功能高分子材料-第五章 光功能高分子材料..
功能高分子材料课件 第五章液晶

第五章 高分子液晶材料
2.2 影响高分子液晶形态和性能的因素
影响高分子液晶形态与性能的因素包括外 在因素和内则主要包括环境温度、溶剂等。
47
第五章 高分子液晶材料
2.2.1 内部因素对高分子液晶形态与性能的影响
刚性部分
高分子液晶分子中必须含有具有刚性的 致晶单元。刚性结构不仅有利于在固相中形 成结晶,而且在转变成液相时也有利于保持 晶体的有序度。 规整性越好,越容易使其排列整齐,使 得分子间力增大,也更容易生成稳定的液晶 相。
向列型
19
第五章 高分子液晶材料
(3)胆甾型液晶(Cholesteric liquid crystals,Ch)
胆甾型:分子是长而扁平的。它们依靠 端基的作用,平行排列成层状结构,长 轴与层片平面平行。 层内分子排列与向列型类似,棒状 分子分层平行排列,在每个单层内分子 排列与向列型相似,相邻两层中分子长 轴依次有规则地扭转一定角度,分子长 轴在旋转3600后复原。
38
式中R、R′为烷基、烷氧基、酰氧基、氰基等,A为中央基团
39
40
第五章 高分子液晶材料
分子结构
研究表明,能够形成液晶的物质通常在分子结 构中具有刚性部分,称为致晶单元。从外形上看, 致晶单元通常呈现近似棒状或片状的形态,这样有 利于分子的有序堆砌。这是液晶分子在液态下维持 某种有序排列所必须的结构因素。在高分子液晶中 这些致晶单元被柔性链以各种方式连接在一起。
44
化学稳定性和热稳定性较差
易于提纯
45
第五章 高分子液晶材料
主链型高分子液晶
致晶单元处在高分子主链上; 侧链型高分子液晶 致晶单元是通过一段柔性链作为侧基与高分子 主链相连,形成梳状结构。 主链型高分子液晶和侧链型高分子液晶在液晶 形态上和物理化学性质有大差别:主链型高分子液 晶为高强度、高模量的结构材料,而侧链型高分子 液晶为具有特殊性能的功能高分子材料。
光功能高分子材料

吸收光能后的活化。当分子吸收光能后,只要有足
够的能量,分子就能被活化。
分子的活化有两种途径,一是分子中的电子受
光照后能级发生变化而活化,二是分子被另一光活
化的分子传递来的能量而活化,即分子间的能量传
递。下面我们讨论这两种光活化过程。
5 分子的电子结构 按量子化学理论解释,分子轨道是由构成分子
电荷转移跃迁示意图
在分子间的能量传递过程中,受激分子通过 碰撞或较远距离的传递,将能量转移给另一个分 子,本身回到基态。而接受能量的分子上升为激 发态。因此,分子间能量传递的条件是: (1) 一个分子是电子给予体,另一个分子是电 子接受体; (2) 能形成电荷转移络合物。
分子间的电子跃迁有三种情况。 第一种是某一激发态分子 D* 把激发态能量转 移给另一基态分子A,形成激发态 A*,而 D*本身 则回到基态,变回 D。A* 进一步发生反应生成新 的化合物。
300 200 100
X射线 γ射线
10-1 10-3
化学键键能
化学 键能 /(kJ/mol) 键 O- O N- N C- S C- N 138.9 160.7 259.4 291.6 化学 键 C-Cl C- C C- O N- H 键能 /(kJ/mol) 328.4 347.7 351.5 390.8 键能 /(kJ/mol) 413.4 436.0 462.8 607
化学键
C- H H- H O- H C=C
2 光的吸收 发生光化学反应必然涉及到光的吸收。光的吸
收一般用透光率来表示,记作T,定义为入射到体
系的光强I0与透射出体系的光强I之比:
T I Io
如果吸收光的体系厚度为l,浓度为c,则有:
《功能高分子材料》知识清单

《功能高分子材料》知识清单一、什么是功能高分子材料功能高分子材料是指那些具有特定的功能作用,如电学、光学、磁学、生物学等性能,且这些性能显著超出了传统高分子材料范畴的一类高分子材料。
它们不仅具备高分子材料的基本特性,如重量轻、耐腐蚀、易加工等,还因其特殊的功能而在众多领域发挥着关键作用。
二、常见的功能高分子材料及其特点1、导电高分子材料导电高分子材料通常具有共轭结构,能通过掺杂等方式提高其电导率。
常见的如聚苯胺、聚吡咯和聚噻吩等。
它们在电子器件、防静电材料、电磁屏蔽等方面有着广泛的应用。
这类材料的特点是电导率可调控,能在一定范围内根据需求进行改变。
