信息论与编码理论习题答案

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

信息论与编码习题答案

信息论与编码习题答案

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。

(√ )2. 线性码一定包含全零码。

(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。

信息论与编码理论课后答案

信息论与编码理论课后答案

信息论与编码理论课后答案【篇一:《信息论与编码》课后习题答案】式、含义和效用三个方面的因素。

2、 1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

4、按照信息的地位,可以把信息分成客观信息和主观信息。

5、人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

6、信息的是建立信息论的基础。

7、8、是香农信息论最基本最重要的概念。

9、事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位一般有比特、奈特和哈特。

13、必然事件的自信息是。

14、不可能事件的自信息量是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。

17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。

limh(xn/x1x2?xn?1)h?n???18、离散平稳有记忆信源的极限熵,。

19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。

20、一维连续随即变量x在[a,b] 。

1log22?ep21、平均功率为p的高斯分布的连续信源,其信源熵,hc(x)=2。

22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。

23、对于限平均功率的一维连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一离散无记忆信源的信源熵h(x)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为。

2728、同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和5同时出现”这件事的自信息量是 ?mn?ki?11?mp(x)?em29、若一维随即变量x的取值区间是[0,∞],其概率密度函数为,其中:x?0,m是x的数学2期望,则x的信源熵c。

信息论与编码习题参考答案

信息论与编码习题参考答案

信息论与编码习题参考答案 第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ (4)信源空间: bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。

信息论与编码理论习题答案

信息论与编码理论习题答案

第二章 信息量和熵2.2八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率.解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2。

3 掷一对无偏骰子,告诉你得到的总的点数为:(a ) 7; (b) 12。

问各得到多少信息量.解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2。

585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5。

17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a ) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13。

208 bit2.9随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6 =3。

信息论与编码习题参考答案

信息论与编码习题参考答案

信息论与编码习题参考答案 第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ (4)信源空间: bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。

信息论与编码理论习题答案全解

信息论与编码理论习题答案全解

第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6=3.2744 bit)|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

信息论与编码 课后习题答案

信息论与编码 课后习题答案

信息论与编码课后习题答案信息论与编码课后习题答案[信息论与编码]课后习题答案1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、按照信息的性质,可以把信息分为语法信息、语义信息和语用信息。

4、按照信息的地位,可以把信息分成客观信息和主观信息。

5、人们研究信息论的目的就是为了高效率、可信、安全地互换和利用各种各样的信息。

6、信息的是建立信息论的基础。

8、就是香农信息论最基本最重要的概念。

9、事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号线性信源通常用随机变量叙述,而多符号线性信源通常用随机矢量叙述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位通常存有比特、奈特和哈特。

13、必然事件的自信息是。

14、不可能将事件的自信息量就是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。

16、数据处理定理:当消息经过多级处置后,随着处理器数目的激增,输出消息与输入消息之间的平均值互信息量趋向变大。

17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。

limh(xn/x1x2xn1)h n18、线性稳定存有记忆信源的音速熵,。

19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。

20、一维已连续随即变量x在[a,b]。

1log22ep21、平均功率为p的高斯分布的已连续信源,其信源熵,hc(x)=2。

22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。

23、对于减半平均功率的一维已连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一线性并无记忆信源的信源熵h(x)等同于2.5,对信源展开相切的并无杂讯二进制编码,则编码长度至少为。

