随机事件的概率测试题

合集下载

【高考数学】概率典型例题整合

【高考数学】概率典型例题整合

概念、方法、题型、易误点及应试技巧总结十一、概率1.随机事件A 的概率0()1P A ≤≤,其中当()1P A =时称为必然事件;当()0P A =时称为不可能事件P(A)=0;2.等可能事件的概率(古典概率): P(A)=nm 。

理解这里m 、n的意义。

如(1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是______(答:38);(2)设10件产品中有4件次品,6件正品,求下列事件的概率:①从中任取2件都是次品;②从中任取5件恰有2件次品;③从中有放回地任取3件至少有2件次品;④从中依次取5件恰有2件次品。

(答:①215;②1021;③44125;④1021) 3、互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生)。

计算公式:P (A +B )=P (A )+P (B )。

如(1)有A 、B 两个口袋,A 袋中有4个白球和2个黑球,B 袋中有3个白球和4个黑球,从A 、B 袋中各取两个球交换后,求A 袋中仍装有4个白球的概率。

(答:821);(2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)______(答:0.51);(3)有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n 个人正在使用电话或等待使用的概率为P (n ),且P (n )与时刻t 无关,统计得到 ()()10,1520,6nP n P n n ⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪≥⎩,那么在某一时刻,这个公用电话亭里一个人也没有的概率P (0)的值是 (答:3263) 4、对立事件:(A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生)。

计算公式是:P (A )+ P(B)=1;P (A )=1-P (A );5、独立事件:(事件A 、B 的发生相互独立,互不影响)P(A •B)=P(A) • P(B) 。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

高一数学随机事件及其概率试题

高一数学随机事件及其概率试题

高一数学随机事件及其概率试题1.某环靶由中心圆Ⅰ和两个同心圆环Ⅱ、圆环Ⅲ构成,某射手命中区域Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则该射手射击一次未命中环靶的概率为()A.0.1B.0.65C.0.70D.0.75【答案】A【解析】由对立事件概率计算公式得,射手射击一次未命中环靶的概率为1-(0.35+0.30+0.25)=0.1,故选A。

【考点】本题主要考查对立事件的概念及其概率计算公式。

点评:“射手射击一次未命中环靶”就是“脱靶”。

2.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是.【答案】2=21种选法,【解析】∵从7人中选2人共有C72=6种选法从4个男生中选2人共有C4∴没有女生的概率是=,∴至少有1名女生当选的概率1-=。

【考点】本题主要考查古典概型及其概率计算公式。

点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

3.下列事件属于不可能事件的为A.连续投掷骰子两次,掷得的点数和为4B.连续投掷骰子两次,掷得的点数和为8C.连续投掷骰子两次,掷得的点数和为12D.连续投掷骰子两次,掷得的点数和为16【答案】D【解析】骰子点数的最大值为6,两次点数和的最大值为12,不可能为16。

【考点】随机事件、不可能事件点评:解答本题要正确区分和理解随机事件、必然事件和不可能事件。

4.给出下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A、B、C,满足AÍB,BÍC,则AÍC;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥7月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有A.4个 B.4个 C.5个 D.6个【答案】C【解析】⑤是必然事件;任意两奇数的和都是偶数,所以⑦是必然事件;①②③⑥⑧为随机事件,故选C。

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案1.设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求:(1))(B A P ;(2))(B A P .解:(1) )(A P =)(1A P -= 0.4)(B A P = )(A P )(A B P =0.4 ⨯0.2 = 0.08 (2) )(B A P =1-)(B A P= 1 - )()(B P B A P =1-8.008.0= 0.92.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率.解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-= 745.0255.01131238=-=-=CC .(2))()()()(3232A P A P A A P B P +=+= 273.0018.0255.0255.031234=+=+CC .3.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率.解:设A i :“是第i 台车床加工的零件”(,)i =12,B :“零件是合格品”.由全概公式有 P B P A P B A P A P B A ()()()()()=+1122 显然43)(1=A P ,41)(2=A P ,99.0)(1=AB P ,P B A ().2098=,故9875.098.04199.043)(=⨯+⨯=B P4.一袋中有9个球,其中6个黑球3个白球.今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率. 解:设如下事件:i A :“第i 次抽取出的是白球”(2,1=i ) 显然有93)(1=A P ,由全概公式得)()()()()(1211212A A P A P A A P A P A P += 3183328231=⨯+⨯=5.设)4,3(~N X ,试求⑴)95(<<X P ;⑵)7(>X P .(已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:⑴)3231()23923235()95(<-<=-<-<-=<<X P X P X P1574.08413.09987.0)1()3(=-=Φ-Φ= ⑵)23723()7(->-=>X P X P)223(1)223(≤--=>-=X P X P0228.09772.01)2(1=-=Φ-= 6.设随机变量X 的概率密度函数为⎩⎨⎧≤≤=其它10)(2x Ax x f求(1)A ;(2))(X E ;(3))(X D .解: (1)由1331d d )(11312=====⎰⎰∞+∞-A xAx Ax x x f ,得出3=A(2) =)(X E 4343d 3d )(1412==⋅=⎰⎰∞+∞-xx x x x x xf(3)=)(2X E 5353d 315212==⋅⎰xx x x80316953))(()()(22=-=-=X E X E X D7.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ). 解:(1)P (1< X < 7)=)23723231(-<-<-X P=)2231(<-<-X P =)1()2(-Φ-Φ= 0.9973 + 0.8413 – 1 = 0.8386 (2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9所以28.123=-a ,a = 3 + 28.12⨯ = 5.568.从正态总体N (μ,9)中抽取容量为64的样本,计算样本均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u ) 解:已知3=σ,n = 64,且nx u σμ-= ~ )1,0(N因为 x = 21,96.121=-αu,且735.064396.121=⨯=-nuσα所以,置信度为95%的μ的置信区间为: ]735.21,265.20[],[2121=+---nux nux σσαα.9.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm ,标准差为0.15cm .从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4 问:该机工作是否正常(05.0=α, 96.1975.0=u )?解:零假设5.10:0=μH .由于已知15.0=σ,故选取样本函数nx U σμ-=~)1,0(N经计算得375.10=x ,075.0415.0==nσ,67.1075.05.10375.10=-=-nx σμ由已知条件96.121=-αu,且2196.167.1αμσμ-=<=-nx故接受零假设,即该机工作正常.10.某钢厂生产了一批轴承,轴承的标准直径20mm ,今对这批轴承进行检验,随机取出16个测得直径的平均值为19.8mm ,样本标准差3.0=s ,已知管材直径服从正态分布,问这批轴承的质量是否合格?(检验显著性水平α=005.,131.2)15(05.0=t ) 解:零假设20:0=μH .由于未知σ2,故选取样本函数 T x snt n =--μ~()1已知8.19=x ,经计算得075.043.016==s ,667.2075.0208.19=-=-n sx μ由已知条件131.2)15(05.0=t ,)15(131.2667.205.0t nsx =>=-μ故拒绝零假设,即不认为这批轴承的质量是合格的.。

初中数学青岛版九年级下册第6章 事件的概率6.1 随机事件-章节测试习题(1)