2、高分子分离膜具有选择性透过功能,能让某些物质通过而阻止其他物质。
例如反渗透膜、超滤膜等。
其特点是分离效率高、能耗低、操作简便。
在海水淡化、污水处理、食品加工等领域大显身手。
3、高分子吸附剂对特定的物质有较强的吸附能力,如离子交换树脂。
它可以有效地去除溶液中的离子或分子。
特点是吸附容量大、选择性好、可再生使用。
常用于废水处理、药物分离等。
4、生物医用高分子材料这类材料与生物体相容性好,包括人工器官材料(如心脏起搏器的外壳)、药物载体等。
其突出特点是无毒、无刺激性,能在体内稳定存在并发挥作用。
5、感光高分子材料在光的作用下能发生化学或物理变化,如光刻胶。
常用于印刷制版、集成电路制造等。
具有感光度高、分辨率好等特点。
三、功能高分子材料的制备方法1、分子设计从分子水平上设计具有特定功能基团和结构的高分子。
这需要对高分子的化学结构和性能之间的关系有深入的理解。
2、共聚与共混通过共聚将不同性能的单体结合在一起,或者通过共混将不同的高分子材料混合,以获得具有综合性能的功能高分子。
3、接枝与交联在高分子主链上接枝特定的功能侧链,或者通过交联提高高分子的性能和稳定性。
4、掺杂对某些高分子进行掺杂,改变其电子结构和导电性能。
四、功能高分子材料的性能测试1、电学性能测试包括电导率、介电常数、击穿电压等的测定,以评估其导电和绝缘性能。
第五章第2节高分子材料第2课时 课件 2021-2022学年高二化学人教版(2019)选择性必修3

B.CH2==CH—COOH
C.CH3—CH(OH)—COOH D.H2N—CH2—COOH
随堂巩固
3.X是一种性能优异的高分子材料,其结构简式为
,
已被广泛应用于声、热、光的传感等方面,它是由HC≡CH、(CN)2、CH3COOH三种 单体通过适宜的反应形成的。由X的结构简式分析合成过程中发生反应的类型有
很难溶解,但往往有一定程 度的胀大
性能
具有热塑性,无固定熔点
具有热固性,受热不熔化
强度大、绝缘性好、有可塑 特性 强度大、可拉丝、吹薄膜、绝缘性好
性
常见 物质
聚乙烯、聚氯乙烯、天然橡胶
酚醛树脂、硫化橡胶
小结
随堂巩固
1.手术缝合线、人造器官等人体用的功能高分子要求无毒且与人体有较好的相容性。
根据有关化合物的性质及生物学知识可知,下列高分子不宜用作手术缝合线或人造
②合成新的带有强亲水基团的高分子。
如CH2==CH—COONa —一交—定联—条—剂件→
聚丙烯酸钠(网状结构)
学习任务三:高吸水性树脂
3.性能: 不溶于水,也不溶于有机溶剂,与水接触后在很短的 时间内溶胀,可吸收其本身质量的数百倍甚至上千倍 的水,同时保水能力要强,还能耐一定的挤压作用。
《时代周刊》评出20世纪最伟 大的100项发明,其中“尿不 湿”榜上有名
器官材料的是 A.聚乳酸
B.聚氨酯
C
C.氯纶
D.聚乙烯醇
随堂巩固
2.用高分子塑料骨钉取代钛合金骨钉是医学上的一项新技术,这种塑料骨钉不仅具
有相当的强度,而且可在人体内水解,使骨科病人免遭拔钉的痛苦。合成这种塑料
骨钉的原料能与强碱溶液反应,也能在浓硫酸条件下形成环酯。则合成这种塑料骨
光功能高分子材料

光功能高分子材料光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。
这类高分子材料主要包括感光性树脂、光致变色材料、光降解材料及光导纤维。
感光性树脂是在光的作用下能迅速发生光化学反应 ,引起物理和化学变化的高分子。
这类树脂在吸收光能量后使分子内或分子间产生化学的或结构的变化。
吸收光的过程可由具有感光基团的高分子本身来完成 ,也可由加入感光材料中的感光性化合物(光敏剂)吸收光能后引发光化学反应来完成。
感光性树脂在印刷布线、孔板制造、集成电路和电子器件加工、精密机械加工及复印、照相等方面的应用愈来愈广泛。
含有光色基团的化合物受一定波长的光照射时发生颜色变化 ,而在另一波长的光或热的作用下又恢复到原来的颜色 ,这种可逆的变色现象称为光色互变或光致变色。
已经知道 ,硫代缩胺基脲衍生物与汞(Hg)能生成有色络合物 ,是化学分析上应用的灵敏显色剂。
在聚丙烯酸类高分子侧链上引入这种硫代缩胺基脲汞的基团 ,则在光照时由于发生了氢原子转移的互变异构 ,发生变色现象。
