傅里叶变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换
法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明
多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。[
它具有很多好的性质,例如:
收敛性
傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:
在任何周期内,x(t)须绝对可积;
傅里叶级数
在任一有限区间中,x(t)只能取有限个最大值或最小值;
在任何有限区间上,x(t)只能有有限个第一类间断点。
吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。
正交性
所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。
傅里叶级数
一组n个互相正交的向量必然是线形无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线性表出。
傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。任意的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
在工程实际中经常遇到的模拟信号xn(t),其频谱函数Xn(jΩ)也是连续函数,为了利用DFT对xn(t)进行谱分析,对xn(t)进行时域采样得到x(n)= xn(nT),再对x(n)进行DFT,得到X(k)则是x(n)的傅里叶变换X(ejω)在频率区间[0,2π]上的N点等间隔采样,这里x(n)和X(k)都是有限长序列
然而,傅里叶变换理论证明,时间有限长的信号其频谱是无限宽的,反之,弱信号的频谱有限款的则其持续时间将为无限长,因此,按采样定理采样时,采样序列应为无限长,这不满足DFT的条件。实际中,对于频谱很宽的信号,为防止时域采样后产生‘频谱混叠’,一般用前置滤波器滤除幅度较小的高频成分,使信号的贷款小于折叠频率;同样对于持续时间很长的信号,采样点数太多也会导致存储和计算困难,一般也是截取有限点进行计算。上述可以看出,用DFT对模拟信号进行谱分析,只能是近似的,其近似程度取决于信号带宽、采样频率和截取长度
模拟信号xn(t)的傅里叶变换对为
X(jΩ)={-∞,+∞}x(t)*exp^-jΩt dt
x(t)=1/2π{-∞,+∞} X(JΩ)*e^jΩt dt
用DFT方法计算这对变换对的方法如下:
(a)对xn(t)以T为间隔进行采样,即xn(t)|t=nT= xa(nT)= x(n),由于
t→nT,dt→T, {-∞,+∞}→∑n={-∞,+∞}
因此得到
X(jΩ)≈∑n={-∞,+∞}x(nT)*exp^-jΩnT*T
x(nT)≈1/2π{0, Ωs} X(JΩ)*e^jΩnT Dω
(b)将序列x(n)= xn(t)截断成包含有N个抽样点的有限长序列
X(jΩ)≈T∑n={0,N-1}x(nT)*exp^-jΩnT*T
由于时域抽样,抽样频率为fs=1/T,则频域产生以fs为周期的周期延拓,如果频域是带限信号,则有可能不产生频谱混叠,成为连续周期频谱序列,频谱的周期为fs=1/T (c)为了数值计算,频域上也要抽样,即在频域的一个周期中取N个样点,fs=NF0,每个样点间隔为F0,频域抽样使频域的积分式变成求和式,而在时域就得到原来已经截断的离散时间序列的周期延拓,时间周期为T0=1/F0。因此有
Ω→kΩ0,dΩ→Ω0,{-∞,+∞} dΩ→∑n={-∞,+∞}Ω0
T0=1/F0=N/fs=NT
Ω0=2ΠF0
Ω0T=Ω0/fs=2π/N
X(jkΩ0)≈T∑n={0,N-1}x(nT)*exp^-jkΩ0nT
傅里叶级数的信号还原及信号还原在量子力用
Fourier transform is a time-domain signal is decomposed into different frequency sine or cosine function of the sum. Consecutive cases requiring original signal absolute integrable condition in a cycle. The discrete case, the Fourier transform must exist. Gonzalez version < > image processing in the interpretation of the very image of a good metaphor is