初中数学青岛版九年级下册第6章 事件的概率6.1 随机事件-章节测试习题(1)

章节测试题1.【答题】下列事件中不是随机事件的是()A. 打开电视机正好正播《极限挑战》B. 从书包中任意拿一本书正好是英语书C. 掷两次骰子,骰子向上的一面的点数之积为14D. 射击运动员射击一次,命中靶心【答案】C【分析】根据随机事件的定义解答即可.【解答】解:根据骰子的点数可得两个数相乘不可能为14,则骰子向上的一面的点数之积为14是不可能事件,选C.2.【答题】下列事件是必然事件的是()A. 今年6月20日双柏的天气一定是晴天B. 2008年奥运会刘翔一定能夺得110米跨栏冠军C. 在学校操场上抛出的篮球会下落D. 打开电视,正在播广告【答案】C【分析】根据必然事件的定义解答即可.【解答】解: A.今年6月20日双柏的天气一定是晴天是随机事件,不符合题意;B.2008年奥运会刘翔一定能夺得110米跨栏冠军项是随机事件,不符合题意;C.在学校操场上抛出的篮球会下落是必然事件,符合题意;D.打开电视,正在播广告,是随机事件,不符合题意.选C.3.【答题】下列事件发生的概率为0的是()A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上B. 今年冬天黑龙江会下雪C. 随意掷两个均匀的骰子,朝上面的点数之和为1D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域【答案】C【分析】根据不可能事件的定义解答即可.【解答】A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上,是随机事件,故错误;B. 今年冬天黑龙江会下雪,是随机事件,故错误;C. 随意掷两个均匀的骰子,朝上面的点数之和为1,是不可能事件,故概率为0,正确;D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域,是随机事件,故错误,选C.4.【答题】在下列事件中,是必然事件的是()A. 买一张电影票,座位号一定是偶数B. 随时打开电视机,正在播新闻C. 将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等D. 阴天就一定会下雨【答案】C【分析】根据必然事件的定义解答即可.【解答】选项A,任意买一张电影票,座位号是偶数,是随机事件;选项B,随时打开电视机,正在播新闻,是随机事件;选项C,将△ACB绕点C旋转50°得到△A′C′B′,这两个三角形全等,是必然事件;选项D,阴天就一定会下雨,是随机事件;选C.5.【答题】下列事件中,属于不可能事件的是()A. 射击运动员射击一次,命中9环B. 今天是星期六,明天就是星期一C. 某种彩票中奖率为10%,买十张有一张中奖D. 在只装有10个红球的布袋中摸出一球,这个球一定是红球【答案】B【分析】根据不可能事件的定义解答即可.【解答】A选项中,因为“射击运动员射击一次,命中9环”是“随机事件”,所以不能选A.;B选项中,因为“今天是星期六,明天就是星期一”是“不可能事件”,所以可以选B.;C选项中,因为“某种彩票中奖率为10%,买十张有一张中奖”是“随机事件”,所以不能选C.;D选项中,因为“在只装有10个红色球的布袋中摸出一球,这个球一定是红球”是“必然事件”,所以不能选D.选B.6.【答题】一个黑色不透明的袋子里装有除颜色外其余都相同的7个红球和3个白球,那么从这个袋子中摸出一个红球的可能性和摸出一个白球的可能性相比()A. 摸出一个红球的可能性大B. 摸出一个白球的可能性大C. 两种可能性一样大D. 无法确定【答案】A【分析】根据随机事件的可能性解答即可.【解答】因为红球的个数比白球的个数多,所以从这个袋子中摸出一个红球的可能性比摸出一个白球的可能性要大,选A.7.【答题】下列事件是不可能事件的是()A. 买一张电影票,座位号是奇数B. 从一个只装有红球的袋子里摸出白球C. 三角形两边之和大于第三边D. 明天会下雨【答案】B【分析】根据不可能事件的定义解答即可.【解答】A.买一张电影票,座位号是奇数是随机事件,故A错误;B.从一个只装有红球的袋子里摸出白球是不可能事件,故B正确;C.三角形两边之和大于第三边是必然事件,故C错误;D.明天会下雨是随机事件,故D错误;选B.8.【答题】下列事件中,属于随机事件的是()A. 买1张彩票,中500万大奖B. 通常温度降到0 ℃以下,纯净的水结冰C. 367人中有2人是同月同日出生D. 从装有黑球、白球的袋里摸出红球【答案】A【分析】根据随机事件的定义解答即可.【解答】A.买1张彩票,中500万大奖是随机事件;B.通常温度降到0 ℃以下,纯净的水结冰是必然事件;C. 367人中有2人是同月同日出生是必然事件;D.从装有黑球、白球的袋里摸出红球是不可能事件.选A.9.【答题】下列说法中,正确的是()A. “明天降雨的概率是80%”表示明天有80%的时间在降雨B. “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C. “彩票中奖的概率是1%表示买100张彩票一定有1张会中奖D. 在同一年出生的367名学生中,至少有两人的生日是同一天【答案】D【分析】根据概率的意义解答即可.【解答】解:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.选D.10.【答题】下列事件中是必然事件的是()A. 小明买一张体育彩票中奖B. 某人的体温是100 ℃C. 抛掷一枚骰子朝上的面的点数是偶数D. 我们小组的十三位同学中至少有两位同学是同月出生的【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A. 小明买一张体育彩票中奖,是随机事件,故该选项错误;B. 某人的体温是100 ℃,是不可能事件,故该选项错误;C. 抛掷一枚骰子朝上的面的点数是偶数,是随机事件,故该选项错误;D. 我们小组的十三位同学中至少有两位同学是同月出生的,是必然事件,故该选项正确.选D.11.【答题】下列事件中属于随机事件的是()A. 任意画一个圆都是中心对称图形B. 掷两次骰子,向上一面的点数差为6C. 从圆外任意一点引两条切线,所得切线长相等D. 任意写的一个一元二次方程有两个不相等的实数根【答案】D【分析】根据随机事件的定义解答即可.【解答】A、是必然事件;B、是不可能事件;C、是必然事件;D、是随机事件,选D.12.【答题】下列事件中是不可能事件的是()A. 三角形内角和小于180°B. 两实数之和为正C. 买体育彩票中奖D. 抛一枚硬币2次都正面朝上【答案】A【分析】根据不可能事件的定义解答即可.【解答】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.选A.13.【答题】下列事件是必然事件的是()A. 通常加热到100℃,水沸腾B. 抛一枚硬币,正面朝上C. 明天会下雨D. 经过城市中某一有交通信号灯的路口,恰好遇到红灯【答案】A【分析】根据必然事件的定义解答即可.【解答】解: A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.选A.14.【答题】下列事件中属于随机事件的是()A. 任意画一个圆都是中心对称图形B. 掷两次骰子,向上一面的点数差为6C. 从圆外任意一点引两条切线,所得切线长相等D. 任意写的一个一元二次方程有两个不相等的实数根【答案】D【分析】根据随机事件的定义解答即可.【解答】A、是必然事件;B、是不可能事件;C、是必然事件;D、是随机事件,选D.15.【答题】下列事件中,是确定性事件的是()A. 买一张电影票,座位号是奇数B. 射击运动员射击一次,命中10环C. 明天会下雨D. 度量三角形的内角和,结果是【答案】D【分析】根据确定事件的定义解答即可.【解答】A选项:买一张电影票,座位号是奇数,也可能是偶数,故是随机事件,故此选项错误;B选项:射击运动员射击一次,命中10环,也可能是9、7、6、5、4、3、2、1、0环,故是随机事件,故此选项错误;C选项:明天会下雨,也可能不会下,故是随机事件,故此选项错误;D选项:度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.选D.16.【答题】下列事件是必然事件的是()A. 明天气温会升高B. 随意翻到一本书的某页,这页的页码是奇数C. 早晨太阳会从东方升起D. 某射击运动员射击一次,命中靶心【答案】C【分析】根据必然事件的定义解答即可.【解答】解:A、明天气温会升高是随机事件;B、随意翻到一本书的某页,这页的页码是奇数是随机事件;C、早晨太阳会从东方升起是必然事件;D、某射击运动员射击一次,命中靶心是随机事件,选C.方法总结:必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.【答题】下列事件是必然事件的是()A. 抛掷一枚硬币四次,有两次正面朝上B. 打开电视频道,正在播放《今日在线》C. 射击运动员射击一次,命中十环D. 方程x²-x=0必有实数根【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B.打开电视频道,正在播放《今日在线》,随机事件,故本选项错误;C.射击运动员射击一次,命中十环,随机事件,故本选项错误;D.因为在方程x²-x=0中△=1﹣0=1>0,必然事件,故本选项正确.选D.18.【答题】抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,抛掷后,观察向上的一面的点数,下列情况属必然事件的是()A. 出现的点数是偶数B. 出现的点数不会是0C. 出现的点数是2D. 出现的点数为奇数【答案】B【分析】根据必然事件的定义解答即可.【解答】解:因为正方体型骰子质地均匀且有六个面,抛掷落地后,每一个面都有可能朝上,但一定不可能出现0.选B.19.【答题】下列事件中,属于必然事件的是()A. 打开电视,正在播放《新闻联播》B. 抛掷一次硬币正面朝上C. 袋中有3个红球,从中摸出一球是红球D. 阴天一定下雨【答案】C【分析】根据必然事件的定义解答即可.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,因为也可能播放其它内容;B、抛掷一次硬币正面朝上是随机事件,也可能反面朝上;C、袋中有3个红球,从中摸出一球是红球,是必然事件,因为袋子中只有红球,无论怎么摸,只能摸出红球;D、阴天一定下雨是随机事件,也可能只阴天不下雨.选C.20.【答题】下列事件中,属于随机事件的是()A. 通常水加热到100℃时沸腾B. 测量孝感某天的最低气温,结果为﹣150℃C. 一个袋中装有5个黑球,从中摸出一个是黑球D. 篮球队员在罚球线上投篮一次,未投中【答案】D【分析】根据随机事件的定义解答即可.【解答】解:结合所学的随机事件与必然事件的意义,A必然发生,是必然事件;B一定不会发生,是必然事件;C一定会发生,是必然事件;D 罚球投篮一次未投中是可能发生的,属于随机事件.选D.。