迄今为止 ,光致变色高分子的应用开发工作尚处在起步阶段 ,但其应用前景是十分诱人的。
光致变色材料在全息记录介质、计算机记忆元件、信号显示系统、感光材料等方面有广泛的应用。
例如 ,可作为窗玻璃或窗帘的涂层 ,从而调节室内光线;可作为护目镜从而防止阳光、激光以及电焊闪光等的伤害;在军事上 ,可作为伪装隐蔽色或密写信息材料;还可作为高密度信息存储的可逆存储介质等。
我国已把光致变色材料列入 863 高科技计划 ,国内一些单位已相继开展这方面的工作并已取得可喜的成果。
为了解决高分子废弃物所造成的公害 ,研究了用时稳定 ,不用时在阳光暴晒下能发生降解的光降解高分子。
要实现这种光降解 ,一是直接合成能被光降解的高分子;另一种方法是加入能促进降解的试剂。
在聚乙烯、聚丙烯、聚苯乙烯中加入 0105 %的光降解剂(如乙醛基水杨酸的铁、锰、铜盐) ,约经100h ,这些聚合物就发生降解。
功能高分子材料知识点

功能高分子材料知识点功能高分子材料是一类具有特定功能或应用价值的高分子材料。
它们在现代科技、工程和生活中扮演着重要角色。
本文将介绍功能高分子材料的定义、分类以及常见的知识点。
一、定义功能高分子材料是指那些具有特殊功能或特定应用价值的高分子材料。
传统的高分子材料主要用于作为结构材料,具有良好的力学性能和化学稳定性。
而功能高分子材料则在此基础上引入了其他特殊功能,如光、电、热、磁、生物等功能,以满足不同领域的需求。
二、分类功能高分子材料可以根据其特殊功能和应用领域进行分类。
以下是常见的功能高分子材料分类:1. 光功能高分子材料:如荧光材料、光存储材料、光敏高分子材料等。
这些材料在光学器件、显示器件和光催化等方面具有重要应用。
2. 电功能高分子材料:如导电高分子材料、电致变色材料、电解质材料等。
这些材料可用于电子器件、储能装置和可穿戴设备等领域。
3. 热功能高分子材料:如热敏高分子材料、热稳定材料等。
这些材料在火焰阻燃、温度传感和热能转化等方面具有重要应用。
4. 磁功能高分子材料:如磁性高分子材料、磁性流体材料等。
这些材料在信息存储、医学诊断和磁性传感等方面有广泛应用。
5. 生物功能高分子材料:如生物降解材料、生物传感材料等。
这些材料在医学领域、环境保护和食品包装等方面具有重要应用。
三、知识点功能高分子材料的研究领域非常广泛,以下是其中一些常见的知识点:1. 结构与性能关系:功能高分子材料的特殊功能与其结构密切相关。
研究材料的分子结构和宏观性能之间的关系,可以指导材料的合成和应用。
2. 合成方法:功能高分子材料的合成涉及到多种方法,如化学合成、物理改性和生物合成等。
不同的合成方法会对材料的性能产生不同影响。
3. 表征技术:了解功能高分子材料的结构和性能需要借助于各种表征技术,如光谱分析、热分析和电子显微镜等。
掌握这些表征技术对于研究功能高分子材料至关重要。
4. 应用领域:功能高分子材料在各个领域都有广泛应用。
5 功能高分子材料

光交联型高分子
感光高分子材料 光分解型高分子
光致变色高分子
1.光交联型高分子
在光照下,分子链间能发生交联偶合反应的感光性高分子。
同时由于液晶分子的取向特性,纤维可以在较 低的拉伸倍率下获得较高的取向度,避免纤维在 高拉伸倍率下,产生内应力和损伤纤维,从而可 以获得高强度、高模量、综合性能好的纤维。
16
聚对苯二甲酰对苯二胺纤维不同纺丝方法 的力学性能对照 纺丝方法
纺丝液浓度(%) 纺丝液温度(oC) 纺丝液光学性质 纤维拉伸强度(克/袋) 断裂伸长率(%) 初始模量(克/袋)
弱碱性阴离子交换
大孔离子交换树脂
大孔离子交换树脂具有和大孔吸附剂相同的骨架结 构,在大孔吸附剂合成后(加入致孔剂),再引 入化学功能基团,便可得到大孔离子交换树脂
优点:
通过在合成时加入惰性致孔剂,克服了普通凝胶 树脂由于溶胀现象,产生的“暂时孔”现象,从 而强化了离子交换的功能; 减少了凝胶树脂在离子交换过程中的“有机污染 ”现象(大分子不易洗脱); 可以通过致孔剂选择调整孔径大小、树脂的比表 面积,以适应不同的分离要求。
离子交换树脂的应用——蛋白提纯
• 树脂预处理
• 离子交换吸附 • 洗脱
离子交换树脂的应用——水处理
工业用水里存在钙、镁、 两价和三价的铁离子,易使 管道和锅炉结垢。用聚苯乙 烯磺酸型离子交换树脂可以 对水进行软化处理 用于原子能、半导体、电 子工业、高温高压锅炉的水, 要求高质量的无离子水。采 用离子交换树脂混合床法可 使水去离子化
