z Z Z Z S S ++=1、电缆()m X m /102ln 27Ω⨯=-ω()()77102ln 5014.322102ln 22--⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=f πm /10435.04Ω⨯=-()()⎥⎦⎤⎢⎣⎡-++=m S m S S X X j X X I U 21231.()()410435.030.121435.030.123210-⨯⎥⎦⎤⎢⎣⎡-++⨯⨯=jm /108.323Ω⨯=-。
单芯电缆金属护层感应电压计算

0.101124
0.114009
两回电缆 等距直线 并列(相 序同) Es0= Es0= 两回电缆 等距直线 并列(相 序互反) Es0=
339.4622346 边相 339.4622346 B相
Es0= 符号说明
双回路
509.0170359 393.9018409 298.4639693 393.9018409
s回路电缆情况假定其每回ir均等电缆金属层的平均半径m电缆导体正常工作电流a工作频率各电缆相邻质检中心距m413
单回路 数据输入: r=0.0576 I=918 s-a= 3Y2+(Xs-
Es0= Es0= 两根电缆并
Es0= Es0= 三根电缆成 等边三角形 Es0= Es0= 三根电缆成 直角形 Es0= Es0=
红色字体为 原始数据输 入的位置
0.0576 2500 0.5 f=
Xs-b/2= Xs+a+b/2 Xs+a/2 50 Xs+a-b/2
0.135784894 b= 0.043551685 0.179336579 0.092233209 Xs-a/2=
0.10499179 水平排列时直线
405.0304587 边相 339.4622346 B相
413.6024838 边相 339.4622346 B相
r:
电缆金属层的平均半径(m)
I:
电缆导体正常工作电流(A)
f:
工作频率
S
各电缆相邻质检中心距(m)
回路电缆
情况,假
定其每回
I、r均等
双回路
0.085223 0.229899 0.157561 0.128775
高压电缆金属护套及铠装结构的损耗计算

高压电缆金属护套及铠装结构的损耗计算刘英【摘要】在确定电力电缆额定载流量时,必须精确计算金属护套、铠装等结构的损耗因数,尤其对于金属护套采取两端直接互联接地的高压单芯电缆线路,如大长度海底电缆.简单对称敷设情况下护套和磁性铠装结构的损耗因数可以根据IEC 60287中推荐的公式进行计算;若铠装采用非磁性材料,可按照标准中推荐的处理方法获得总的损耗因数,再按两者并联的方式进行分配,获得各自的损耗因数.其它非磁性金属结构按照类似方法处理.当然,也可从基本的等效电路出发,求解电缆金属护套、加强层、铠装层等结构中流过的环流,从而获得损耗因数,这种方法可应用于更复杂或一般性的电缆结构和敷设情况.两种计算方法各有优缺点,可根据需要选用.【期刊名称】《电线电缆》【年(卷),期】2013(000)002【总页数】4页(P1-3,20)【关键词】电力电缆;金属护套;铠装;环流;损耗因数【作者】刘英【作者单位】西安交通大学,陕西西安710049【正文语种】中文【中图分类】TM247.1近年来,电力电缆在电网中获得广泛应用。
高压和超高压电缆均采用单芯结构,其工作电流产生的交变磁场将在金属护套上产生感应电压,若护套通过大地或回流线形成通路,则金属护套上将产生环流。
这个环流的存在不仅会产生环流损耗,导致电缆载流量降低,严重发热时甚至会烧毁接地线。
为了增加电缆的机械强度,在电缆受拉或受压的使用场合,电缆应有铠装层。
高压单芯电缆常采用铜带作为径向或轴向加固,同时起铠装作用;而高落差或水底敷设的单芯电缆采用钢丝铠装以承受轴向拉力。
当电缆中引入铠装层后,它将不同程度影响护套的感应电压及电流,护套损耗随之改变。
此外,当铠装层接成通路,它本身也会产生损耗。
电力电缆护套感应电压及环流损耗的计算问题已研究得比较多了[1-3]。
当引入铠装层后,它的损耗计算及对护套电流的影响值得关注。
因为在跨越海峡等环境所采用的高压单芯电缆无法进行交叉互联处理,其护套和铠装常连接在一起,在线路的两端直接接地,此时护套和铠装中将形成较大环流,大大降低电缆的允许载流量。
110 kV电缆单端接地护层感应电压的计算与仿真