《概率初步》测试题(含答案))

《概率初步》测试题(含答案))
2
果选得男生的概率为2,求男女生数各多少?
21. (5分)口袋里有红、绿、黄三种颜色的球,其中有红球
1
1个绿球的概率是-,求摸出一个黄球的概率?
3
22.(5分)从数学、语文、英语、计算机这四门课程中选出两门排在星期一上午第一、二
两节课,数学和计算机不能排在一起,语文不能排在第一节,两节可以排同一门课程,
11.天气台预报明天下雨的概率为70%,
A.明天30%的地区会下雨
C.明天出行不带雨伞一定会被淋湿
则下列理解正确的是()
B.明天30%的时间会下雨
D.明天出行不带雨伞被淋湿的可能性很大
12.下列成语所描述的事件是必然事件的是()
A.水中捞月B.拔苗助长C.守株待兔D.
13.如图,等腰梯形ABCD中,AB//CD,E、F、M、N分别 是AB、CD、DE、CE中点,AB=2CD.如果向这个梯形 区域内随意投掷绿豆, 区域内(不包含边界)
人1
x5,令x一、
2
5
(2)
(4)2008年奥运会在北京举行.其中不确定事件有(
C.3个D.4个 (骰子每一面的点数分别是从

B.掷出两个骰子的点数和为
D.掷出两个骰子的点数和为
3253749
2 2 2 2
随机掷一枚均匀的硬币,正面朝上;
(3)12名同学

1到6这六个数字
6是必然事件
14是随机事件
1、
18.(5分)一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出 红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?
19.(5分)将一枚硬币连掷3次,出现“两正,一反”的概率是多少?

必修二《随机事件的概率》测试题

必修二《随机事件的概率》测试题

必修二《随机事件的概率》测试题6.任取一个三位正整数N ,则对数2log N 是一个正整数的概率是( C )的长,则该矩形面积大于202cm 的概率为( C )9.在区间[],ππ-内随机取两个数分别记为a ,b ,则使得函数222()2f x x ax b π=+-+有零点的概率为( B )为事件n C (2≤n ≤5,n ∈N ),若事件n C 的概率最大,则n 的所有可能值为( D )A .3B .4C .2和5D .3和4二 填空题(每小题5分,共25分)11.从一副混合后的扑克牌(去掉大,小王后)中随机抽取1张,事件A 为“抽果这家单位的接收人员将在上午9:30—10:30之间离开单位,那么他在离开单位前能拿到文件的概率为7 8 .三解答题18. (本题满分12分) 为加强高中生的实践能力的培养,教育部门举办了高中生智能机器人比赛,该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序,通过预赛,选拔出甲乙丙三支队伍参加决赛。

(1)求决赛中甲乙两支队伍恰好排在前两位的概率;(2)求决赛中甲乙两支队伍出场顺序相邻的概率。

12(1)(2)33答案: 19.(本题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进17枝玫瑰花,求当天的利润Y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式;①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量的概率,求当天的利润不少于75元的概率。

答案:(1)1085,1785,17n n y n -<⎧=⎨≥⎩(2)76.4(3)0.720. (本题满分13分) 如图,已知AB 是半圆O 的直径,AB=8,M,N,P 是将半圆圆周四等分的三个分点。

初中数学沪科版九年级下册第26章 概率初步26.1 随机事件-章节测试习题(4)

初中数学沪科版九年级下册第26章 概率初步26.1 随机事件-章节测试习题(4)

