全数字锁相环原理及应用讲解

合集下载

位同步数字锁相环的原理与应用

位同步数字锁相环的原理与应用

位同步数字锁相环的原理与应用数字锁相环(Digital Phase-Locked Loop,DPLL)是一种用于同步信号的控制系统。

位同步数字锁相环(Bit Synchronous Digital Phase-Locked Loop)是一种特殊类型的数字锁相环,它主要用于数据通信领域中的时钟恢复和数据恢复。

在数字通信中,时钟信号的同步非常重要。

传输过程中,由于信号经过传输介质会受到噪声、衰减等因素的影响,导致时钟信号的相位和频率发生偏移。

为了恢复信号的正确时钟,就需要使用位同步数字锁相环。

位同步数字锁相环的原理基于相位比较器和数字控制环路。

首先,接收到的信号经过采样,然后由相位比较器将采样的信号与本地时钟信号进行相位比较。

相位比较器输出的误差信号经过数字控制环路进行滤波和调整,最后控制本地时钟信号的相位和频率,使其与接收到的信号保持同步。

位同步数字锁相环广泛应用于数字通信领域中的解调器和调制器设计。

在解调器中,位同步数字锁相环用于恢复接收信号的时钟,确保数据的正确接收。

在调制器中,位同步数字锁相环用于生成发送信号的时钟,确保数据的正确发送。

位同步数字锁相环的应用不仅限于数字通信领域。

它还被广泛应用于数字音频设备、数字视频设备以及其他需要对时钟信号进行同步的领域。

在数字音频设备中,位同步数字锁相环用于恢复音频信号的时钟,确保音频数据的正确传输。

在数字视频设备中,位同步数字锁相环用于恢复视频信号的时钟,确保视频数据的正确显示。

位同步数字锁相环的优点在于精度高、稳定性好、抗干扰能力强。

相对于传统的模拟锁相环,位同步数字锁相环具有更高的抗噪声和抗干扰能力。

同时,由于数字控制环路的设计和实现较为灵活,位同步数字锁相环的性能可以根据具体应用需求进行优化。

位同步数字锁相环是一种用于同步信号的控制系统,广泛应用于数字通信、数字音频、数字视频等领域。

它的原理基于相位比较器和数字控制环路,通过比较相位误差来控制本地时钟的相位和频率,使其与接收到的信号保持同步。

基于FPGA的全数字锁相环设计与实现

基于FPGA的全数字锁相环设计与实现

基于FPGA的全数字锁相环设计与实现一、前言全数字锁相环(Digital Phase-Locked Loop,简称DPLL)是一种数字电路设计技术,可实现同步数字信号的调制和解调。

基于FPGA的全数字锁相环设计与实现,是一个极为重要的课题。

它可以有效地提高数字电路的性能,使得数字系统具有更优越的特性,并可广泛应用于数字电路的设计、数字信号的处理等领域。

二、DPLL 的体系结构DPLL是由相频检测器、滤波器、数字控制振荡器和时钟输出等多个部分组成的。

其中,相频检测器、滤波器和数字控制振荡器通常被集成到FPGA的内部,而时钟输出则需要通过FPGA的普通I/O口与市场上常见的外部输出设备相结合。

三、数字锁相环的工作原理数字锁相环的工作原理基于一个反馈循环系统,其中参考振荡器的频率与输入信号会被比较,然后通过差错检测网络来确定缺陷。

如果这些信号频率不匹配,则通过调整数字控制振荡器的频率来达到匹配。

然后,系统会根据输出信号和参考信号的相位差异来调整数字控制振荡器的频率,并通过PLL的反馈路径传输至输入端,进而得到和参考信号相同频率的输出信号。

四、数字锁相环的应用数字锁相环在通信领域有着广泛的应用,如数据码隆、数字调制、同步检测等;在数字领域,数字锁相环主要应用于数字信号处理、频谱分析、信噪比提高等方面;在电子仪器领域,数字锁相环可以被应用于测量领域、噪声分析、频率合成等方面。

五、基于FPGA的数字锁相环的设计数字锁相环的设计是一项非常复杂的工作,其中需要解决的问题主要有相频检测、低通滤波、数字控制振荡器的设计和时钟输出等方面。

在基于FPGA的数字锁相环设计过程中,可以采用很多不同的方法和技术来解决这些问题。

在数字锁相环的设计中,相频检测器是极其关键的部分,其主要功能是检测输入信号与数字控制振荡器的频率是否匹配。

其中,相频检测器常用的方式有两种:一是通过比较输入信号和数字控制振荡器的频率来实现;二是通过测量输入信号和数字控制振荡器的相位差来实现。

锁相环原理及应用

锁相环原理及应用

锁相电路(PLL)及其应用自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。

它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。

在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。

目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。

一、锁相环路的基本工作原理1.锁相环路的基本组成锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。

图1 锁相环路的基本组成框图将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。

因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。

所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。

在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。

当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。

因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。

2.锁相环路的捕捉与跟踪过程当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。

全数字锁相环结构及工作原理

全数字锁相环结构及工作原理

DPLL结构及工作原理一阶DPLL的基本结构如图1所示。

主要由鉴相器、K变模可逆计数器、脉冲加减电路和除N计数器四部分构成。

K变模计数器和脉冲加减电路的时钟分别为Mfc和2Nfc。

这里fc是环路中心频率,一般情况下M和N都是2的整数幂。

本设计中两个时钟使用相同的系统时钟信号。

图1 数字锁相环基本结构图鉴相器常用的鉴相器有两种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD),本设计中采用异或门(XOR)鉴相器。