信息论与编码理论-习题答案-姜楠-王健-编著-清华大学

信息论与编码理论-习题答案-姜楠-王健-编著-清华大学

第1章 绪论1.1 信源、编码器、信道、干扰、译码器、信宿 1.2 香农1.3 通信系统模型1.4信号是消息的表现形式,是物理的,比如电信号、光信号等。

消息是信息的载荷者,是信号的具体容,不是物理的,但是又比较具体,例如语言、文字、符号、图片等。

信息包含在消息中,是通信系统中被传送的对象,消息被人的大脑所理解就形成了信息。

1.5 略第2章 信息的统计度量2.1 少2.2 y 的出现有助于肯定x 的出现、y 的出现有助于否定x 的出现、x 和y 相互独立 2.3 FTTTF 2.4 2.12比特2.5依题意,题中的过程可分为两步,一是取出一枚硬币恰好是重量不同的那一枚,设其发生的概率为1p ,由于每枚硬币被取出的概率是相同的,所以1181p =所需要的信息量()()1log 6.34I A p bit =-=二是确定它比其他硬币是重还是轻,设其发生的概率为2p ,则212p =总的概率12111812162p p p ==⨯=所需要的信息量()log log1627.34I p bit =-==2.6 设A 表示“大学生”这一事件,B 表示“身高1.60m 以上”这一事件,则()()()0.250.5|0.75p A p B p B A ===故()()()()()()|0.750.25|0.3750.5p AB p A p B A p A B p B p B ⨯====()()()11|loglog 1.42|0.375I A B bit p A B ===2.7 四进制波形所含的信息量为()log 42bit =,八进制波形所含信息量为()log 83bit =,故四进制波形所含信息量为二进制的2倍,八进制波形所含信息量为二进制的3倍。

2.8()()()()()()2322log 3log 32log 3 1.585I p bit I p bit I I =-=-==故以3为底的信息单位是比特的1.585倍。

信息论与编码理论习题答案全解 (优选.)

信息论与编码理论习题答案全解 (优选.)

wo 最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改rd第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit 因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61 得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6})(b p =361 得到的信息量=)(1logb p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H =2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6=3.2744 bit)|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

信息论与编码课后习题答案

信息论与编码课后习题答案

1. 有一个马尔可夫信源,已知p(x 1|x 1)=2/3,p(x 2|x 1)=1/3,p(x 1|x 2)=1,p(x 2|x 2)=0,试画出该信源的香农线图,并求出信源熵。

解:该信源的香农线图为: 1/3○○2/3(x 1) 1 (x 2)在计算信源熵之前,先用转移概率求稳定状态下二个状态x 1和 x 2的概率)(1x p 和)(2x p 立方程:)()()(1111x p x x p x p =+)()(221x p x x p=)()(2132x p x p + )()()(1122x p x x p x p =+)()(222x p x x p=)(0)(2131x p x p + )()(21x p x p +=1 得431)(=x p 412)(=x p 马尔可夫信源熵H = ∑∑-IJi j i jix x p x xp x p )(log )()( 得 H=0.689bit/符号2.设有一个无记忆信源发出符号A 和B ,已知4341)(.)(==B p A p 。

求: ①计算该信源熵;②设该信源改为发出二重符号序列消息的信源,采用费诺编码方法,求其平均信息传输速率; ③又设该信源改为发三重序列消息的信源,采用霍夫曼编码方法,求其平均信息传输速率。

解:①∑-=Xiix p x p X H )(log )()( =0.812 bit/符号②发出二重符号序列消息的信源,发出四种消息的概率分别为1614141)(=⨯=AA p 1634341)(=⨯=AB p 1634143)(=⨯=BA p 1694343)(=⨯=BB p 用费诺编码方法 代码组 b iBB 0 1 BA 10 2 AB 110 3 AA 111 3 无记忆信源 624.1)(2)(2==X H X H bit/双符号 平均代码组长度 2B =1.687 bit/双符号BX H R )(22==0.963 bit/码元时间③三重符号序列消息有8个,它们的概率分别为641)(=AAA p 643)(=AAB p 643)(=BAA p 643)(=ABA p 649)(=BBA p 649)(=BAB p 649)(=ABB p 6427)(=BBB p用霍夫曼编码方法 代码组 b i BBB 6427 0 0 1 BBA 649 0 )(6419 1 110 3 BAB 649 1 )(6418)(644 1 101 3 ABB 649 0 0 100 3AAB 643 1 )(646 1 11111 5 BAA 643 0 1 11110 5ABA 643 1 )(6440 11101 5AAA 6410 11100 5)(3)(3X H X H ==2.436 bit/三重符号序列 3B =2.469码元/三重符号序列3R =BX H )(3=0.987 bit/码元时间 3.已知符号集合{ 321,,x x x }为无限离散消息集合,它们的出现概率分别为 211)(=x p ,412)(=x p 813)(=x p ···i i x p 21)(=···求: ① 用香农编码方法写出各个符号消息的码字(代码组); ② 计算码字的平均信息传输速率; ③ 计算信源编码效率。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论与编码课后习题答案