光功能高分子材料综述

常州轻工职业技术学院毕业论文课题名称:感光高分子材料系别:轻工工程系专业:__ 高分子材料加工技术__ _班级:10工艺试点学生姓名:刘振杰指导教师:卜建新感光高分子材料【摘要】本文主要介绍了感光高分子的发展简史以及感光高分子的分类和在日常生活中、工业中的应用,主要研究重氮树脂型光敏材料、自组装型超薄胶印版、化学增幅与无显影光刻胶及刻蚀技术,和当今感光高分子的主要研制课题。
【关键词】感光高分子感光聚合物光致变色高分子一、简介随着现代科学技术的发展,感光高分子材料越来越受到重视。
所谓感光高分子材料就是对光具有传输、吸收、存储和转换等功能的高分子材料。
二、研究方向21世纪人类社会将进入高度信息化的社会,光与半导体相融台的高技术将引人注目。
高分子材料的感光特性引起科学界和工业界的兴趣。
高分子材料的功能特性主要有:①化学变换功能(感光树脂、光学粘接剂、光硬化剂等)。
②物理变换功能(塑料光纤、光盘、非球面透镜、非线性光学聚合物、超导聚合物等)。
②医学化学功能(抗血栓性聚合物人工畦器等)。
④分离选择功能(微多 L膜、逆透过膜等) 由此可见,具有感光的高分子材料占居多数,它们的产品在市塌占有的份额很大。
像非线性高分子材料这样的尚未达到实用化的高分子材料更是为数众多该材料的通感光与光的化学、物理变化功能是有很大差别的。
前者的典型代表是光纤和各种透镜。
对这些材料不殴要求透明性强。
如要求、光纤材料从可见光到近红外光范围内的透明性极其严格。
标准的塑料光纤(POF)是由PMMA制成的,具c—H 基,故不能避免红外吸收。
为了提高透明性而研制羝化物光纤。
用于制作透镜的材料必须具南高范围的折射率和分散特性这一点,有机高分子材料与无机玻璃类材料相此,者处于劣势。
塑料材料具有优良的成形性,宜用来生产诸如形状复杂的非球面透镜等高性能透镜。
CD用的透镜,主要是用PMMA材料制作。
制作透镜用的PMMA工业材料市塌规模看好要求它具有优良的耐热性和低的吸水性其中具有脂环式结构的塑料市埸将有扩大趋势。
功能高分子材料-4(感光)

N + N2
18
19
(a)水溶性芳香族双叠氮类感光高分子
N3
CH CH
N3
SO3Na
SO3Na
4, 4'-二叠氮芪 -2, 2'- 二磺酸钠
N3 NaO3S
N3
SO3Na
1, 5-二叠氮萘 -3, 7-二磺酸钠
它们可与水溶性高分子或亲水性高分子配合组 成感光高分子。常用的高分子有聚乙烯醇、聚乙烯 吡咯烷酮、聚丙烯酰胺、甲基纤维素、乙烯醇—马 来酸酐共聚物、乙烯醇—丙烯酰胺共聚物、聚乙烯 醇缩丁醛、聚醋酸乙烯酯等。
是真正的感光性高分子。因为在这些材料中,高分 子本身不具备光学活性,而是由小分子的感光化合 物在光照下形成活性种,引起高分子化合物的交 联。在本节中将介绍真正意义上的感光高分子,在 这类高分子中,感光基团直接连接在高分于主链 上,在光作用下激发成活性基团,从而进一步形成 交联结构的聚合物。
23
(1)感光基团的种类
O CH CH C
O
或
C CH CH
+N
CH CH
CO C N
CO CH
N3 ,
SO3N3
N2+
300~400
250~400
视R而定 200~400 260~470 300~400
25
(2)具有感光基团的高分子的合成方法 通过高分子反应在聚合物主链上接上感光基团 通过带有感光基团的单体进行聚合反应而成
2
所谓光致抗蚀,是指高分子材料经过光照后, 分子结构从线型可溶性转变为网状不可溶性,从而 产生了对溶剂的抗蚀能力。而光致诱蚀正相反,当 高分子材料受光照辐射后,感光部分发生光分解反 应,从而变为可溶性。
光功能高分子的性能特点及应用

3.光氧化降解 聚合物在吸收光能后分子链是否断裂取决于吸收波长的能 量,与聚合物的键能,一般照射到地面的日光波长在 300nm上,所以聚合物分子多数场合下不解离,只呈激发 态,激发态分子可以发生反应。 聚合物的光降解过程中常伴随有氧的存在,因而,高分子 在空气中的光照射断裂是按光氧化降解机理进行的,其过 程为:高分子吸光后激发为单线态(S1)单线态再转变为 S1 寿命较长的三线态(T1),它与空气中的氧分子反应,生 T1 成高分子过氧化氢,后者很不稳定,在光的作用下很容易 分解为自由基。