异或门鉴相器比较输入信号Fin相位和输出信号Fout相位之间的相位差Фe=Фin-Фout,并输出误差信号Se作为K变模可逆计数器的计数方向信号。

环路锁定时,Se为一占空比50%的方波,此时的绝对相为差为90°。

因此异或门鉴相器相位差极限为±90°。

异或门鉴相器工作波形如图2所示。

图2 异或门鉴相器在环路锁定及极限相位差下的波形K变模可逆计数器K变模可逆计数器消除了鉴相器输出的相位差信号Se中的高频成分,保证环路的性能稳定。

K变模可逆计数器根据相差信号Se来进行加减运算。

当Se为低电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号CARRY给脉冲加减电路;当Se为高电平时,计数器进行减运算,如果结果为零,则输出一个借位脉冲信号BORROW给脉冲加减电路。

脉冲加减电路脉冲加减电路实现了对输入信号频率和相位的跟踪和调整,最终使输出信号锁定在输入信号的频率和信号上,工作波形如图3所示。

图3 脉冲加减电路工作波形除N计数器除N计数器对脉冲加减电路的输出IDOUT再进行N分频,得到整个环路的输出信号Fout。

同时,因为fc=IDCLOCK/2N,因此通过改变分频值N可以得到不同的环路中心频率fc。

DPLL部件的设计实现了解了DPLL的工作原理,我们就可以据此对DPLL的各部件进行设计。

DPLL 的四个主要部件中,异或门鉴相器和除N计数器的设计比较简单:异或门鉴相器就是一个异或门;除N计数器则是一个简单的N分频器。

全数字锁相环设计1

全数字锁相环设计1

全数字锁相环设计1全数字锁相环设计锁相的概念是在19世纪30年代提出的,而且很快在电子学和通信领域中获得广泛应用。

尽管基本锁相环的从开始出现几乎保持原样,但是使用不同的技术制作及满足不同的应用要求,锁相环的实现对于特定的设计还是蛮大的挑战。

锁相环在通信、雷达、测量和自动化控制等领域应用极为广泛,已经成为各种电子设备中必不可少的基本部件。

随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。

锁相环技术在众多领域得到了广泛的应用。

如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。

传统的锁相环由模拟电路实现,而全数字锁相环(DPLL)与传统的模拟电路实现的锁相环相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。

随着通讯技术、集成电路技术的飞速发展和系统芯片(SoC)的深入研究,全数字锁相环必然会在其中得到更为广泛的应用。

因此,对全数字锁相环的研究和应用得到了越来越多的关注。

传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。

对于高阶全数字锁相环,其数字滤波器常常采用基于DSP的运算电路。

这种结构的锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SOC(system on chip)的设计带来一定困难。

另一种类型的全数字锁相环是采用脉冲序列低通滤波计数电路作为环路滤波器,如随机徘徊序列滤波器、先N后M序列滤波器等。

这些电路通过对鉴相模块产生的相位误差脉冲进行计数运算,获得可控振荡器模块的振荡控制参数。

由于脉冲序列低通滤波计数方法是一个比较复杂的非线性处理过程,难以进行线性近似,因此,无法采用系统传递函数的分析方法确定锁相环的设计参数。

不能实现对高阶数字锁相环性能指标的解藕控制和分析,无法满足较高的应用需求。

第7章数字锁相环

第7章数字锁相环
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-11 数字环路滤波器一般形式
第7章 数字锁相环
3. 数字压控振荡器(DCO)数字压控振荡器的基本组 成如图7-13所示。它由频率稳定的信号钟、计数器与 比较器组成,其输出是一取样脉冲序列,脉冲周期受数字 环路滤波器送来的校正电压控制。前一个取样时刻的 校正电压将改变下一个取样时刻的脉冲时间的位置。 DCO在环路中又被称为本地受控时钟或本地参考时钟 信号。
第7章 数字锁相环
《锁相技术》
图7-2 触发器型鉴相器
第7章 数字锁相环
(2) 奈奎斯特速率抽样鉴相器。该型鉴相器组成如 图7-3所示。模数变换器(A/D)的抽样率按带通信号的取 样定理选择,以使取样后信号含有充分的输入信号相 位信息。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-3 奈奎斯特速率抽样鉴相器
图7-15 超前—滞后数字锁相环基本组成 《锁相技术》
第7章 数字锁相环
一、电路组成与说明 电路实例是数字通信中常用的一种简单的超前—滞 后位同步环路,未用序列滤波器,电路组成如图7-16所示。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-16 位同步数字环组成电路
第7章 数字锁相环
二、环路位同步原理 图7-18为图7-16方案内各点的波形图,这里为分析 简便,以均匀变换的数字脉冲序列作为输入信号,它与随 机的数字脉冲序列作用下环路取得位同步的原理是一 样的。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-7 简单二元鉴相器
第7章 数字锁相环
图 7-8 上 的 中 相 积 分 — 抽 样 — 清 除 电 路 是 用 来 判 断 DCO输出与码元转换边沿之间相位关系的。例如,中相 积分区间跨在从正到负的两个码元之间,而积分结果为 正,说明DCO时钟超前;积分结果为负,说明DCO时钟滞 后;积分结果为零,相位准确对准。

全数字锁相环原理及应用

全数字锁相环原理及应用

全数字锁相环原理及应用2011年11月18日摘要:锁相环是一种相位负反馈系统,它能够有效跟踪输入信号的相位。

随着数字集成电路的发展,全数字锁相环也得到了飞速的发展。

由于锁相精度和锁定时间这组矛盾的存在使得传统的全数字锁相环很难在保证锁定时间的情况下保证锁定精度。

鉴于此,本文对一些新结构的全数字锁相环展开研究,并用VHDL语言编程,利用FPGA仿真。

为解决软件无线电应用扩展到射频,即射频模块软件可配置的问题和CMOS工艺中由于电压裕度低、数字开关噪声大等因素,将射频和数字电路集成在一个系统中设计难度大的问题,本文尝试提出数字射频的新思路。