章节测试题1.【答题】2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A. 科比罚球投篮2次,一定全部命中B. 科比罚球投篮2次,不一定全部命中C. 科比罚球投篮1次,命中的可能性较大D. 科比罚球投篮1次,不命中的可能性较小【答案】A【分析】根据概率的意义解答即可.【解答】解:A、科比罚球投篮2次,不一定全部命中,故本选项错误;B、科比罚球投篮2次,不一定全部命中,故本选项正确;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,故本选项正确;D、科比罚球投篮1次,不命中的可能性较小,故本选项正确.选A.2.【答题】一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A. 至少有1个球是白球B. 至少有1个球是黑球C. 至少有2个球是黑球D. 至少有2个球是白球【答案】B【分析】根据必然事件的定义解答即可.【解答】任意摸3个球,可能出现3黑、1白2黑、2白1黑,所以摸出至少一个黑球是必然事件.选B.3.【答题】下列事件中是必然事件的是()A. 打开电视机,正在播广告B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球C. 明天,涿州的天气一定是晴天D. 从一定高度落下的图钉,落地后针尖朝上【答案】B【分析】根据必然事件的定义解答即可.【解答】解:A,C,D三项都是可能发生,也可能不发生,属于不确定事件.是必然事件的是:从一个只装有白球的缸里摸出一个球,摸出的球是白球.选B.4.【答题】布袋中装有大小一样的3个白球、2个黑球,从布袋中任意摸出一个球,则下列事件中是必然事件的是()A. 摸出的是白球或黑球B. 摸出的是黑球C. 摸出的是白球D. 摸出的是红球【答案】A【分析】根据必然事件的定义解答即可.【解答】解:A、摸出的是白球或黑球,是必然事件;B、C是随机事件,D、没有红球,所以摸出红球是不可能事件;选A.5.【答题】下列事件中,是必然事件的是()A. 抛掷一枚质地均匀的硬币,落地后正面朝上B. 某人身高达到5.5米C. 通常加热到100°C时,水沸腾D. 打开电视,正在播放综艺节目《一站到底》【答案】C【分析】根据必然事件的定义解答即可.【解答】A. 抛掷一枚质地均匀的硬币,落地后正面朝上,随机事件;B. 某人身高达到5.5米,不可能事件;C. 通常加热到100°C时,水沸腾,必然事件;D. 打开电视,正在播放综艺节目《一站到底》,随机事件,选C.6.【答题】“抛一枚均匀硬币,落地后正面朝上”这一事件是()A. 必然事件B. 随机事件C. 确定事件D. 不可能事件【答案】B【分析】根据随机事件的定义解答即可.【解答】根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.选B.7.【答题】下列事件中,为必然事件的是()A. 购买一张彩票,中奖B. 在标准状况下,加热到100℃时,水沸腾C. 任意画一个三角形,其内角和是360°D. 射击运动员射击一次,命中靶心【答案】B【分析】根据必然事件的定义解答即可.【解答】A购买一张彩票,中奖是可能事件;B在标准情况下,水加热到100℃必然会沸腾,是必然事件;C因为三角形内角和是180°,所以任意画一个三角形,其内角和是360°是不可能事件;D射击运动员射击一次,命中靶心为可能事件.选B.8.【答题】下列事件中,属于必然事件的是()A. 掷一枚硬币,正面朝下B. 三角形两边之和大于第三边C. 一个三角形三个内角的和小于180°D. 在一个没有红球的盒子里,摸到红球【答案】B【分析】根据必然事件的定义解答即可.【解答】A. 掷一枚硬币,正面朝下,随机事件;B. 三角形两边之和大于第三边,必然事件;C. 一个三角形三个内角的和小于180° ,不可能事件;D. 在一个没有红球的盒子里,摸到红球,不可能事件,选B.9.【答题】下列事件是必然事件的是()A. 乘坐公共汽车恰好有空座B. 同位角相等C. 打开手机就有未接电话D. 三角形内角和等于180°【答案】D【分析】根据必然事件的定义解答即可.【解答】A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件,选D.10.【答题】下列说法正确的是()A. 随机抛掷一枚均匀的硬币,落地后反面一定朝上B. 从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C. 某彩票中奖率为36%,说明买100张彩票,有36张中奖D. 打开电视,中央一套正在播放新闻联播【答案】B【分析】根据随机事件的定义解答即可.【解答】A 随机抛掷一枚均匀的硬币,落地后反面朝上是随机事件,所以A错误,B从1,2,3,4,5中随机取一个数,取得奇数的概率是,取得偶数的概率是,所以取得奇数的可能性较大,故B正确,C某彩票中奖率为36%,只能说明中奖的可能性,不能说明买100张彩票,有36张中奖,故C错误,D打开电视,中央一套正在播放新闻联播是随机事件,故D错误,选B.11.【答题】下列事件是必然事件的是().A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【分析】根据必然事件的定义解答即可.【解答】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目.选C.12.【答题】下列事件中,是确定事件的是( ) .A. 打雷后会下雨B. 明天是睛天C. 1小时等于60分钟D. 下雨后有彩虹【答案】C【分析】根据确定事件的定义解答即可.【解答】确定事件是一定成立的事件,A,B,D,都是不一定会发生的事件,C是确定事件.选C.13.【答题】事件A:射击运动员射击一次,刚好射中靶心;事件B:连续掷两次硬币,都是正面朝上,则()A. 事件A和事件B都是必然事件B. 事件A是随机事件,事件B是不可能事件C. 事件A是必然事件,事件B是随机事件D. 事件A和事件B都是随机事件【答案】D【分析】根据随机事件的定义解答即可.【解答】解:在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件;在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;在一定条件下不可能发生的事件叫不可能事件.根据定义可知:事件A和事件B都是随机事件.选D.14.【答题】下列事件属于确定事件的是().A. 掷一枚质地均匀的骰子,掷出的点数是奇数B. 车辆随机经过一个路口,遇到红灯C. 掷一枚质地均匀的骰子,掷出的点数是7D. 有三条线段,将这三条线段首尾顺次相接可以组成一个三角形【答案】C【分析】根据确定事件的定义解答即可.【解答】解:A、B、D都是随机事件,只有C是不可能事件,选C.15.【答题】下列事件中,是随机事件的是()A. 任意选择某一电视频道,它正在播放新闻联播B. 三角形任意两边之和大于第三边C. 是实数,D. 在一个装着白球和黑球的袋中摸球,摸出红球【答案】A【分析】根据随机事件的定义解答即可.【解答】选项A属于随机事件,所以A对.选项B属于必然事件,所以B不满足题意.选项C属于必然事件,所以C不满足题意.选项D属于不可能事件,所以D不满足题意.所以选A.16.【答题】下列事件中属于不确定事件的是()A. 一元一次方程a x=b(a≠0)的解为x=B. 几个单项式相加和为一个单项式C. 一个奇数加上一个偶数和为偶数D. 一个三项式加上一个单项式和是一个单项式【答案】B【分析】根据随机事件的定义解答即可.【解答】不确定事件就是可能发生也可能不发生的事件,选项A是必然事件;选项B是不确定事件;选项C是不可能事件;选项D是不可能事件.选B.17.【答题】下列成语所描述的事件为不可能事件的是()A. 水到渠成B. 空中楼阁C. 木已成舟D. 日行千里【答案】B【分析】根据不可能事件的定义解答即可.【解答】A选项:“水到渠成”描述的是必然事件,故A选项不符合题意;B选项:“空中楼阁”描述的是不可能事件,故B选项符合题意;C选项:“木已成舟”描述的是必然事件,故C选项不符合题意;D选项:“日行千里”描述的事件可能发生也可能不发生,是随机事件,故D选项不符合题意.故本题应选B.18.【答题】下列事件中是确定事件的为()A. 两条线段可以组成一个三角形B. 打开电视机正在播放动画片C. 车辆随机经过一个路口,遇到绿灯D. 掷一枚均匀的骰子,掷出的点数是奇数【答案】A【分析】根据确定事件的定义解答即可.【解答】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。