(2)光致变色材料的应用 • 光致变色材料作为光敏性材料用于信息记录介质等方面具 有以下优点:操作简单,不用湿法显影和定影,分辨力非 常高,成像后可消像、能多次重复使用,响应速度快,缺 点,灵敏度低,像的保留时间
应用可归纳为以下几个方面: • ①光的调控和调变:用这种材料制成光色玻璃可以自动控 制建筑物和汽车内光线,做成护眼镜,以防止原子弹爆炸 产生的射线和强光对人眼的损害,还可做成照相机自动滤 光的滤光片,军用机械的伪装。 • ②全息记录介质。 • ③计算机记忆元件:光色材料的显色和消色的循环变化可 用来建立计算机随机记录元件,能记录相当大量信息。 • ④信号显示系统:光色材料用作宇航指挥控制的动态显示 屏,计算机末端输出的大屏幕显示,有广阔的前景,同时 也是军事指挥中心的一项重要设备。 • ⑤辐射计量仪:光色材料用作强光的幅射计量仪,可以测 量电离辐射紫外线、X射线和γ射线等; • ⑥感光材料:光色材料感光度较低,而且有些化合物只对 紫外线敏感,但已用于印刷方面,如制版。 • ⑦利用光色反应来模拟生物过程,生物反应是一种很好的 途径。 • ⑧防伪材料、防伪油墨、防伪印刷、防伪标签。
《功能高分子 》课件

VS
详细描述
功能高分子材料具有良好的光电性能和化 学稳定性,可用于制造太阳能电池和燃料 电池。同时,一些功能高分子材料还可作 为锂电池的电极材料,提高电池的能量密 度和安全性。
04 功能高分子材料的未来发 展
新材料开发
高性能化
通过改进合成方法、引入新型功 能基团等方式,提高功能高分子 的性能,如强度、耐热性、耐腐 蚀性等。
功能高分子材料
指在分子水平上设计并合成的高分子 材料,具有特定功能和性能,以满足 各种应用需求。
分类
01
02
03
按功能分类
导电高分子、光敏高分子 、磁性高分子、吸附分离 高分子等。
按合成方法分类
加聚型、缩聚型、共聚型 等。
按应用领域分类
电子、能源、环保、生物 医药等。
常见功能高分子材料
导电高分子材料
环保领域
总结词
功能高分子材料在环保领域的应用包括水处理、空气净化、 土壤修复等。
详细描述
功能高分子材料具有吸附、分离、富集等功能,可用于水处 理和空气净化。同时,一些功能高分子材料还可用于土壤修 复,帮助去除重金属和有害物质。
新能源领域
总结词
功能高分子材料在新能源领域的应用包 括太阳能电池、燃料电池、锂电池等。
能源环保
利用功能高分子材料的特殊性质,开发高效能电 池、太阳能电池、环境治理材料等,推动清洁能 源和环保产业的发展。
智能制造
利用功能高分子材料的传感和响应特性,开发智 能传感器、驱动器等关键部件,推动智能制造和 工业自动化的发展。
绿色可持续发展
可降解性
开发可生物降解的功能高分子材料,降低对环境的污染和资源消 耗。
智能化
利用传感器、响应性高分子等技 术,开发具有自适应、自修复、 自感知等功能的智能高分子材料 。
功能高分子材料ppt课件

随堂练习
2. 下列关于功能高分子材料,说法不正确的是( C )
A. 生物高分子材料、隐身材料、液晶高分子材料等属于功能高分子材料 B. 高分子分离膜可用于海水淡化、分离工业废水、浓缩天然果汁等 C. 高分子药物和有机玻璃都属于功能高分子材料 D. 纤维素难溶于水的主要原因是其链间有多个氢键
聚丙烯纤维很难降解,根据其结构特点,你建议寻找哪类高分子材料替代 聚丙烯? 聚丙烯纤维特点:无毒、疏水性的线型高分子材料; 可以用聚酯类线型性高分子材料代替,实现可降解;且聚乳酸比普通聚酯类相 比,既能降解,又可再生!
微生物降解材料 聚乳酸
聚乳酸是一种可生物降解的高分子材料,其结构简式如图,主要用于制造 可降解纤维、可降解塑料和医用材料。以淀粉为原料,先水解为葡萄糖,再在 乳酸菌的作用下将葡萄糖转变为乳酸,乳酸在催化剂作用下可聚合成聚乳酸。 聚乳酸材料废弃后,先水解成乳酸,乳酸在微生物和氧气的作用下可生成CO2 和H2O。请用化学方程式表示上述过程。
第五章 第二节 高分子材料
一、通用高分子材料 二、功能高分子材料
第五章 第二节 第二课时 功能高分子材料
一、高吸水性树脂 二、微生物降解材料
三、高分子分离膜
生活答疑
疫情期间曾“一罩难求”,有不法分子用纸张(天然纤维素)代替口罩材料, 你知道如何用简单的方法鉴别真假吗?