全数字锁相环是数字射频中最重要的模块之一,它不仅是发射机实现软件可配置通用调制器的基础,还是为接收机提供宽调频范围本振信号的基础。

本文针对数字射频中的数字锁相环的系统特性以及其各重要模块进行了研究。

关键词:全数字锁相环;锁定时间;锁定精度;PID控制;自动变模控制;数控振荡器;时间数字转换器;数字环路滤波器;FPGA;Principle and Application of all-digital phase-locked loopAbstract: Phase-Locked Loop is a negative feedback system that can effectively track the input signal’s phase. With the development of digital integrated circuits, all-digital phase-locked loop has also been rapidly developed. Because of the contradiction between the existence of phase-locked precision and phase-locked time, it makes the traditional all-digital phase-locked loop difficult to ensure the lock time meanwhile as well as phase-locked precision. So some new structures of all-digital phase-locked loop are analyzed in this paper and programmed in VHDL language with simulation under FPGA.In order to extend the application from radio to RF, which including RF modules software configurable problems and the difficulty to integrate RF and digital circuit in one system due to some factors contain the low voltage and large noise of the digital switches etc. This paper will try to put out a new thought for digital RF. All-digital phase-locked loop is one of the most important modules in digital RF. It is not only the foundation of transmitter which can be realized by software configurable general modulator, but also the foundation of receiver which can be provided wide range of local vibration signal. This paper particularly makes a study of the system character of tall-digital phase-locked loop and its vital modules.Keywords: ADPLL; Locked time; Locked precision; PID control; Auto modulus control; DCO;TDC; Digital Loop Filter; 1. 引言锁相环路是一种反馈控制电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。

数字锁相环原理

数字锁相环原理

数字锁相环原理数字锁相环(Digital Phase-Locked Loop,简称数字PLL)是一种广泛应用于通信、控制系统中的数字信号处理器。

它可以实现信号的频率和相位同步,对于数字通信系统中的时钟恢复、频率合成、信号解调等功能起着至关重要的作用。

本文将介绍数字锁相环的基本原理及其在通信系统中的应用。

数字锁相环由相位比较器、数字控制振荡器(DCO)、数字滤波器和锁定检测器组成。

其中,相位比较器用于比较输入信号和反馈信号的相位差,产生一个误差信号;数字控制振荡器根据误差信号调整输出频率;数字滤波器用于滤除噪声和抖动;锁定检测器用于检测数字锁相环是否已经锁定。

数字锁相环的工作原理可以简单描述为,首先,输入信号经过频率除法器和相位频率检测器,产生一个误差信号;然后,误差信号经过数字滤波器滤除噪声,再经过数字控制振荡器产生输出信号;最后,输出信号经过反馈回到相位比较器,形成闭环控制。

在闭环控制下,数字锁相环可以实现输入信号和输出信号的频率和相位同步。

数字锁相环在通信系统中有着广泛的应用。

在数字调制解调中,数字锁相环可以实现信号的时钟恢复和频率合成,保证接收端对发送端信号的准确解调;在频率合成器中,数字锁相环可以实现高稳定性的频率合成,满足通信系统对频率精度的要求;在通信系统中,数字锁相环还可以用于时钟同步和信号重构等功能。

总之,数字锁相环作为一种重要的数字信号处理器,在通信系统中有着广泛的应用。

它通过闭环控制实现输入信号和输出信号的频率和相位同步,保证了通信系统的稳定性和可靠性。

随着通信技术的不断发展,数字锁相环的应用范围将会更加广泛,对于提高通信系统的性能起着至关重要的作用。

通过本文的介绍,相信读者对数字锁相环的原理及其在通信系统中的应用有了更深入的了解。

数字锁相环作为一种重要的数字信号处理器,其原理简单而又实用,对于提高通信系统的性能有着重要的意义。

希望本文能对读者有所帮助,谢谢阅读!。

数字锁相环介绍

数字锁相环介绍

数字锁相环试验讲义一、锁相环的分类模拟、数字如何定义?何谓数字锁相环。

是指对模拟信号进行采样量化之后(数字化)的“数字信号”的处理中应用的锁相环,还是指的对真正的“数字信号”如时钟波形进行锁定的锁相环?二、数字锁相环的实际应用欲成其事,先明其义。