110 kV电缆单端接地护层感应电压的计算与仿真胡振兴;肖静;丁唯;王旭;罗晓康;彭勇【摘要】高压单芯电缆运行电流会在电缆金属护层上产生感应电压.当电缆线路发生短路时,高幅度的短路电流在金属护层上产生感应电压可能威胁电缆外绝缘.因此,对110 kV电缆发生单相接故障时故障相和非故障相护层上的感应电压进行计算和仿真.当电缆发生单相接地故障时,电缆护层上的感应电压幅值超过10 kV.随着电缆长度的增长,感应电压幅度逐渐增大,但是故障相护层感应电压幅值相对非故障相增长得多.加回流线后,电缆护层上的感应电压幅值明显降低,减小幅度超过30%.对单相接地故障后的电缆金属护层的感应电压进行ATP-EMTP仿真计算,结果表明,当接地电流全部以大地为回路和接地电流一部分以大地为回路另一部分以护套或回流线为回路时,两种情况下A、B、C三相护层感应电压仿真与计算结果误差均在4%之内,验证了仿真模型的准确性.【期刊名称】《通信电源技术》【年(卷),期】2019(036)001【总页数】5页(P233-237)【关键词】110kV电缆;护层感应电压;单相接地;ATP-EMTP【作者】胡振兴;肖静;丁唯;王旭;罗晓康;彭勇【作者单位】中国电力工程顾问集团西南电力设计院有限公司,四川成都 610021;中国电力工程顾问集团西南电力设计院有限公司,四川成都 610021;中国电力工程顾问集团西南电力设计院有限公司,四川成都 610021;武汉大学电气工程学院,湖北武汉 430072;中国电力工程顾问集团西南电力设计院有限公司,四川成都 610021;中国电力工程顾问集团西南电力设计院有限公司,四川成都 610021【正文语种】中文0 引言随着城市建设规模和标准的不断提高,城市枢纽变电站的进出线电缆化程度越来越高,高电压等级的电力电缆被大量采用。
110 kV电力电缆常用单芯电缆,但单芯电缆在使用中若发生短路,将在电缆护层上产生感应过电压,威胁电缆的外绝缘[1-3]。
10kV单芯电缆长距离敷设的感应电压分析

10kV单芯电缆长距离敷设的感应电压分析发表时间:2017-10-17T14:10:48.833Z 来源:《电力设备》2017年第17期作者:吴火军[导读] 摘要:依托杭州市在建的紫之隧道工程,分析计算长距离敷设的10kV单芯电缆金属层工频感应电压,提出适宜、合理的10kV单芯电缆布置方式和接地方式。
(中国电建集团华东勘测设计研究院有限公司浙江杭州 310014)摘要:依托杭州市在建的紫之隧道工程,分析计算长距离敷设的10kV单芯电缆金属层工频感应电压,提出适宜、合理的10kV单芯电缆布置方式和接地方式。
关键词:10kV单芯电缆;感应电压;分析在建的杭州市紫之隧道(紫金港路—之江路)工程位于杭州绕城高速与西湖风景区之间,北起紫金港路,南接之浦路,全长约14.14km。
工程沿线线性分布有10座10/0.4kV降压变电所,并在6座通风竖井内均设置跟随式降压变电所,总用电负荷约9698.52kW。
根据供电方案,整个工程按一个供电分区设计,10座变电所环网贯通供电,如图1所示。
常规的10kV电力电缆有单芯、3芯两种型式。
在电力行业,66kV及以上高压电缆因为相间绝缘问题一般采用单芯的型式,6kV至35kV 的中压电缆因电压较低,相间绝缘已不是瓶颈问题,故一般采用三芯的型式,但当负荷容量大,所需电缆截面特别大时,再做成三芯电缆的型式。
一般的,单芯电缆与三芯电缆的导体截面积、绝缘厚度是一致的,区别在于外护套厚度、电缆近似外径和电缆重量。
三芯电缆的外径大约是单芯电缆的2倍,重量是单芯电缆的3.7倍。
以400mm2截面电缆为例,三芯电缆与单芯电缆的适用性如下表所示:针对紫之隧道工程,各变电所间距在1.5km~2.5km之间。
显而易见,采用单芯电缆,引起成盘长度大大增加,可有效减少隧道内电缆接头数量,相应的,因接头导致的线路故障率也可大大降低,间接的提高系统供电的可靠性。
因此,在隧道外部电源段敷设空间较为宽裕,施工方案,但易受外部机械开挖、雨水浸泡等损伤,采用三芯电缆,而在隧道内部,由于隧道内空间狭小,敷设环境良好、稳定,且需尽量减少接头数量,采用低烟无卤A类耐火、交联聚乙烯绝缘、非磁性钢带铠装、聚烯烃护套铜芯单芯电力电缆(WDZAN-YJY63-8.7 /10kV-1x400mm2),以提升电缆载流能力,提高电缆成盘长度,减少电缆中间接头的数量。
110kV高压单芯电缆金属护套接地方式探讨