纤维素(多糖)
聚丙烯
➢ 加水鉴别吸水性:纸张有亲水基,能吸水;聚丙烯无亲水基,不吸水; ➢ 燃烧法鉴别:纸张燃烧后灰烬易碾碎;合成纤维燃烧时刺鼻呛味,燃烧后
功能高分子材料教案

教Hale Waihona Puke 学目的知识
技能
1、举出日常生活中接触到的新型高分子材料。
2、认识到功能材料对人类社会生产的重要性。
过程
方法
利用上网查询,从历史的角度体会化学材料的发展是化学科学发展的一个缩影,对化学科学发展的进程有所认识,培养用科学的方法发现问题,认识问题的意识。
情感
价值观
扩大知识面,激发对高分子材料学习的兴趣和投身科学事业的决心。
(2)高分子分离膜:
(3)医用高分子材料:
二、复合材料:
1.复合材料的涵义:
三、有机高分子材料的发展趋势
教学过程
备注
[引入]材料是人类赖以生存和发展的物质基础,是人类文明的重要里程碑。除了传统的三大合成材料以外,又出现了高分子膜,具有光、电、磁等特殊功能的高分子材料,生物高分子材料,医用高分子材料,隐身材料和液晶高分子材料等许多新型有机高分子材料。这些新型有机高分子材料在我们的日常生活、工农业生产和尖端科学技术领域中起着越来越重要的作用。
第三节 功能高分子材料
一、功能高分子材料:
1.功能高分子材料的涵义:
功能高分子材料是指既有传统高分子材料的机械性能,又有某些特殊功能的高分子材料。
2.几种功能高分子材料:
(1)高吸水性材料——亲水性高聚物(分子链带有许多亲水原子团)
[讲]有两种办法可获得具有高吸水性的树脂:一种是对淀粉、纤维素等天然吸水材料进行改性,在它们的高分子链上再接上含强亲水性原子团的支链,以提高它们的吸水能力。二是以带有强亲水性原子团的化合物,如丙烯酸等为单体,均聚或两种单体共聚,得到亲水性高聚物。
三、有机高分子材料的发展趋势
[讲]对重要的通用有机高分子材料继续进行改进和推广,使它们的性能不断提高,应用范围不断扩大。与人类自身密切相关、具有特殊功能的材料的研究也在不断加强,并且取得了一定的进展。
功能高分子材料知识点

第一章1.什么是材料的功能,什么是材料的性能,举例说明。
第1页材料的功能,从本质上来说是向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。
如化学性、导电性、磁性、光敏性、生物活性等。
材料的性能是指材料对外部作用的表征与抵抗的特性,如对外里的抵抗表现为强度、模量,对热的抵抗表现为耐热性,对光、电、化学药品的抵抗表现为材料的耐光性、绝缘性、耐化学药品性等。
2.功能高分子材料的制备方法以及各自的特点。
第4页方法:(1)功能性小分子的高分子化,高分子化学反应引入预期的功能基团。
功能性小分子的高分子化主要优点在于可以使生成的功能高分子功能基团分布均匀,生成的聚合物结构可以通过小分子分析和聚合机理加以预测,产物的稳定性高,但这种方法需在功能性小分子中引入可聚单体,从而使反应较为复杂,同时在反应中反应条件对功能基团会产生一定的影响,需对功能集团加以保护,使材料的成本增加。
例如,高吸水性树脂可以通过将亲水性基团的丙烯酸钠进行自由基聚合实现。
利用高分子化学反应制备功能高分子的主要优点在于合成或天然高分子骨架是现成的,可选择的高分子母体多,来源广,价格低廉。
但是在进行高分子化学反应时,反应不可能100%完成,尤其是在多不得高分子化学反应中,制的的产物中含有未反应的官能团,即功能集团较少,功能基团在分子链上的分布也不均匀。
例如聚苯乙烯、尼龙、淀粉都可以作为高分子母体。
(2)通过特殊加工赋予高分子的功能特性。
许多聚合物通过特定的加工方法和加工工艺,可以较精确地控制其聚集状态结构及宏观状态,从而使之体现出一定的功能性。
例如,许多塑料可以经过适当的制膜工艺,制成具有分离功能的多孔膜和致密膜。
(3)通过普通聚合物与功能材料的复合,制成复合型功能高分子材料。
这种制备方法简便快速,不受场地和设备限制,不受聚合物和功能性化合物官能团反应活性的影响,适用范围宽,功能基团的分布较均匀。
但其共混体不稳定,在使用条件下(如溶胀、成膜等)功能聚合物易由于功能小分子的流失而逐步失去活性,如固定化酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子的活化有两种途径,一是分子中的电子受
光照后能级发生变化而活化,二是分子被另一光活 化的分子传递来的能量而活化,即分子间的能量传 递。
16