现代数字系统设计中,锁相环有什么样的作用。

1)在ASIC设计中的应用。

主要应用领域:窄带跟踪接收;锁相鉴频;载波恢复;频率合成。

例一:为了达到ASIC设计对时钟的要求,许多工程师都在他们的设计中加入了锁相环(PLL)。

PLL有很多理想的特性,例如可以倍频、纠正时钟信号的占空比以及消除时钟在分布中产生的延迟等。

这些特性使设计者们可以将价格便宜的低频晶振置于芯片外作为时钟源,然后通过在芯片中对该低频时钟源产生的信号进行倍频来得到任意更高频率的内部时钟信号。

同时,通过加入PLL,设计者还可以将建立-保持时间窗与芯片时钟源的边沿对齐,并以此来控制建立-保持时间窗和输入时钟源与输出信号之间的延迟。

2)在信号源产生方面的应用例二:由于无线电通信技术的迅速发展,对振荡信号源的要求也在不断提高。

不但要求它的频率稳定度和准确度高,而且要求能方便地改换频率。

实现频率合成有多种方法,但基本上可以归纳为直接合成法与间接合成法(锁相环路)两大类。

3)无线通信领域的实际应用例三:GSM手机的频率系统包括参考频率锁相环,射频本振锁相环、中频本振锁相环。

广义的数字锁相环包括扩频通信中的码跟踪。

三、数字锁相环的基本原理一般数字锁相环路的组成与模拟锁相环路相同,即也是由相位检波器、环路滤波器和本地振荡器等基本部件构成,但这些部件全部采用数字电路。

具体来说数字锁相环由:数字鉴相器、数字环路滤波器、NCO和分频器组成。

四、实际应用中的数字锁相环的实现方法PLL的结构和功能看起来十分简单,但实际上却非常复杂,因而即使是最好的电路设计者也很难十分顺利地完成PLL的设计。

在实际应用中,针对数字信号或数字时钟的特点,数字锁相环多采用超前滞后型吞吐脉冲的锁相环路来实现。

全数字锁相环原理及应用讲解

全数字锁相环原理及应用讲解

全数字锁相环原理及应用摘要:首先介绍全数字锁相环的结构,及各个模块的作用,接着讲述全数字锁相环的工作原理,然后介绍在全数字锁相环在调频和解调电路、频率合成器中的应用。

关键字:全数字锁相环数字环路鉴相器数字环路滤波器数字压控振荡器1.前言锁相环(PLL ,Phase Locked Loop 技术在众多领域得到了广泛的应用。

如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。

传统的锁相环由模拟电路实现,而全数字锁相环(ADPLL ,All Digital Phase Locked Loop 与传统的模拟电路实现的PLL 相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D 及D/A 转换。

随着通讯技术、集成电路技术的飞速发展和系统芯片的深入研究,全数字锁相环将会在其中得到更为广泛的应用。

2.全数字锁相环结构及原理图1 数字锁相环路的基本结构(1数字环路鉴相器(DPD )数字鉴相器也称采样鉴相器,是用来比较输入信号与压控振荡器输出信号的相位,它的输出电压是对应于这两个信号相位差的函数。

它是锁相环路中的关键部件,数字鉴相器的形式可分为:过零采样鉴相器、触发器型数字鉴相器、超前—滞后型数字鉴相器和奈奎斯特速率取样鉴相器。

(2 数字环路滤波器(DLF )数字环路滤波器在环路中对输入噪声起抑止作用,并且对环路的校正速度起调节作用。

数字滤波器是一种专门的技术,有各种各样的结构形式和设计方法。

引入数字环路滤波器和模拟锁相环路引入环路滤波器的目的一样,是作为校正网络引入环路的。

因此,合理的设计数字环路滤波器和选取合适的数字滤波器结构就能使DPLL 满足预定的系统性能要求。

(3 数字压控振荡器(DCO )数控振荡器,又称为数字钟。

它在数字环路中所处的地位相当于模拟锁相环中的压控振荡器(VCO )。

但是,它的输出是一个脉冲序列,而该输出脉冲序列的周期受数字环路滤波器送来的校正信号的控制。

锁相环技术原理及其应用

 锁相环技术原理及其应用

锁相环技术原理及其应用一、锁相环技术原理1.1 基本概念锁相环(Phase-Locked Loop,PLL)是一种调节电路,能够通过控制其输出信号相位与参考信号相位之间的差值,使输出信号频率与参考信号频率一致,并且其输出信号相位与参考信号精确同步。

锁相环可以用于频率合成、时钟恢复、数字信号处理、射频通信等领域。

1.2 工作原理锁相环主要由相位比较器、低通滤波器、时钟发生器、可变增益放大器和电压控制振荡器等组成。

其中,相位比较器的作用是将参考信号和反馈信号进行比较,然后得到相位误差信号。

低通滤波器的作用是将相位误差信号进行平滑处理,得到直流误差信号。

时钟发生器的作用是产生参考信号。

可变增益放大器的作用是将误差信号放大后作为电压控制振荡器的控制电压。

电压控制振荡器的作用是产生锁相环输出信号,并且通过调节电压来控制输出信号的频率和相位。

1.3 稳定性分析锁相环的稳定性与参考信号的稳定性和相位比较器的带宽以及低通滤波器的截止频率等因素有关。

稳定性分析主要是评估锁相环输出信号的频率精度和相位噪声。

二、锁相环技术应用2.1 频率合成频率合成是利用锁相环技术将一个较低频率信号转换为高频率信号。

其中,参考信号是一个较低频率信号,产生参考信号的时钟发生器经过倍频器将参考信号的频率增加到所需的合成频率,然后经过相位比较器和滤波器控制电压控制振荡器的输出频率。

频率合成广泛应用于通信、广播、雷达、卫星导航等领域。

2.2 时钟恢复时钟恢复是一种将时钟信号从数据信号中恢复出来的技术。

锁相环可以通过将数据信号作为反馈信号,将时钟信号从数据信号中恢复出来。

时钟恢复广泛应用于数字通信和数字音频领域。

2.3 数字信号处理锁相环可以通过将输入信号与锁相环输出信号相比较,将输入信号变换的频率和相位误差降到很小,从而使输入信号的相位和频率与输入信号一致。

锁相环广泛应用于数字信号处理,例如数字滤波器、数字混频器、数字降噪器等。

2.4 射频通信锁相环在射频通信中的应用非常广泛,主要用于频率合成、时钟恢复等领域。

锁相环基本原理及其应用

锁相环基本原理及其应用

锁相环及其应用所谓锁相环路,实际是指自动相位控制电路(APC),它是利用两个电信号的相位误差,通过环路自身调整作用,实现频率准确跟踪的系统,称该系统为锁相环路,简称环路,通常用PLL表示。