信息论与编码课后习题答案

1、 在认识论层次上研究信息的时候,必须同时考虑到 形式、含义和效用 三个方面的因素。

2、 1948年,美国数学家 香农 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、 按照信息的性质,可以把信息分成 语法信息、语义信息和语用信息 。

4、 按照信息的地位,可以把信息分成 客观信息和主观信息 。

5、 人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。

6、 信息的 可度量性 是建立信息论的基础。

7、 统计度量 是信息度量最常用的方法。

8、 熵 是香农信息论最基本最重要的概念。

9、 事物的不确定度是用时间统计发生 概率的对数 来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。

18、离散平稳有记忆信源的极限熵,。

19、对于n 元m 阶马尔可夫信源,其状态空间共有 n m 个不同的状态。

20、一维连续随即变量X 在[a ,b]区间内均匀分布时,其信源熵为 log 2(b-a ) 。

21、平均功率为P 的高斯分布的连续信源,其信源熵,H c (X )=。

22、对于限峰值功率的N 维连续信源,当概率密度 均匀分布 时连续信源熵具有最大值。

23、对于限平均功率的一维连续信源,当概率密度 高斯分布 时,信源熵有最大值。

24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值P 和信源的熵功率 之比 。

信息论与编码理论课后答案

信息论与编码理论课后答案

信息论与编码理论课后答案【篇一:《信息论与编码》课后习题答案】式、含义和效用三个方面的因素。

2、 1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

4、按照信息的地位,可以把信息分成客观信息和主观信息。

5、人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

6、信息的是建立信息论的基础。

7、8、是香农信息论最基本最重要的概念。

9、事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位一般有比特、奈特和哈特。

13、必然事件的自信息是。

14、不可能事件的自信息量是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。

17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。

limh(xn/x1x2?xn?1)h?n???18、离散平稳有记忆信源的极限熵,。

19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。

20、一维连续随即变量x在[a,b] 。

1log22?ep21、平均功率为p的高斯分布的连续信源,其信源熵,hc(x)=2。

22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。

23、对于限平均功率的一维连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一离散无记忆信源的信源熵h(x)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为。

2728、同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和5同时出现”这件事的自信息量是 ?mn?ki?11?mp(x)?em29、若一维随即变量x的取值区间是[0,∞],其概率密度函数为,其中:x?0,m是x的数学2期望,则x的信源熵c。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案信息论与编码习题答案信息论与编码是一门研究信息传输、存储和处理的学科,它的基本原理和方法被广泛应用于通信、数据压缩、密码学等领域。

在学习信息论与编码的过程中,习题是不可或缺的一部分。

下面将为大家提供一些信息论与编码习题的答案,希望能对大家的学习有所帮助。

习题一:请解释信息熵的概念。

答案:信息熵是信息论中的一个重要概念,用来衡量一个随机变量的不确定性。

对于一个离散型随机变量X,其信息熵H(X)定义为:H(X) = -Σ P(x)log2P(x)其中,P(x)表示随机变量X取值为x的概率。

信息熵的单位是比特(bit),表示信息的平均不确定性。

信息熵越大,表示随机变量的不确定性越高,反之亦然。

习题二:请计算以下离散型随机变量的信息熵。

1. 对于一个均匀分布的随机变量,其取值范围为{1, 2, 3, 4},请计算其信息熵。

答案:由于均匀分布,每个取值的概率相等,即P(1) = P(2) = P(3) = P(4) = 1/4。

代入信息熵的计算公式可得:H(X) = - (1/4)log2(1/4) - (1/4)log2(1/4) - (1/4)log2(1/4) - (1/4)log2(1/4)= - (1/4)(-2) - (1/4)(-2) - (1/4)(-2) - (1/4)(-2)= 22. 对于一个二值随机变量,其取值为{0, 1},且P(0) = 0.8,P(1) = 0.2,请计算其信息熵。

答案:代入信息熵的计算公式可得:H(X) = - 0.8log2(0.8) - 0.2log2(0.2)≈ 0.7219习题三:请解释信道容量的概念。

答案:信道容量是指在给定的信道条件下,能够传输的最大信息速率。

在信息论中,信道容量是衡量信道传输效率的重要指标。

对于一个离散无记忆信道,其信道容量C定义为:C = max{I(X;Y)}其中,X表示输入信号集合,Y表示输出信号集合,I(X;Y)表示输入信号X和输出信号Y之间的互信息。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案信息论与编码是通信和数据传输领域的基础学科,它涉及到信息的量化、传输和编码。