4、三线态和单线态 根据泡利(Pauli)不相容原理,成键轨道上的 两个电子能量相同,自旋方向相反,因此,能量处 于最低状态,称作基态。分子一旦吸收了光能,电 子将从原来的轨道激发到另一个能量较高的轨道。
荧光过程:从激发态直接通过发光回到基态的过 程; 磷光过程:从三线态通过发光回到基态的过程。
20
Sn Si S3 S2 内 部 转 化 S1 Tn Tj T3
T2 系间窜跃 内 部 转 系间窜跃 化 吸 收 T1
吸 收 内部转化 荧光 S0 磷光 S0 禁 阻 吸 收
图5-5
Jablonsky图线
26
在分子间的能量传递过程中,受激分子通过
碰撞或较远距离的传递,将能量转移给另一个分
子,本身回到基态。而接受能量的分子上升为激
发态。因此,分子间能量传递的条件是:
(1) 一个分子是电子给予体,另一个分子是电 子接受体; (2) 能形成电荷转移络合物。
27
分子间的电子跃迁有三种情况。 第一种是某一激发态分子 D* 把激发态能量转
根据反应类型分类,光聚合反应包括自由基聚 合、离子型聚合和光固相聚合。
(1)光引发自由基聚合
一、由光直接激发单体到激发态产生自由基引 发聚合,或者先激发光敏分子再发生能量转移 产生活性种,引发聚合; 二、由吸收光能引起引发剂分子发生断键反应, 生成的自由基引发聚合反应; AIBN 、BPO 三、光引发分子复合物,由受激发分子复合物 解离产生自由基引发聚合。
化学第二定律的补充。
22
量子收率用φ表示:
光化学反应中起反应的 分子数 吸收的光量子数
(5-7)
或写成
光化学过程的速度 Φ 吸收光的速度
(5-8)
23
被吸收的光量子数可用光度计测定,反应的分
子数可通过各种分析方法测得,因此,量子收率的
概念比光化学定律更为实用。实验表明,φ 值的变
化范围极大,大可至上百万,小可到很小的分数。
物理学的知识告诉我们,光是一种电磁波。 在一定波长和频率范围内,它能引起人们的视觉, 这部分光称为可见光。广义的光还包括不能为人 的肉眼所看见的微波、红外线、紫外线、 X 射线 和γ 射线等。
6
(1)光吸收和分子的激发态 现代光学理论认为,光具有波粒二相性。光的
微粒性是指光有量子化的能量,这种能量是不连续
红外线 可见光
500
239
γ 射线
10-3
108
10
表5-2 化学键键能
化学键 O -O N -N C -S C -N
键能 /(kJ/mol)
138.9 160.7 259.4 291.6
化学键 C-Cl C-C C-O N-H
键能 /(kJ/mol)
328.4 347.7 351.5 390.8
28
第二种分子间的电子跃迁是两种分子先生成
络合物,再受光照激发,发生和 D或 A单独存在 时完全不同的光吸收。通过这种光的吸收,D 的 基态电子转移到 A 的反键轨道上。图 5-10表示 了这种电子转移的情况。
D A D A
hv
D
A
29
反 键 轨 道 成 键 轨 道 D A
hv
D
A
图5-10
电荷转移络合物电子跃迁示意图
知道了量子收率φ 值,对于理解光化学反应的机理 有很大的帮助。如:φ ≤1时是直接反应;φ >1时 是连锁反应。乙烯基单体的光聚合,产生一个活性 种后可加成多个单体,φ >1,因此是连锁反应。
24
(4)激发态的猝灭 能加速激发态分子衰减到基态或者低能态的 过程称为激发态的猝灭,猝灭表现出光量子效率
18
电子从基态最高占有分子轨道激发到最低空 分子轨道的能量最为有利。 一般三线态都是经激发单线态转变而成的, 从能量的角度来看,激发三线态能量比激发单线 态低,因而相对稳定。
19
(2)激发能的耗散
分子吸收光子后从基态跃迁到激发态,其获 得的激发能有三种可能的转化方式: 1、发生光化 学反应; 2 、以发射光的形式耗散能量; 3 、通过 其他方式转化为热能。
2
一、光功能高分子材料及其分类
1、光敏涂料 当聚合物在光照射下可以发生光
聚合或者光交联反应,有快速光固化性能时,
这种材料可以作为材料表面保护。
2、光刻胶或光致抗蚀剂 在光的作用下可以发 生光化学反应(光交联或者光降解),反应后 其溶解性能发生显著变化的聚合物,具有光加 工性能,可以作为集成电路工业的材料。
1.197 105 1.24 103 kJ (eV) (nm) (nm)
(5-3)
其中, N 为阿伏加德罗常数( 6.023×1023 )。 用公式 (5-3) 可计算出各种不同波长的光的能量 ( 表 5-1) 。作为比较,表 5-2 中给出了各种化学键 的键能。由表中数据可见, λ =200 ~ 800nm 的紫外 光和可见光的能量足以使大部分化学键断裂。