锁相环路是由鉴相器(简称PD)、环路滤波器(简称LPF或LF)和压控振荡器(简称VCO)三个部件组成闭合系统。

这是一个基本环路,其各种形式均由它变化而来PLL概念设环路输入信号v i= V im sin(ωi t+φi)环路输出信号v o= V om sin(ωo t+φo)——其中ωo=ωr+△ωo通过相位反馈控制,最终使相位保持同步,实现了受控频率准确跟踪基准信号频率的自动控制系统称为锁相环路。

PLL构成由鉴相器(PD)环路滤波器(LPF)压控振荡器(VCO)组成的环路。

PLL原理从捕捉过程→锁定A.捕捉过程(是失锁的)a.φi┈φi均是随时间变化的,经相位比较产生误差相位φe=φi-φo,也是变化的。

b.φe(t)由鉴相器产生误差电压v d(t)=f(φe)完成相位误差—电压的变换作用。

v d(t)为交流电压。

c. vd(t)经环路滤波,滤除高频分量和干扰噪声得到纯净控制电压,由VCO产生控制角频差△ω0,使ω0随ωi变化。

B.锁定(即相位稳定)a.一旦锁定φe(t)=φe∞(很小常数)v d(t)= V d(直流电压)b.ω0≡ωi输出频率恒等于输入频率(无角频差,同时控制角频差为最大△ω0max, 即ω0=ωr+△ω0max。

ωr为VCO固有振荡角频率。

)锁相基本组成和基本方程(时域)各基本组成部件鉴相器(PD)数学模式v d(t)=A D sinφe(t)相位模式环路滤波器(LPF)数学模式v c(t)=A F(P)v d(t)相位模式压控振荡器(VCO)数学模式相位模式环路模型相位模式:指锁相环(PLL)输入相位和输出相位的反馈调节关系。

相位模型:把鉴相器,环路滤波器和压控振荡器三个部件的相位模型依次级联起来就构成锁相相位模型。

一文让你彻底明白“什么是锁相环PLL及其工作原理”

一文让你彻底明白“什么是锁相环PLL及其工作原理”

一文让你彻底明白“什么是锁相环PLL及其工作原理”锁相环(Phase-Locked Loop,简称PLL)是一种广泛应用于通信、数据传输、时钟同步等领域的电子电路。

它在这些应用中起着重要的作用,可以解决信号同步、频率合成、相位调制等问题。

本文将详细介绍什么是锁相环、它的工作原理,以及一些常见的应用场景。

一、什么是锁相环锁相环是一种反馈控制系统,通过比较输入信号的相位与参考信号的相位之间的差异来调整输出信号的相位和频率,使得输出信号与参考信号保持相位和频率的一致。

原理上,锁相环通过不断采样输入信号,并将其与参考信号进行比较,然后根据比较结果调整输出信号的相位和频率。

通过这种方式,锁相环可以将输入信号的频率和相位稳定在与参考信号一致的状态下。

一般来说,锁相环由锁相检测器、低通滤波器、电压控制振荡器和频率分割器等主要组成。

二、锁相环的工作原理1. 锁相检测器(Phase Detector):锁相检测器是锁相环的核心部分。

它用于比较输入信号的相位差异,并产生一个误差信号。

常见的锁相检测器有相位比较器、采样比较器等。

相位比较器将输入信号和参考信号进行比较,并输出一个高电平或低电平的信号,表示输入信号相位与参考信号的相位关系。

2. 低通滤波器(Low Pass Filter):低通滤波器用于平滑锁相检测器输出的误差信号,减小噪声的影响。

它通过将误差信号经过滤波器,然后输出平滑后的信号给电压控制振荡器。

3. 电压控制振荡器(Voltage-Controlled Oscillator,简称VCO):电压控制振荡器是锁相环的另一个关键组件。

它的输出频率与输入电压成线性关系,即输出频率随着输入电压的变化而变化。

通过改变电压控制振荡器的输入电压,即通过低通滤波器输出的信号,可以调整输出信号的频率,从而使得输出信号与参考信号的频率一致。

4. 频率分割器(Frequency Divider):频率分割器用于将电压控制振荡器的输出频率分割成较低的频率。

锁相环PLL原理与应用ppt

锁相环PLL原理与应用ppt

其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
这种情况应认为是“失锁”。只有出现两 个同频的稳定波形时才认为是“锁定
捕捉带的测量
• 环路失锁后,缓慢改变信号源频率,
从高端或低端向4046A的中心
频率靠近,当信号源频率分别为fP H和fPL时,环路又锁定。则环路捕 捉带ΔfP = fPH-fPLfPH fHH
f
ωn、ξ的测量
捕捉带
• 失锁时,ωoωi,如果从两个方向 设法改变ωi,使ωi向ωo靠拢,进 而使ωo =(ωi-ωo),当ωo 小到某一数值时,环路则从失锁进 入锁定状态。这个使PLL经过频率 牵引最终导致入锁的频率范围称为 捕捉带ωp。
同步带ωH,捕捉带ωp 和VCO 中 心频率ωo的 关系
o P
H
-
实验原理及步骤 P(4)
9V
9V
10K
W1
10K
Ui
T
16 15 14 13 12 11 10
9
Ui 100u
4046B
A1
12345678
UF
A2
P(8)
1n
9V
1M
10K
16 15 14 13 12 11 10 9
4046A 12345678
100K
Uf 100K
510 4n7
1n 9V
100K
100K
9V 10K
W2 10K

锁相环原理及应用

锁相环原理及应用

锁相环原理及应用锁相环(Phase-Locked Loop,PLL)是一种电子电路,主要用于调整频率和相位,使其与输入信号同步,并用来提供高精度的时钟和频率合成。