中考数学模拟测试试题随机事件与概率无答案

中考数学模拟测试试题随机事件与概率无答案

随机事件与概率一、选择题1.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.B.C.D.2.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是()A.B.C.D.3.甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内球数的,乙箱内没有红球,丙箱内的红球占丙箱内球数的.小蓉将乙、丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小蓉取出的球是红球的机率为何?()A.B.C.D.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.如图,在边长为1的正方形网格中,从A1,A2,A3中任选一点A n(n=1,2,3),从B1,B2,B3,B4中任选一点B m(m=1,2,3,4),与点O组成Rt△A n B m O,则tan∠A n B m O=1的概率是()A.B.C.D.6.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.二、填空题7.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.8.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.9.同时掷两枚硬币,两枚硬币全部正面朝上的概率为.10.任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.11.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.12.100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.13.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.15.三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.16.任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是.17.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.18.五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.19.一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为.20.在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.21.有6张背面完全相同的卡片,每张正面分别有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀,从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为.22.桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为.23.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.24.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为.25.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6,,,﹣2,.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是.26.给出下列函数:①y=2x﹣1;②y=;③y=﹣x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是.27.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为.28.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是.三、解答题29.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.30.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?。

人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案

人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案

人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案1.“明天是晴天”这个事件是( )A.确定事件B.不可能事件C.必然事件D.不确定事件2.下列事件是必然事件的是( )A.抛出的篮球不会下落B.射击运动员射击一次,命中10环C.早晨太阳从东方升起D.任意掷一枚硬币,落地后正面向上3.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A.必然事件B.随机事件C.不可能事件D.以上事件都有可能4.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A.14B.13C.12D.235.有形状、大小、材料完全相同的黑筷、白筷、红筷各5双,混杂在一个黑色的布袋里,要保证从中摸取不同颜色的筷子共两双,则至少要摸出( )只筷子.A.12B.13C.14D.156.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A.点数的和为1B.点数的和为5C.点数的和大于12D.点数的和小于137.一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是( )A.12B.13C.15D.1108.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同9.“同时抛掷两枚普通的骰子,落地后向上一面的点数之和为11”是___________(填“必然事件”“不可能事件”或“随机事件”)10.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,当女生选_________名参加时,男生小强被选中是必然事件.11.小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为______.12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于______.13.掷两枚普通的正方体骰子,把两个骰子的点数相加,请问下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的?并说明原因.(1)和为1;(2)和为4;(3)差为6;(4)和小于1414.在一个不透明的盒子里装有6个红球,10个白球,若干个黑球,每个球除颜色外都相同,若从中任意摸出一个白球的概率是1 3 .(1)求任意摸出一个球是黑球的概率.(2)小明从盒子里取出a个黑球(其他颜色球的数量没有改变),使得从盒子里任意摸出一个球是红球的概率为14,请求出a的值.参考答案1.【答案】D解析:“明天是晴天”这个事件是随机事件,属于不确定事件故选:D.2.【答案】C解析:A、抛出的篮球不会下落,是不可能事件,故本选项不符合题意;B、射击运动员射击一次,命中10环是随机事件,故本选项不符合题意;C、早晨太阳从东方升起,是必然事件,故本选项符合题意;D、任意掷一枚硬币,落地后正面向上,是随机事件,故本选项不符合题意;故选:C.3.【答案】B解析:从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是随机事件故选:B.4.【答案】B解析:一共有3本书,从中任取1本书共有3种结果选中的书是物理书的结果有1种∴从中任取1本书是物理书的概率13=. 故选:B.5.【答案】B解析:如果前面一直摸出某一种颜色的筷子,共10只筷子,此时袋内只有两种颜色的筷子,另外摸出一双即可,如果又摸两只仍为不同颜色,再摸一只便可组成一双,此时共摸出102113++=只,则至少摸出13只筷子.故选:B.6.【答案】B解析:投掷两枚质地均匀的骰子点数之和的范围在212~之间(包括2,12),可知点数的和为5是随机事件.点数的和为1,点数的和大于12是不可能事件,点数的和小于13是必然事件,故B 正确.故选:B.7.【答案】A 解析:从口袋中任意摸出一个球是黄球的概率=512+3+52. 故选A.8.【答案】C解析:盒中小球总量为:32510++=(个) 摸出“北斗”小球的概率为:310摸出“天眼”小球的概率为:摸出“高铁”小球的概率为:因此摸出“高铁”小球的可能性最大.故选C.21105=51102=9.【答案】随机事件解析:同时投掷两枚普通的骰子,落地后向上一面的点数之和可能是11,所以是随机事件.故答案为:随机事件.10.【答案】1解析:当女生选1名时,男生小强被选中是必然事件.故答案为1.11.【答案】14/0.25解析:随机挑选一本书共有4种等可能的结果,其中拿到《红星照耀中国》这本书的结果有1种∴14 P故答案为:1 4 .12.【答案】25/0.4解析:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性∴从中随机抽取一张,编号是偶数的概率等于2 5故答案为:2 5 .13.【答案】见解析解析:(1)最小的和为2,故和为1属于不可能事件(2)和可能为2和12之间的任意一个数,故和为4属于可能事件(3)差最大为5,故差为6属于不可能事件(4)和最大为12,故和小于14属于必然事件.14.【答案】(1)715(2)6解析:(1)∵红球6个,白球10个,黑球若干个,从中任意摸出一个白球的概率是1 3∴盒子中球的总数为:110303÷=(个)故盒子中黑球的个数为:3061014--=(个)∴任意摸出一个球是黑球的概率为:147 3015=.(2)∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:16244÷=(个)∴可以将盒子中的黑球拿出30246-=(个)∴6a=.。

(常考题)人教版初中数学九年级数学上册第五单元《概率初步》测试题(有答案解析)(5)

(常考题)人教版初中数学九年级数学上册第五单元《概率初步》测试题(有答案解析)(5)