110kV高压单芯电缆金属护套接地方式探讨摘要:近年来,随着城市转型的加速,大批110千伏高压电缆投入使用,大批110千伏高压电缆敷设到人口稠密地区。
基于目前接地110kV高压单芯电缆金属护套方法和需要考虑的问题,可以对其详细介绍,对110kV高压单芯电缆安全运行起到积极的作用和价值。
关键词:高压单芯电缆;金属护套;接地方式;110 kV外护套绝缘电缆频繁事故,促使设计、运营和维护部门对护套的电压和电流进行调查研究。
电缆的金属外护套几乎没有磁场和感应电压,当单芯电缆高压电流中循环时,电流变得非常大,金属屏蔽检测到非常高的感应电压,这可能威胁到人们的安全或导致电缆的绝缘和损坏。
因此,应采用适当的接地方法降低电缆的感应电压,以保证电缆安全、经济地运行。
以下是有关电缆性能的国家标准,各种接地方法,金属护套高压线性电缆的应用,不同铺设条件、护套接地的比较,电压对其电缆的影响,接地方式选择和限制,操作和维护。
一、110 kV高压单芯电缆金属护套接地问题根据中国目前的电力电缆设计方案,35kV以下的电缆是一种三芯电缆。
在电缆线中,综合为零电流通过流经三个。
因此,金属屏幕两端没有感应电压。
这意味着在这种类型的电缆中,当两端直接连接到地面时,感应电流不会通过金属屏幕。
当电压超过35kV时,电缆通常是单根电缆。
当电流通过电缆芯时,存在磁力线和金属层,两端产生感应电压,与电缆的长度和流经导体的电流成正比。
如果高压电缆很长,则可以将感应电压应用于护套上,这将危及人类安全。
如果电缆在短路故障工作电压或雷电冲击,屏幕会产生高电感电压,有时会导致击穿护套。
即使在这种情况下,当金属屏蔽层末端接地处理是三相互联时,其也会产生非常大的环流,换流值为电缆芯电流的50-95%。
电缆损坏的原因显而易见。
同时,金属屏幕表面产生热量,影响电缆线路运行时的能耗,加速其绝缘老化。
也就是说,对于35kV以上的高压电缆,电缆的两端不能直接接地。
但是,如果金属屏幕的一端没有接地,如果沿着高压单芯电缆电流,则金属屏蔽不会暴露在不接地端的冲击电压下,系统会短路,短路电流通过元件,会产生高电压,金属屏蔽频率为一端互联接地。
交流系统单芯电缆金属套的正常感应电势计算案例

交流系统单芯电缆金属套的正常感应电势计算方式,在《电力工程电缆设计标准》GB50217-2018中P79有说明,但是有些参数和取舍还是有待商榷的,同时很多同行也都是靠经验,很少人能够真正的计算一下这个电缆金属套的感应电势,我借助某工程来粗略的计算一下,有些数值为估算,不一定全部正确,算是作为一个工程的总结吧。
某220千伏输电线路工程,双回路,正常运行方式为两个回路分别担负一半的负荷,特殊情况下可以转带变电站全部负荷,其中变电站出站段为电缆出线,电缆出线长度为700米,之后电缆转架空线路至另外一个220千伏变电站,电缆型号为YJLW03-127/220-2500mm2的单芯交联聚乙烯绝缘皱纹铝护套聚乙烯外护套电力电缆,导线型号为双分裂JL/G1A-630/45钢芯铝绞线,地线为两根72芯OPGW-150光缆。
电缆敷设方式为垂直排列(3根电缆直线并列),电缆之间的中心间距为0.35米。
电缆结构图(2500平方截面)根据电缆线路的设计规程规范,需要根据电缆的外护套的接地方式来计算校核该段电缆的正常感应电势,以便保证在该段电缆线路上任意一点的正常感应电势最大值应符合下列规定:1、未采取能有效防止人员任何接触金属套的安全措施时,不得大于50V。
2、除本条第一款规定的情况外,不得大于300V。
根据行业内的常规做法,一般电缆长度不长时,采用一端直接接地,一端经保护器接地的方式,电缆较长时候,采用交叉互联接地方式,电缆输送容量较少或者无法满足上面的规定时候采用两端直接接地的方式。
接地箱这里有个问题就是这个电缆不长,电缆较长和电缆较短的距离,没有定论,一般都是要满足以上的第一、二条规定才行,所以工程实际经验中,这个接地方式的护层电缆计算结果是制约电缆设计重要的因素,但是经常被选择性的忽略计算,也没有一个明确的长度要求,我们在工程实践中一般定义为大于1000米为较长电缆线路,可以选择交叉互联接地方式,小于500米的为较短线路,可以采用一端电缆直接接地,一端采用护层保护器接地,大于500米小于1000米的电缆线路比较尴尬,两个都靠不上,于是一般选择中间单点直接接地,两端采用护层保护器接地方式。
简析高压电力电缆排列方式与护套环流