锁相环的原理是通过不断比较参考信号和输出信号的相位差,并通过反馈控制来调整输出信号的频率和相位,使输出信号与参考信号保持稳定的相位关系。

锁相环通常由相位比较器、低通滤波器、控制电压发生器、振荡器等组成。

锁相环的工作过程可以简单描述为以下几个步骤:1.相位比较:输入信号与参考信号经过相位比较器,比较它们之间的相位差。

2.滤波调整:比较结果经过低通滤波器,得到一个控制电压,该控制电压用于调整振荡器的频率和相位。

3.振荡器反馈:通过控制电压调整振荡器的频率和相位,使输出信号与参考信号保持稳定的相位关系。

4.输出信号:输出信号作为锁相环的输出,可以用于时钟同步、频率合成等应用。

锁相环具有许多应用。

以下是一些常见的应用案例:1.时钟同步:在数字系统中,锁相环常用于同步时钟信号,确保各个子系统的时钟一致,避免数据传输错误和时序问题。

2.频率合成:通过锁相环可以将一个低频信号合成为一个高频信号,常用于通信系统、雷达、音视频处理等领域。

3.相位调制和解调:锁相环可以用于实现相位调制和解调,常用于无线通信系统和调制解调器等。

4.频率跟踪和捕获:锁相环可以自动跟踪输入信号的频率变化并调整输出信号的频率,用于跟踪和捕获频率变化较快的信号。

锁相环的优点是可以实现高精度的频率和相位调整,对于精密测量、通信系统等需要高稳定性、高精度的应用非常重要。

然而,锁相环也存在一些局限性,比如锁定时间相对较长,对噪声和干扰较敏感,需要合适的滤波器和设计来提高性能。

综上所述,锁相环是一种基于反馈控制的电子电路,通过比较输入信号和参考信号的相位差来调整输出信号的频率和相位。

它在时钟同步、频率合成、相位调制解调、频率跟踪捕获等应用中起到重要作用。

锁相环的原理和应用对于理解和设计高精度的电子系统非常关键。

数字锁相环原理

数字锁相环原理

数字锁相环原理数字锁相环(Digital Phase-Locked Loop,简称DPLL)是一种常见的数字信号处理技术,广泛应用于通信、雷达、导航、测量等领域。

它通过对输入信号进行频率和相位的跟踪和控制,实现信号的精确同步和解调。

本文将介绍数字锁相环的基本原理及其工作过程。

数字锁相环由相位比较器、数字控制振荡器(NCO)、低通滤波器和反馈控制电路等组成。

其工作原理可以简单描述为,首先,输入信号与NCO产生的参考信号经相位比较器比较,得到相位误差信号;然后,相位误差信号经过低通滤波器滤波处理,得到控制电压;最后,控制电压作用于NCO,调整其输出频率和相位,使得输入信号与参考信号同步。

整个过程不断迭代,直至达到稳定状态。

在数字锁相环中,相位比较器起着关键作用。

它能够准确比较输入信号和参考信号的相位差,并将其转换为数字形式的相位误差信号。

常见的相位比较器有边沿比较器、恒定增益比较器等,它们在不同应用场景下具有各自的优势和特点。

另外,NCO也是数字锁相环中的核心部件之一。

它能够根据控制电压实时调整输出信号的频率和相位,实现对输入信号的精确跟踪和同步。

NCO通常由相位累加器、频率控制器和相位控制器组成,通过对这些部件的协同工作,实现对输出信号的高精度控制。

低通滤波器在数字锁相环中也扮演着重要角色。

它能够滤除控制电压中的高频噪声,使得NCO的调节过程更加平稳和稳定。

低通滤波器的设计与参数选择对数字锁相环的性能影响巨大,需要根据具体应用需求进行合理设计和优化。

最后,反馈控制电路用于将经过滤波处理的控制电压反馈给NCO,实现闭环控制。

它能够实时监测和调节NCO的输出,保证数字锁相环在动态和静态条件下都能够稳定工作。

反馈控制电路的设计和调试是数字锁相环工程实践中的重要环节,直接关系到系统性能和稳定性。

综上所述,数字锁相环作为一种重要的数字信号处理技术,在现代通信和控制系统中发挥着不可替代的作用。

通过对其基本原理和工作过程的深入理解,可以更好地应用和优化数字锁相环,为工程实践提供有力支持。

锁相环工作原理

锁相环工作原理

锁相环工作原理锁相环是一种常用于频率合成和时钟恢复的电路,它能够将输入信号的相位和频率与参考信号同步。

在本文中,我们将详细介绍锁相环的工作原理及其应用。

一、锁相环的基本组成部分锁相环主要由相位比较器、环路滤波器、电压控制振荡器(VCO)以及分频器组成。

1. 相位比较器(Phase Detector)相位比较器是锁相环的核心部分,其作用是将输入信号与参考信号进行相位比较,并输出一个误差信号。

常见的相位比较器有边沿比较器、乘法器和加法器等。

2. 环路滤波器(Loop Filter)环路滤波器的作用是对相位比较器输出的误差信号进行滤波和放大,以产生稳定的控制电压。

通常,环路滤波器由低通滤波器和放大器组成。

3. 电压控制振荡器(Voltage Controlled Oscillator,VCO)电压控制振荡器是一种根据输入电压的变化而改变输出频率的电路。

在锁相环中,VCO的输出频率受到环路滤波器输出的控制电压的调节。

4. 分频器(Divider)分频器将VCO的输出信号进行分频,以产生参考信号。

分频器通常使用可编程分频器,可以根据需要选择不同的分频比。

二、锁相环的工作原理锁相环的工作原理可以简单地描述为以下几个步骤:1. 初始状态锁相环的初始状态是未锁定状态,VCO的输出频率与参考信号的频率存在差异,相位比较器输出的误差信号不为零。