化学键 C -H H -H O -H C = C
键能 /(kJ/mol)
413.4 436.0 462.8 607
11
1、光的吸收 发生光化学反应必然涉及到光的吸收。光的吸 收一般用透光率来表示,记作T,定义为入射到体 系的光强I0与透射出体系的光强I之比:
T I Io
(5-4)
如果吸收光的体系厚度为l,浓度为c,则有:
移给另一基态分子A,形成激发态 A*,而 D*本身
则回到基态,变回 D。A* 进一步发生反应生成新
的化合物。
D hv D* A D + A*
三线态能量从电子给予体传递到电子接受体过 程中,一般不发生多重态的改变。其相互作用可表 示如下:
给予体(T1)+ 接受体(S0) 给予体(S0)+接受体(T1)
光敏剂的作用机理有三种: a、能量转移机理 b、夺氢机理 c、生成电荷转移复合物机理
ห้องสมุดไป่ตู้
36
(2)阳离子光聚合 包括光引发阳离子双键聚合(乙烯基不饱和单体) 和光引发阳离子开环聚合(环张力单体)。 (3)固态光聚合
32
三、光化学反应
光聚合或光交联反应、光降解反应和光异构 化反应。
1、光聚合与光交联
光聚合物:化合物由于吸收了光能而发生化学反 应,引起产物分子量增大的过程,此时反应物是 小分子单体,或者分子量较低的低聚物。
光交联反应:线形聚合物在光引发下高分子链之 间发生交联反应生成三维立体网状结构的过程。
33
34
S、MMA
光引发剂和光敏剂
光引发剂吸收光能后跃迁到激发态,当激发 态能量高于键断裂所需的能量时,断键产生自由 基,引发反应,光引发剂被消耗。 光敏剂吸收光能后跃迁到激发态,然后发生 分子内或分子间能量转移,将能量传递给另一个 分子,而光敏剂回到基态。(类似于化学反应的 催化剂)
35
光引发剂和光敏剂的作用是提高光子效率,有 利于自由基等活性种的产生。
的。光的最小能量微粒称为光量子,或称光子。光
的波动性是指光线有干涉、绕射、衍射和偏振等现
象,具有波长和频率。光的波长λ 和频率ν 之间有 如下的关系:
c
(5-1)
c为光在真空中的传播速度(2.998×108m/s)。
7
在光化学反应中,光是以光量子为单位被吸收
的。一个光量子的能量由下式表示:
由于电子激发是跃进式的、不连续的,因此称为电
子跃迁。电子跃迁后的状态称为激发态。
17
大多数分子的基态是单线态S0;
电子受光照激发后,从能量较低的成键轨道进
入能量较高的反键轨道。如果此时被激发的电子保
持其自旋方向不变,称为激发单线态S1;
如果被激发的电子在激发后自旋方向发生了改 变,体系处于三线态,称为激发三线态,用符号T 表示。
E h h c
(5-2)
其中,h为普朗克常数(6.62×10-34 J·s)。
在光化学中所用的量是每摩尔分子所吸收的能
量。假设每个分子只吸收一个光量子,则每摩尔分
子吸收的能量称为一个爱因斯坦(Einstein),实 用单位为千焦尔(kJ)或电子伏特(eV)。
8
1Einstein Nhv Nhc /
(5-6)
兰布达—比尔定律仅对单色光严格有效。
13
发色团:在分子结构中能够吸收紫外和可见光
的基团。
当光子被分子的发色团吸收后,光子能量转
移到分子内部,引起分子电子结构改变,外层电
子可以从低能态跃迁到高能态,此时分子处于激
发态,激发态分子所具有的能量称为激发能。
14
2、光化学定律
光化学第一定律(Gtotthus-Draper定律):
lg T lg I I o lc
(5-5)
12
式(5-5)称为比尔-兰布达(Beer-Lambert)定
律。其中,ε 称为摩尔消光系数。它是吸收光的物
质的特征常数,也是光学的重要特征值,仅与化合 物的性质和光的波长有关。
表征光吸收的更实用的参数是光密度D,它由
式(5-6)来定义:
D lg1 T lg I o I lc
30
第三种情况是两种分子在基态时不能形成电
荷转移络合物,但在激发态时却可形成。光使其 中一个分子激发,然后电子向另一分子转移形成 络合物。
A 或 D A* D* D A (D+ (D+ A-)* A-)*
31
分子之间的电荷转移在单线态和三线态均可发
生。单线态能量较高,电子转移在当分子间距离为
5~20nm时即可发生(长距离传递),而三线态电 子转移则必须当分子直接碰撞时才能发生(短距离 传递)。 在光功能高分子的光比学反应中,有相当多的 反应被认为是通过电荷转移络合物而进行的。