一、选择题1.下列事件中,是随机事件的是()A.明天河南有新冠肺炎输入病例B.十三个人中,有人出生在同一个月C.地球绕着太阳转D.掷一次骰子,向上一面的点数是72.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.383.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A,B,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是()A.13B.23C.19D.294.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.打开电视,正在播放广告C.抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7 D.一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球5.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.186.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.47.“明天的降水概率为90%”的含义解释正确的是()A.明天90%的地区会下雨B.90%的人认为明天会下雨C.明天90%的时间会下雨D.在100次类似于明天的天气条件下,大约有90次会下雨8.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是()A.25个B.24个C.20个D.16个9.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.7910.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为()A.12B.13C.23D.1611.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b 为实数,那么a+b=b+a.其中是必然事件的有( )A.1个B.2个C.3个D.4个12.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A.点数为3的倍数B.点数为奇数C.点数不小于3D.点数不大于3二、填空题13.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是____.14.有两组牌,每组三张,牌面上的数字分别是1,2,3,且除数字外均相同,若从每组摸出一张牌,那么两张牌面数字和是4的概率是________.15.在一个不透明的口袋中,有大小、形状完全相同的红、绿两种颜色的球共15个,从中摸出红球的概率为13,则袋中绿球的个数为__________个.16.在边长为1的小正方形组成的网格中,有如图所示的,A B两点,在格点上任意放置点C(不与A、B重合,且A、B、C三点不在同一条直线上),恰好能使得ABC∆的面积为1的概率是__________.17.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下: 组别(元) 40x <4060x ≤<6080x ≤<80100x ≤<人数6374017根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.18.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________. (2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。

概率经典测试题附答案解析

概率经典测试题附答案解析
【答案】A
【解析】
【分析】
根据题意,用黑色方砖的面积除以正方形地砖的面积即可.
【详解】
停在黑色方砖上的概率为: ,
故选:A.
【点睛】
本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.
4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()
A. B. C. D.
D、∵ >0,∴ 是不可能事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )
A. B. C. D.
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
13.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题一、填空题(每题3分)1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生 。

2)A 、B 、C 中恰有一个发生 。

3)A 、B 、C 不多于一个发生 。

2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 袋中有编号为1,2,3,4,5的5个彩球,从中取出3个球,则取到最大号码为4的概率为 。

5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 。

二、选择题(每题3分)1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 。

(A )P(A ∪B) = P(A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 。

(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/54. 对于事件A ,B ,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、解答题(每题10分)1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

初中数学概率基础测试题及答案

初中数学概率基础测试题及答案

初中数学概率基础测试题及答案一、选择题1.下列事件中,属于随机事件的是( ).A .凸多边形的内角和为500︒B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【解析】【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数. 3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于12B.等于12C.小于12D.无法确定【答案】B【解析】【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,故选D.14.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份, 因此,获得签字笔的概率为:41164=, 故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,10=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.18.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为()A.23B.13C.14D.16【答案】A【解析】【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123=,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.。

初中数学青岛版九年级下册第6章 事件的概率6.1 随机事件-章节测试习题(3)

初中数学青岛版九年级下册第6章 事件的概率6.1 随机事件-章节测试习题(3)

章节测试题1.【答题】下列事件中,必然事件是()A. 抛掷枚质地均匀的骰子,向上的点数为B. 两直线被第三条直线所截,同位角相等C. 抛一枚硬币,落地后正面朝上D. 实数的绝对值是非负数【答案】D【分析】根据必然事件的定义解答即可.【解答】解:A、抛掷1枚质地均匀的骰子,向上的点数可能为6,也可能不为6,故此事件为随机事件;B、两直线被第三条直线所截,当两直线平行时同位角相等,两直线不平行时同位角不相等,故此事件为随机事件;C、抛一枚硬币,落地后可能正面朝上,也可能正面不朝上,故此事件是随机事件;D、任何实数的绝对值都是是非负数,故此事件是必然事件.选D.2.【答题】下列事件中,必然事件是()A. 抛物线y=ax2的开口向上B. 投掷一枚质地均匀的硬币100次,正面向上的次数为50次C. 任意一个一元二次方程都有实数根D. 三角形三个内角的和等于180【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意;选D.3.【答题】下列事件是随机事件的是()A. 在标准大气压下,水加热到100°时沸腾B. 小明购买1张彩票,中奖C. 在一个装有红球和黄球的袋中,摸出蓝球D. 一名运动员的速度为30米/秒【答案】B【分析】根据随机事件的定义解答即可.【解答】选项A、在标准大气压下,水加热到100°时沸腾是必然事件;选项B、小明购买1张彩票,中奖是随机事件;选项C、在一个装有红球和黄球的袋中,摸出蓝球是不可能事件;选项D、一名运动员的速度为30米/秒是不可能事件.选B.4.【答题】掷一枚质地均匀的硬币10次,下列说法正确的是()A. 必有5次正面朝上B. 可能有5次正面朝上C. 掷2次必有1次正面朝上D. 不可能10次正面朝上【答案】B【分析】根据确定事件和随机事件的定义解答即可.【解答】A.不是必然事件,故B错误;B.是随机事件,故C正确;C.不是必然事件,故A错误;D.是随机事件,故D错误;选B.5.【答题】下列说法中,正确的是()A. 随机事件发生的概率为1B. 概率很小的事件不可能发生C. 不可能事件发生的概率为0D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【答案】C【分析】本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解: A.随机事件发生的概率P为0<P<1,故本选项错误;B.概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;C.不可能事件发生的概率为0,故本选项正确;D.投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误.选C.6.【答题】下列事件中,确定事件是()A. 早晨太阳从西方升起B. 打开电视机,它正在播动画片C. 掷一枚硬币,正面向上D. 任意买一张电影票,座位号是2的倍数【答案】A【分析】根据确定事件的定义解答即可.【解答】A、早晨太阳从西方升起一定不会发生,是不可能事件,是确定事件;B、打开电视机,它正在播动画片可能发生,也可能不发生,是随机事件;C、掷一枚硬币,正面向上可能发生,也可能不发生,是随机事件;D、任意买一张电影票,座位号是2的倍数可能发生,也可能不发生,是随机事件,选A.7.【答题】下列说法中,正确的是()A. 打开电视机,正在播广告,是必然事件B. 在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D. 从一个只装有白球的缸里摸出一个球,摸出的球是白球【答案】D【分析】根据随机事件的定义解答即可.【解答】A、打开电视机,正在播广告,是随机事件,不是必然事件,故该选项错误;B、在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩不稳定,而不是稳定,故该选项错误;C、某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是,不是30%,故该选项错误;D、从一个只装有白球的缸里摸出一个球,摸出的球是白球,是必然事件,故该选项正确,故该选项错误;选D.8.【答题】下列事件属于随机事件的是()A. 任意画一个三角形,其内角和为B. 经过有交通信号灯的路口,遇到红灯C. 掷一次骰子,向上一面点数是7D. 明天的太阳从东方升起【答案】B【分析】根据随机事件的定义解答即可.【解答】选项A、D是必然事件;选项C是不可能事件;选项B是随机事件.选B.9.【答题】下列事件是必然事件的是()A. 抛掷一枚硬币四次,有两次正面朝上B. 打开电视频道,正在播放《十二在线》C. 射击运动员射击一次,命中十环D. 方程x2﹣2x﹣1=0必有实数根【答案】D【分析】根据必然事件的定义解答即可.【解答】解: A.抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B.打开电视频道,正在播放《十二在线》,随机事件,故本选项错误;C.射击运动员射击一次,命中十环,随机事件,故本选项错误;D.因为在方程x2﹣2x﹣1=0中△=4﹣4×1×(﹣1)=8>0,故本选项正确.选D.10.【答题】下列说法正确的是().A. “购买1张彩票就中奖”是不可能事件B. “概率为0.0001的事件”是不可能事件C. “任意画一个三角形,它的内角和等于180°”是必然事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【分析】根据确定事件和随机事件的定义解答即可.【解答】解:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.选C.11.【答题】连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A. 必然事件B. 不可能事件C. 随机事件D. 概率为1的事件【答案】C【分析】根据随机事件的定义解答即可.【解答】硬币落地时,只有正面朝上和反面朝上两种情况,所以第五次抛掷正面朝上是随机事件,选C.12.【答题】下列事件是不确定事件的是().A. 在一个装着白球和黑球的袋中摸球,摸出红球B. 三角形内角和C. 杭州今年元旦节当天的最高气温是℃D. 任取两个正整数,其和大于【答案】C【分析】根据随机事件的定义解答即可.【解答】解: A.不可能事件,是确定事件.B.必然事件,是确定事件.C.不确定事件.D.必然事件,是确定事件.选C.13.【答题】2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A. 科比罚球投篮2次,一定全部命中B. 科比罚球投篮2次,不一定全部命中C. 科比罚球投篮1次,命中的可能性较大D. 科比罚球投篮1次,不命中的可能性较小【答案】A【分析】根据概率的意义解答即可.【解答】解:A、科比罚球投篮2次,不一定全部命中,故本选项错误;B、科比罚球投篮2次,不一定全部命中,故本选项正确;C、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,故本选项正确;D、科比罚球投篮1次,不命中的可能性较小,故本选项正确.选A.14.【答题】一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A. 至少有1个球是白球B. 至少有1个球是黑球C. 至少有2个球是黑球D. 至少有2个球是白球【答案】B【分析】根据必然事件的定义解答即可.【解答】任意摸3个球,可能出现3黑、1白2黑、2白1黑,所以摸出至少一个黑球是必然事件.选B.15.【答题】下列事件中是必然事件的是()A. 打开电视机,正在播广告B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球C. 明天,涿州的天气一定是晴天D. 从一定高度落下的图钉,落地后针尖朝上【答案】B【分析】根据必然事件的定义解答即可.【解答】解:A,C,D三项都是可能发生,也可能不发生,属于不确定事件.是必然事件的是:从一个只装有白球的缸里摸出一个球,摸出的球是白球.选B.16.【答题】布袋中装有大小一样的3个白球、2个黑球,从布袋中任意摸出一个球,则下列事件中是必然事件的是()A. 摸出的是白球或黑球B. 摸出的是黑球C. 摸出的是白球D. 摸出的是红球【答案】A【分析】根据必然事件的定义解答即可.【解答】解:A、摸出的是白球或黑球,是必然事件;B、C是随机事件,D、没有红球,所以摸出红球是不可能事件;选A.17.【答题】下列事件中,是必然事件的是()A. 抛掷一枚质地均匀的硬币,落地后正面朝上B. 某人身高达到5.5米C. 通常加热到100°C时,水沸腾D. 打开电视,正在播放综艺节目《一站到底》【答案】C【分析】根据必然事件的定义解答即可.【解答】A. 抛掷一枚质地均匀的硬币,落地后正面朝上,随机事件;B. 某人身高达到5.5米,不可能事件;C. 通常加热到100°C时,水沸腾,必然事件;D. 打开电视,正在播放综艺节目《一站到底》,随机事件,选C.18.【答题】“抛一枚均匀硬币,落地后正面朝上”这一事件是()A. 必然事件B. 随机事件C. 确定事件D. 不可能事件【答案】B【分析】根据随机事件的定义解答即可.【解答】根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.选B.19.【答题】下列事件中,为必然事件的是()A. 购买一张彩票,中奖B. 在标准状况下,加热到100℃时,水沸腾C. 任意画一个三角形,其内角和是360°D. 射击运动员射击一次,命中靶心【答案】B【分析】根据必然事件的定义解答即可.【解答】A购买一张彩票,中奖是可能事件;B在标准情况下,水加热到100℃必然会沸腾,是必然事件;C因为三角形内角和是180°,所以任意画一个三角形,其内角和是360°是不可能事件;D射击运动员射击一次,命中靶心为可能事件.选B.20.【答题】下列事件中,属于必然事件的是()A. 掷一枚硬币,正面朝下B. 三角形两边之和大于第三边C. 一个三角形三个内角的和小于180°D. 在一个没有红球的盒子里,摸到红球【答案】B【分析】根据必然事件的定义解答即可.【解答】A. 掷一枚硬币,正面朝下,随机事件;B. 三角形两边之和大于第三边,必然事件;C. 一个三角形三个内角的和小于180° ,不可能事件;D. 在一个没有红球的盒子里,摸到红球,不可能事件,选B.。