以下是一些典型的信息论与编码习题及其答案。

# 习题1:信息熵的计算问题:给定一个随机变量X,其可能的取值为{A, B, C, D},概率分别为P(A) = 0.3, P(B) = 0.25, P(C) = 0.25, P(D) = 0.2。

计算X的熵H(X)。

答案:H(X) = -∑(P(x) * log2(P(x)))= -(0.3 * log2(0.3) + 0.25 * log2(0.25) + 0.25 *log2(0.25) + 0.2 * log2(0.2))≈ 1.846# 习题2:信道容量的计算问题:考虑一个二进制信道,其中传输错误的概率为0.01。

求该信道的信道容量C。

答案:C = log2(2) * (1 - H(error))= 1 * (1 - (-0.01 * log2(0.01) - 0.99 * log2(0.99))) ≈ 0.98 nats# 习题3:编码效率的分析问题:一个编码器将4位二进制数字编码为8位二进制码字。

如果编码器使用了一种特定的编码方案,使得每个码字都具有相同的汉明距离,求这个编码方案的效率。

答案:编码效率 = 信息位数 / 总位数= 4 / 8= 0.5# 习题4:错误检测与纠正问题:给定一个(7,4)汉明码,它能够检测最多2个错误并纠正1个错误。

如果接收到的码字是1101100,请确定原始的4位信息位是什么。

答案:通过汉明码的生成矩阵和校验矩阵,我们可以计算出接收到的码字的校验位,并与接收到的码字的校验位进行比较,从而确定错误的位置并纠正。

通过计算,我们发现原始的4位信息位是0101。

# 习题5:数据压缩问题:如果一个文本文件包含10000个字符,每个字符使用8位编码,如何通过霍夫曼编码实现数据压缩?答案:首先,我们需要统计文本中每个字符的出现频率。

信息论与编码理论(最全试题集+带答案+各种题型)

信息论与编码理论(最全试题集+带答案+各种题型)
6.相比于模拟通信系统,简述数字通信系统的优点。
答:抗干扰能力强,中继时可再生,可消除噪声累计;差错可控制,可改善通信质量;便于加密和使用DSP处理技术;可综合传输各种信息,传送模拟系统时,只要在发送端增加莫属转换器,在接收端增加数模转换器即可。
7.简述信息的性质。
答:存在普遍性;有序性;相对性;可度量性;可扩充性;可存储、传输与携带性;可压缩性;可替代性;可扩散性;可共享性;时效性;
A.形式、含义和安全性
B.形式、载体和安全性
C.形式、含义和效用
D.内容、载体和可靠性
20.(D)是香农信息论最基本最重要的概念
A.信源B.信息C.消息D.熵
三.简答(
1.通信系统模型如下:
2.信息和消息的概念有何区别?
答:消息有两个特点:一是能被通信双方所理解,二是能够互相传递。相对于消息而言,信息是指包含在消息中的对通信者有意义的那部分内容,所以消息是信息的载体,消息中可能包含信息。
31.简单通信系统的模型包含的四部分分别为信源、有扰信道、信宿、干扰源。
32. 的后验概率与先念概率的比值的对数为 对 的互信息量。
33.在信息论中,互信息量等于自信息量减去条件自信息量。
34.当X和Y相互独立时,互信息为0。
35.信源各个离散消息的自信息量的数学期望为信源的平均信息量,也称信息熵。
第一章
一、填空(
1.1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
2.按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
3.按照信息的地位,可以把信息分成客观信息和主观信息。
4.人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