2. 相位比较相位比较器将输入信号与参考信号进行相位比较,产生一个误差信号。

误差信号的幅度和相位表示了输入信号与参考信号之间的差异。

3. 环路滤波误差信号经过环路滤波器进行滤波和放大,产生一个稳定的控制电压。

该控制电压的大小和极性取决于输入信号与参考信号之间的相位差。

4. 控制VCO控制电压作用于VCO,调节其输出频率。

当控制电压为正时,VCO的输出频率增加;当控制电压为负时,VCO的输出频率减小。

5. 反馈VCO的输出信号经过分频器进行分频,产生一个参考信号。

该参考信号与输入信号进行比较,形成反馈回路。

锁相环工作原理

锁相环工作原理

锁相环工作原理引言概述:锁相环(Phase-Locked Loop,简称PLL)是一种常见的电子电路,用于同步信号的频率和相位。

它在通信系统、数字信号处理、时钟同步等领域被广泛应用。

本文将详细介绍锁相环的工作原理,包括基本原理、主要组成部分、工作过程以及应用场景。

一、基本原理:1.1 反馈环路:锁相环的核心是一个反馈环路,通过不断调整输入信号的频率和相位,使其与参考信号保持同步。

这个环路由比较器、低通滤波器和控制电路组成。

1.2 相位检测器:相位检测器用于比较输入信号和参考信号的相位差,产生一个误差信号。

根据误差信号的大小和方向,控制电路将调整输入信号的相位和频率。

1.3 数字控制:现代锁相环通常采用数字控制,通过数字控制器和数字控制电路,实现对反馈环路的精确控制。

数字控制还可以实现自适应调整,提高锁相环的性能。

二、主要组成部分:2.1 振荡器:振荡器是锁相环的基础,它产生一个参考信号,用于与输入信号进行比较。

常见的振荡器有晶体振荡器和压控振荡器,前者具有稳定的频率,适用于需要高精度的应用,而后者可以通过调节电压来改变频率,适用于需要频率可调的应用。

2.2 分频器:分频器用于将输入信号的频率降低到与参考信号相匹配的频率。

它可以将输入信号分成若干个相等的周期,用于和参考信号进行比较。

2.3 低通滤波器:低通滤波器用于滤除相位检测器输出中的高频噪声,保留误差信号中的低频成分。

它可以使锁相环的输出更加稳定。

三、工作过程:3.1 初始状态:锁相环初始状态下,输入信号和参考信号的频率和相位存在差异。

相位检测器会检测到相位差,并产生一个误差信号。

3.2 调整过程:控制电路根据误差信号的大小和方向,调整输入信号的相位和频率。

通过不断调整,误差信号逐渐减小,直到达到稳定状态。

3.3 稳定状态:当输入信号和参考信号的频率和相位完全一致时,锁相环进入稳定状态。

此时,输出信号与参考信号保持同步,相位差为零。

四、应用场景:4.1 通信系统:锁相环在通信系统中用于频率合成、时钟恢复和信号调制等方面。

《数字锁相环》课件

《数字锁相环》课件

分数型PLL
分数型锁相环可以产生2的倍 数及其分数倍关系的频率, 例如1/2、1/4和1/8。
预定频率调整
锁相环通常能够以非常高的 准确性来调整输出频率,从 而适应各种应用需求。抖动问题Fra bibliotek什么是抖动
抖动是电子设备中不规则的时序 误差,可能导致信号的不稳定和 失真。
抖动的表现形式
通常以相位噪声、时钟抖动和计 数噪声等形式出现。
现代PLL芯片
20世纪90年代,现代PLL芯片逐 渐成为通用芯片
应用领域
通信
数字锁相环广泛用于现代数字通信系统中,如 调制解调器、数字电视、蓝牙,等等。
信号生成
数字锁相环可以生成高稳定度和精度的信号源, 例如射频信号合成器、稳定时钟、频率合成器, 等等。
测量仪器
数字锁相环在测量仪表中用来锁定参考信号和 待测信号,提高测量的精度和稳定性。
抖动抑制技术
数字锁相环可以采用各种方法来 抑制抖动,例如环路滤波、多倍 于分频、相位差控制,等等。
未来发展
1 基于深度学习的PLL自优化
使用人工智能技术优化PLL,以提高其各项性能。
2 集成数字锁相环
数字锁相环将更多地集成到芯片中,以降低成本和复杂度。
3 超低功耗数字锁相环
为便携式设备提供更高效和更能耗的数字锁相环方案。
数字锁相环比模拟锁相环具有更 高的灵活性、可编程性和可靠性。
相位控制
1
相位同步
相位锁定器偏置相位
2
相位差拍频
锁相环给出调整电压
3
调整VC O 的频率和相位
调整VCO的控制电压,以提供稳定性输出信号
频率合成器
整数型PLL
整数型锁相环能够产生与参 考频率fref具有整数倍关系的 纯净输出频率fout。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全数字锁相环原理及应用
摘要:首先介绍全数字锁相环的结构,及各个模块的作用,接着讲述全数字锁相环的工作原理,然后介绍在全数字锁相环在调频和解调电路、频率合成器中的应用。

关键字:全数字锁相环数字环路鉴相器数字环路滤波器数字压控振荡器
1.前言
锁相环(PLL ,Phase Locked Loop 技术在众多领域得到了广泛的应用。

如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。

传统的锁相环由模拟电路实现,而全数字锁相环(ADPLL ,All Digital Phase Locked Loop 与传统的模拟电路实现的PLL 相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D 及D/A 转换。