概率论历年考试题目及知识点串讲11-11-20

概率论历年考试题目及知识点串讲11-11-20

填空题:1. 设A ,B ,C 为随机事件,则事件“A ,B ,C 中恰有二个发生”可表示为ABC ABC A BC ⋃⋃.2、事件A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中至少有二个发生”表示为 ABC+A~BC+~ABC+AB~C .3、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中至少有一个发生”表示为 C B A -Ω4. 设A ,B 相互独立,且()11(),,63P AB P AB ==则()P A =2,3()P A B ⋃=2.35.设随机事件A 、B 相互独立,已知只有A 发生的概率和只有B 发生的概率都等于 1/4,则P(A)= 1/2, P(B)= 1/2。

6.设B A ,相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()=P A __2/3__.7、已知P(A)=0.5,P (B )=0.6,当A ,B 相互独立时,____2.0_)B A (____,8.0_)(=-=⋃P B A P 。

8、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,5.0)|(,65.0)(==⋃A B P B A P 。

选择题:1.设,A B 为随机事件,且()()0,1P B P A B >=,则必有 ( A )(A )()()P A B P A ⋃= (B) ()()P A B P B ⋃= (C) ()()P A B P A ⋃> (D) ()()P A B P B ⋃> 2.对于事件B A ,,下列命题正确的是( D ))(A 如果BA ,互不相容,则B A ,也互不相容 )(B 如果B A ⊂,则B A ⊂ )(C 如果BA ⊃,则B A ⊃ )(D 如果B A ,对立,则B A ,也对立1.甲袋中有4只白球,6只红球,乙袋中有3只白球,7只红球,今从甲袋任取1球放入乙袋,再从乙袋中任取1球:⑴求所取球为白球的概率。

概率与统计初步测试题3份

概率与统计初步测试题3份

测试一一、填空题:(每空 4分,共 32 分)1.设,表示两个随机事件,,分别表示它们对立事件,用,和,表示,恰有一个发生的式子为2.从一批乒乓球中任取 4 只检验,设表示“取出的 4 只至少有 1 只是次品”,则对立事件表示3.甲、乙两人同时各掷一枚硬币观察两枚硬币哪面向上。