简析高压电力电缆排列方式与护套环流根据220 kV高压电力电缆的不同排列方式入手,探究电力电缆在不同排列方式下,金属护套环流产生的电磁,从而对载流量产生一定的不利影响。
本文通过对电力电缆的水平排列、三角排列、垂直排列这三种排列方式与护套环流受到电磁的影响的研究,提出相应的解决方案和策略。
标签:高压电力电缆;排列方式;护套环流1 高压单芯电力电缆金属护套环流介绍当高压单芯电力电缆通过电流时,在电缆线芯周围会产生电磁场,其与电缆线芯产生的电流大小成正比。
当该电磁场链到单芯电力电缆金属护套时就会产生感应电压,其大小与电缆长度、敷设方式、回路的排列方式等有关。
当电力电缆外护套受到破损,造成金属护套多点接地,致使感应环流形成回路,从而使金属护套损耗增加,并导致电缆绝缘加速老化破损。
2 电力电缆排列方式与护套环流在电力电缆金属护套接地的方式中,选择交叉互联和单点接地的方式越来越多,但原有的电缆外护套出现破裂,导致金属护套交叉互联接地方式分布不均,产生金属护套环流,增加电缆损耗,降低电缆使用寿命。
电力电缆的排列方式一般有水平排列、三角排列、垂直排列。
电力电缆不换位置,护套在交叉互联后,其两端接地。
水平电力电缆排列方式、三角形电力电揽排列方式、垂直电力电缆排列方式的金属护套感应电压在均满足有关规定下,电缆水平排列方式护套环流最小,金属护套损耗最小;三角形排列方式金属护套环流最大,金属护套损耗最大。
根据计算,其各种排列方式的电压数据如下,见表1。
在电力电缆不同的排列方式下,其对金属护套环流的影响也不一样,其中水平和垂直排列方式下的电力电缆金属护套环流产生的影响比三角形排列的方式的影响小。
对于高压电路的220kV电缆线路,为了要降低其金属护套环流的影响,对电力电缆的排列方式的一致程度提出了更高的要求。
3 载流量电力电缆载流量是电力企业电网运行的主要運行方式之一,其影响电力电缆计算的因素有很多。
例如,在高压220KV的电力电缆金属护套环流超标的时候,将会严重影响电力电缆的额定输送容量,还会使电力电缆绝缘老化的速度加快,当电力电缆的环流过大时,还将会导致电力电缆附件受到损伤。
10kV单芯XLPE绝缘电缆金属屏蔽层接地方式解说

10kV单芯XLPE绝缘电缆金属屏蔽层接地方式解说10kV电缆金属屏蔽层通常采用两端直接接地的方式。
这是由于10千伏电缆多数是三芯电缆的缘故。
八十年代中期前,10kV电缆均采用油浸纸绝缘三芯电缆。
结构多为统包型,少量为分相屏蔽型。
八十年代末期开始大量使用交联聚乙烯绝缘分相屏蔽三芯电缆,逐步淘汰了油纸电缆。
九十年代以来,随着大连经济建设的迅猛发展,负荷密度增大,环网开关柜等小型设备的应用,市区变电所出线和电缆网供电主干线电缆开始采用较大截面单芯电缆。
单芯电缆的使用提高了单回电缆的输送能力,减少了接头,短段电缆可以使用,方便了电缆敷设和附件安装。
也由此带来了金属屏蔽接地方式的问题。
一、单芯电缆金属护套工频感应电压计算单芯电缆芯线通过电流时,在交变电场作用下,金属屏蔽层必然感应一定的电动势。
三芯电缆带平衡负荷时,三相电流向量和为零金属屏蔽上的感应电势叠加为零,所以可两端接地。
单芯电缆每相之间存在一定的距离,感应电势不能抵消。
金属屏蔽层感应电压的大小与电缆长度和线芯负荷电流成正比,还与电缆排列的中心距离、金属屏蔽层的平均直径有关。
1、电缆正三角形排列时,金属屏蔽单位长度的感应电压可按下面公式计算:公式1I---负荷电流,S---电缆中心距离,D--电缆金属屏蔽层平均直径以YJSY-8.7/15kV-1×300mm,2单芯电缆为例,电缆屏蔽层平均直径40mm,PVC护套厚度3.6mm,当电缆“品”字形紧贴排列,负荷电流为200A时,算得电缆护层的感应电压为每公里10.7伏。
2、电缆三相水平排列时,设电缆间距相等,金属屏蔽单位长度的感应电压可按下式计算:公式2、3 、4当三相电缆紧贴水平排列,其它条件与1相同时,算得边相的感应电压为每公里16.9伏,中相的感应电压为每公里10.7伏;当电缆间距200mm时,算得边相的感应电压为每公里36.1伏,中相的感应电压为每公里31伏。
边相感应电压高于中相感应电压。