《信息论与编码理论》(王育民 李晖 梁传甲)课后习题答案 高等教育出版社

《信息论与编码理论》(王育民 李晖 梁传甲)课后习题答案 高等教育出版社

信息论与编码理论习题解第二章-信息量和熵2.1解: 平均每个符号长为:1544.0312.032=⨯+⨯秒每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以信息速率为444.34159183.0=⨯比特/秒2.2 解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=⨯比特/秒2.3 解:(a)一对骰子总点数为7的概率是366 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361 所以得到的信息量为 17.5361log 2= 比特 2.4 解: (a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为13521313521344!13C A =⨯ 所以得到的信息量为 21.134log 1313522=C 比特.2.5 解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 解: 可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得,Y X Y X Y X Y X Y X Y X Y X Y 图中X 表示白杨或白桦,它有⎪⎪⎭⎫⎝⎛37种排法,Y 表示梧桐树可以栽种的位置,它有⎪⎪⎭⎫⎝⎛58种排法,所以共有⎪⎪⎭⎫ ⎝⎛58*⎪⎪⎭⎫⎝⎛37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特 2.7 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特比特6017.02log 21412log 2141910log 1094310log 10143)11(log )11()1()10(log )10()1()01(log )01()0()00(log )00()0()(8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222222222=⨯+⨯+⨯+⨯======+=====+=====+=======+==+======+========⨯⨯+========+=========⨯⨯+========+=========+======+========⨯=========⨯=========-===⨯+====+======-===⨯+⨯====+=========x y p x y p x p x y p x y p x p x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p2.8 解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-⨯+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P2.9 & 2.12解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= 6log 2 比特 H(X)= H(X 1) = 6log 2 =2.585比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 3.2744比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 3.5993比特 所以H(Z/Y)= H(X 3)= 2.585 比特 H(Z/X) = H(X 2+X 3)= 3.2744比特 H(X/Y)=H(X)-H(Y)+H(Y/X) = 2.585-3.2744+2.585 =1.8955比特H(Z/XY)=H(Z/Y)= 2.585比特 H(XZ/Y)=H(X/Y)+H(Z/XY) =1.8955+2.585 =4.4805比特 I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 3.5993-2.585 =1.0143比特 I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744 =0.3249比特 I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y)=1.0143比特 I(Y;Z/X)=H(Z/X)-H(Z/XY) = H(X 2+X 3)-H(X 3) =3.2744-2.585 =0.6894比特 I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =02.10 解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log)()()(log )()(0)(log ),()(log ),()(22,2222=⨯⨯⨯⨯+⨯⨯⨯=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)= 3219.2110log 2=-比特2.11 解:(a )接收前一个数字为0的概率 2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-==(b )同理 418)00()()00(==∑=ii iu p u q wbits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-== (c )同理 818)000()()000(==∑=ii iu p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(4226818p p p p u p u q w ii i+-+-==∑=bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--==2.12 解:见2.9 2.13 解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式) 或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-⨯≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 3、3 设有一离散无记忆信源,U=,其熵为。考察其长为得输出序列,当时满
足下式
(a)在=0、05,=0、1 下求 (b)在=,=下求 (c)令就是序列得集合,其中
试求L=时情况(a)(b)下,T 中元素个数得上下限. 解:===0、81 bit
= ==—
= =0、471 则根据契比雪夫大数定理
0、2
001
100
a4
0、1
0001
1000
(a) 各码就是否满足异字头条件?就是否为唯一可译码?
(b) 当收到 1 时得到多少关于字母 a 得信息?
(c) 当收到 1 时得到多少关于信源得平均信息?
2、14 对于任意概率事件集 X,Y,Z,证明下述关系式成立 (a)+,给出等号成立得条件 (b)=+ (c)
证明:(b) =-
==—-
=+ (c) =-
=[—] [-]
=—
= 当=,即X给定条件下,Y 与 Z 相互独立时等号成立 (a) 上式(c)左右两边加上,可得 ++ 于就是+ 2、28 令概率空间,令 Y 就是连续随机变量。已知条件概率密度为 ,求: (a)Y 得概率密度 (b) (c) 若对 Y 做如下硬判决
求,并对结果进行解释. 解:(a) 由已知,可得
= =
=+
= (b) ==2、5 bit
=
= =2 bit =-=0、5 bit (c) 由可得到V得分布律