随着通讯技术、集成电路技术的飞速发展和系统芯片的深入研究,全数字锁相环将会在其中得到更为广泛的应用。

2.全数字锁相环结构及原理
图1 数字锁相环路的基本结构
(1数字环路鉴相器(DPD )
数字鉴相器也称采样鉴相器,是用来比较输入信号与压控振荡器输出信号的相位,它的输出电压是对应于这两个信号相位差的函数。

它是锁相环路中的关键部件,数字鉴相器的形式可分为:过零采样鉴相器、触发器型数字鉴相器、超前—滞后型数字鉴相器和奈奎斯特速率取样鉴相器。

(2 数字环路滤波器(DLF )
数字环路滤波器在环路中对输入噪声起抑止作用,并且对环路的校正速度起调节作用。

数字滤波器是一种专门的技术,有各种各样的结构形式和设计方法。

引入数字环路滤波器和模拟锁相环路引入环路滤波器的目的一样,是作为校正网
络引入环路的。

因此,合理的设计数字环路滤波器和选取合适的数字滤波器结构就能使DPLL 满足预定的系统性能要求。

(3 数字压控振荡器(DCO )
数控振荡器,又称为数字钟。

它在数字环路中所处的地位相当于模拟锁相环中的压控振荡器(VCO )。

但是,它的输出是一个脉冲序列,而该输出脉冲序列的周期受数字环路滤波器送来的校正信号的控制。

其控制特点是:前一采样时刻得到的校正信号将改变下一个采样时刻的脉冲时间位置。

全数字锁相环工作原理
全数字锁相环的基本工作过程如下:
(1 设输入信号ui (t 和本振信号(数字压控振荡器输出信号)u o (t 分别是正弦和余弦信号,他们在数字鉴相器内进行比较,数字鉴相器的输出是一个与两者间的相位差成比例的电压u d (t。

(2 数字环路滤波器除数字鉴相器输出中的高频分量,然后把输出电压u
c (t 加
到数字压控振荡器的输出端,数字压控振荡器的本振信号频率随着输入电压的变化而变化。

如果两者频率不一致,则数字鉴相器的输出将产生低频变化分量,并通过低通滤波器使DCO 的频率发生变化。

只要环路设计恰当,则这种变化将使本振信号u o (t 的频率与数字鉴相器输入信号u i (t 的频率一致。

(3最后,如果本振信号的频率和输入信号的频率完全一致,两者的相位差将保持某一个恒定值,则数字鉴相器的输出将是一个恒定直流电压 (忽略高频分量),数字环路滤波器的输出也是一个直流电压,DCO 的频率也将停止变化,这时,环路处于“锁定状态”。

3.全数字锁相环的特点及应用
全数字化锁相环的共同特点
(1 电路完全数字化,使用逻辑门电路和触发器电路。

系统中只有“导通”和“截止”两种工作状态,受外界和电源的干扰的可能性大大减小,电路容易集成,易于制成全集成化的单片全数字锁相环路。

因而系统的可靠性大大提高。

(2全数字锁相环路还缓和甚至消除了模拟锁相环路中电压控制振荡器
( VCO )的非线性以及环路中使用运算放大器和晶体管后而出现的饱和及运算放大器和鉴相器的零漂等对环路性能的影响。

(3数字锁相环路的环路部件甚至整个环路都可以直接用微处理机来模拟而实现。

(4全数字锁相环路中,因模拟量转变为数字量所引入的量化误差和离散控制造成的误差,只要系统设计得当,均可以被忽略。

全数字化锁相环的在实际工程中的应用
目前,全数字锁相环路( A DPLL )已在数字通信、无线电电子学及电力系
统自动化等领域中得到了极为广泛的应用。

A DPLL 具有精度高、不受温度和电压影响、环路带宽和中心编程频率可调、易于构建高阶锁相环等优点。

随着集成电路技术的发展,不仅能够制成频率较高的单片集成锁相环路,而且可以把整个系统集成到一个芯片上去。

全数字锁相环在调频和解调电路中的应用
图3 调频电路框图
全数字锁相环在频率合成电路中的应用
在现代电子技术中,为了得到高精度的振荡频率,通常采用石英晶体振荡器。

但石英晶体振荡器的频率不容易改变,利用锁相环、倍频、分频等频率合
成技术,可以获得多频率、高稳定的振荡信号输出。

输出信号频率比晶振信号频率大的称为锁相倍频器电路;输出信号频率比晶振
信号频率小的称为锁相分频器电路。

锁相倍频和锁相分频电路组成框图如图4 所示:
图4 锁相倍频分频电路组成框图
f i =Nfo
注:图中的N 大于1时,为分频电路;当N 小于1时为倍频电路。

4.总结
本文主要介绍了全数字锁相环的原理及在工程中应用,随着科技的发展,根据不同的需要,单片集成全数字锁相环的商用产品越来越多,它具有精度高、不受温度和电压影响、环路带宽和中心编程频率可调、易于构建高阶锁相环等优点。

应用变得越来越广泛。

参考文献
[1]Floyd M.Gardner著,姚剑清译. 锁相环技术. 北京:人民邮电出版社,
2007.11
[2]黄智伟. 锁相环与频率合成器电路设计. 西安:西安电子科大学出版社,
2008.1
[3]王杰敏. 全数字锁相环的设计. 通信电源技术,2009.03
[4]蒲晓婷. 全数字锁相环的设计及分析. 现代电子技术,2008.05。

相关文档
最新文档