杭州市采荷实验中学数学几何模型压轴题易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州市采荷实验中学数学几何模型压轴题易错题(Word版含答
案)
一、初三数学旋转易错题压轴题(难)
1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,
AP=1
3
AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,
连接PC,且ABE为等边三角形.
(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.
(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图②,当点P在A的左侧时,若△PBC的面积为
93,求线段AC的长.
【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)
7 7
【解析】
【分析】
(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;
(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;
(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.
【详解】
解:(1)∵△ABE是等边三角形,
∴∠ABE=60°,AB=BE,
∵将线段BP绕点B顺时针旋转60°得到BC,
∴∠CBP=60°,BC=BP,
∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,
即∠ABP=∠EBC,
∴△ABP≌△EBC(SAS),
∴AP=EC;
故答案为:∠ABP=∠EBC,AP=EC;
(2)成立,理由如下,
∵△ABE是等边三角形,
∴∠ABE=60°,AB=BE,
∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,
∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,
∴△ABP≌△EBC(SAS),
∴AP=EC;
(3)过点C作CD⊥m于D,
∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,
∴
3
4
PC293
∴PC=3,
设AP=CE=t,则AB=AE=3t,∴AC=2t,
∵m∥n,
∴∠CAD=∠AEB=60°,
∴AD=1
2
AC=t,CD33,
∵PD2+CD2=PC2,∴(2t)2+3t2=9,
∴t 37
(负值舍去),
∴AC=2t=
7
7
.
【点睛】
本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾
股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.
2.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是
_________;
(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;
(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.
【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)
492
【解析】
【分析】
(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;
(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;
(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.
【详解】
(1)PM PN =,PM PN ⊥;
已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12
PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠
在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =
可得BD EC =,90DCE ADC ∠+∠=︒
即得PM PN =,PM PN ⊥
故答案为:PM PN =;PM PN ⊥.
(2)等腰直角三角形,理由如下:
由旋转可得BAD CAE ∠=∠,
又AB AC =,AD AE =
∴BAD CAE ∆∆≌
∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点
∴PM 是DCE ∆的中位线
∴12
PM CE =,且//PM CE , 同理可证12PN BD =
,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,
∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,
DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,
∴
90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,
即PMN ∆为等腰直角三角形.
(3)把ADE ∆绕点A 旋转的如图的位置,
此时1()72PN AD AB =+=,1()72
PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为
1497722⨯⨯=. 【点睛】
本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.
3.如图,四边形ABCD 为正方形,△AEF 为等腰直角三角形,∠AEF =90°,连接FC ,G