—1
p
1/4
再由可知
V
-1
p(V|x=-1)
1/2
p(V|x=1)
0
bit
=1 bit == 0、5 bit
0 1/2
0 1/2 1/2
1 1/4
1 0 1/2
2、29 令与就是同一事件集 U 上得两个概率分布,相应得熵分别为与。 (a)对于,证明=+就是概率分布
(b)就是相应于分布得熵,试证明+ 证明:(a) 由于与就是同一事件集 U 上得两个概率分布,于就是
0,0 =1,=1
又,则 =+0
=+=1 因此,就是概率分布. (b) =
=
(引理 2) =+
== 信息量==13、208 bit 2、9 随机掷 3 颗骰子,X 表示第一颗骰子得结果,Y表示第一与第二颗骰子得 点数之与,Z表示3颗骰子得点数之与,试求、、、、. 解:令第一第二第三颗骰子得结果分别为,,,相互独立,则,, ==6=2、585 bit
== =2(36+18+12+9+)+6 =3、2744 bit
=— 因为输入等概,由信道条件可知,
即输出等概,则=10 =
==0— = -- =25+845 ==1 bit =-=10 —1=5=2、3219 bit 2、11 令{}为一等概消息集,各消息相应被编成下述二元码字 =0000,=0011,=0101,=0110, =1001,=1010,=1100,=1111 通过转移概率为p得 BSC传送。求: (a)接收到得第一个数字 0 与之间得互信息量。 (b)接收到得前二个数字 00 与之间得互信息量。 (c)接收到得前三个数字000 与之间得互信息量. (d)接收到得前四个数字0000与之间得互信息量。 解:
(a) 在等长编码下,求二元码得最短码长.
(b) 求错误概率(误组率)。 解: (a)不含得序列 1个
长为100 得序列中含有1个得序列 =100 个 长为 100 得序列中含有 2 个得序列 =4950 个 ∴所需提供码得总数 M=1+100+4950=5051 于就是采用二元等长编码 =12、3,故取=13 (b)当长度为 100得序列中含有两个或更多得时出现错误, 因此错误概率为 =—
(a) ===1884 (b) ==4、71 (c) 由条件可知为典型序列,若设元素个数为,则根据定理
其中,,可知 (i) ,, 下边界: 上边界:= 故 (ii) ,,
= 故
3、4 对于有 4 字母得离散无记忆信源有两个码 A 与码 B,参瞧题表。
字母
概率
码A
码B
a1
0、4

1
a2
0、3
0110a3Fra bibliotek‫ﻬ‬第三章 信源编码——离散信源无失真编码
3、1 试证明长为得元等长码至多有个码字。 证:①在元码树上,第一点节点有个,第二级有,每个节点对应一个码字, 若最长码有,则函数有==,此时,所有码字对应码树中得所有节点。 ②码长为 1 得个;码长为 2 得个,…,码长为得个 ∴总共=个
3、2 设有一离散无记忆信源.若对其输出得长为 100 得事件序列中含有两个或 者少于两个得序列提供不同得码字。
解:(1) 可能得组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1} == 得到得信息量 ===2、585 bit (2) 可能得唯一,为 {6,6}
= 得到得信息量===5、17 bit 2、4 经过充分洗牌后得一副扑克(52 张),问: (a) 任何一种特定得排列所给出得信息量就是多少? (b) 若从中抽取 13 张牌,所给出得点数都不相同时得到多少信息量? 解:(a) = 信息量===225、58 bit (b)
即,,, =+= ===1+ bit == === bit == =3[1+] bit = = bit
2、12 计算习题 2、9中、、、、。 解:根据题2、9 分析 =2(++++ +++) =3、5993 bit =-=-=1、0143 bit =—=—=0、3249 bit =-=—=1、0143 bit =-=-=0、6894 bit =—=-=0 bit
第二章 信息量与熵
2、2 八元编码系统,码长为3,第一个符号用于同步,每秒1000 个码字,求它得 信息速率.
解:同步信息均相同,不含信息,因此 每个码字得信息量为 2=23=6 bit 因此,信息速率为 61000=6000 bit/s
2、3 掷一对无偏骰子,告诉您得到得总得点数为:(a) 7; (b) 12。问各得到多 少信息量。
=—=-[—] 而=,所以= 2-=1、8955 bit
或=—=+— 而= ,所以=2-=1、8955 bit ===2、585 bit =+=1、8955+2、585=4、4805 bit 2、10 设一个系统传送 10 个数字,0,1,…,9。奇数在传送过程中以 0、5 得概率错成另外一个奇数,其余正确接收,求收到一个数字平均得到得信息 量。 解:
相关文档
最新文档