这个随机试验的样本空间为4.____________________________________ 掷一颗骰子,出现 4点或 2 点的概率等于___________________________________ .5.____________________________________ 甲、乙两个气象合同时作天气预报,如果它们预报准确的概率分别是 0.8 和 0.7,那么在一次预报中,两个气象台都预报准确的概率是___________________________ (设两台独立作预报) .6._______________________________________________ 标准正态变量(0,1)在区间(- 2, 2)内取值的概率为_____________________ .7.作统计推断时,首先要求样本为随机样本,要得到简单随机样本,必须遵从的条件是8.已知随机变量的分布列为则()=_____ .二、选择题:(每小题 5 分,共 25 分)9.在掷一颗骰子的试验中,下列事件和事件为互斥事件的选项是()( A )= {1 ,2} ={1,3,5} (B)={ 2,4, 6}= {1}(C)= {1,5} ={3,5,6} (D)={2,3,4,5}={1,2}10.下面给出的表,可以作为某一随机变量的分布列的是11.对某项试验,重复做了次,某事件出现了次,则下列说法正确的一个是()( A )就是( B )当很大时,与有较大的偏差C )随着试验次数的增大,稳定于( D )随着试验次数的无限增大,与的偏差无限变小。

概率基础测试题及答案解析

概率基础测试题及答案解析
故选C
4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
【答案】C
【解析】
【分析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
所以小斌和小宇两名同学选到同一课程的概率= ,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
6.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是( )
概率基础测试题及答案解析
一、选择题
1.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()
A.小于 B.等于 C.大于 D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义分析即可.
【详解】
解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是
∴抛掷第100次正面朝上的概率是
【点睛】
本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.
14.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()
A.大于 B.等于 C.小于 D.无法确定
【答案】B

难点详解青岛版九年级数学下册第6章事件的概率专题测试试题(含答案解析)

难点详解青岛版九年级数学下册第6章事件的概率专题测试试题(含答案解析)

九年级数学下册第6章事件的概率专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个2、某鱼塘里养了若干条草鱼、100条鲤鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右.可估计该鱼塘中鱼的总数量为().A.300 B.200 C.150 D.2503、下列事件中属于必然事件的是()A.随机翻开课本,恰好翻到奇数页码B.明天太阳从东方升起C.买一张福利彩票,不会中奖D.掷一枚质地均匀的硬币,正面朝上4、下列说法正确的是()A.“明天有雪”是随机事件B.“太阳从西方升起”是必然事件C.“翻开九年上册数学课本,恰好是第88页”是不可能事件D.射击运动员射击一次,命中十环是必然事件5、有4张背面相同的卡片,正面分别印有平行四边形、矩形、菱形、正方形,现将4张卡片正面朝下一字摆开,从中随机抽取两张,抽到的两张卡片上都恰好印的既是中心对称又是轴对称的图形的概率为()A.1 B.34C.23D.126、下列说法正确的是()A.新冠肺炎疫情防控期间,复学学生的核酸检测适合采用抽样调查B.程晨投篮投中的概率是0.6,说明他投10次篮球一定能中6次C.“平分弦的直径必垂直于这条弦”是一个必然事件D.“在一张纸上随意画两个直角三角形,这两个直角三角形相似”为随机事件7、在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.12个B.14个C.16个D.18个8、如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是()(精确到0.1)A.0.55 B.0.4 C.0.6 D.0.59、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是()A.2 B.0.02 C.4 D.0.0410、从-2,0,2,3中随机选一个数,是不等式231x-≥的解的概率为()A.13B.14C.12D.23第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一只不透明的袋子中有若干个黑球和若干个白球,共15个,这些球除颜色外都相同,搅匀后从中任意摸出一个球,若摸到白球的概率为25,则白球的个数为 _____个.2、在一个不透明的袋子里,装有6枚白色球和若干枚黑色球,这些球除颜色外都相同.将袋子里的球摇匀,随机摸出一枚球,记下它的颜色后再放回袋子里.不断重复这一过程,统计发现,摸到白色球的频率稳定在0.2,由此估计袋子里黑色球的个数为______.3、某同学在同一条件下练习投篮共500次,其中300次投中,由此可以估计,该同学投篮一次能投中的概率约是 _____.4、某植物种子在相同的条件下发芽试验的结果如下:则该植物种子发芽的概率的估计值是______.(结果精确到0.01)5、现将背面完全相同,正面分别标有数﹣1,1,2,3的四张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数标记为m,再从剩下的三张卡片中任取一张,将该卡片上的数记为n,则P(m,n)在第四象限的概率为_____.三、解答题(5小题,每小题10分,共计50分)1、为了解七年级学生的期中数学考试情况,随机抽查了部分同学的成绩(满分100分),整理并制作了不完整的统计表和统计图.请根据图表提供的信息,解答下列问题:(1)本次调查的学生总人数是______;(2)求m、n的值,并补全频数分布直方图;(3)若要绘制扇形统计图,求成绩在7080≤<的学生所对应的扇形圆心角度数.x2、现有甲、乙两个不透明的布袋,其中甲布袋里有3个红球,1个白球,乙布袋里有一个红球,1个白球.(1)从甲布袋中随机摸出1个小球,摸出的小球是红球的概率是;(2)从甲、乙两个布袋中各随机摸出1个小球,求摸出的两个小球都是红球的概率(用列表法或画树状图的方法求解).3、为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.4、体育组为了了解九年级675名学生一分钟跳绳的情况,随机抽查了九年级部分学生进行跳绳测试(单位:个),根据测试结果(1)表中的数a=_____,b=______;(2)估算该九年级一分钟跳绳测试结果不小于140的人数;(3)一分钟跳绳测试结果小于80的为不达标,若九年某班不达标的3人中有2个男生,1个女生、现从这3人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率5、我市“垃圾分类”工作越来越好,但还是有不少人缺乏分类意识.某小区分设了四个不同的垃圾分类投放桶,分别为“可回收物”“有害垃圾”厨余垃圾”“其他垃圾”.(1)上面图标(不包含文字)是中心对称图形的是______(填序号);(2)小明帮助妈妈做家务,拿着一袋厨余垃圾去,因天黑看不清,小明随便扔进了一个垃圾桶,请直接写出小明投放正确的概率______;(3)然后他又随手将旧报纸和废弃电池扔到其中两类垃圾桶中,那么他恰好正确分类的概率是多少?(画树状图或列表求解).(以上行为均不提倡)-参考答案-一、单选题1、B【解析】【分析】根据随机事件的概率值即可判断.【详解】解:因为不可能事件的概率为0,0<随机事件的概率<1,必然事件的概率为1,所以在如图的各事件中,是随机事件的有:事件B 和事件C ,共有2个,故选:B .【点睛】本题考查了随机事件,弄清不可能事件的概率,随机事件的概率,必然事件的概率是解题的关键.2、A【解析】【分析】根据大量重复试验中的频率估计出概率,利用概率公式求得草鱼的数量即可.【详解】∵通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,∴捕捞到草鱼的概率约为0.5,设有草鱼x 条,根据题意得:10050++x x =0.5, 解得:x =150,∴该鱼塘中鱼的总数量为10015050300++=(条),故选:A .【点睛】本题考查用样本估计总体,解题的关键是明确题意,由草鱼出现的频率可以计算出鱼的数量.3、B【解析】【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件,根据必然事件的定义对选项进行一一分析判定即可.【详解】A. 随机翻开课本,恰好翻到奇数页码,是随机事件,故选项A不合题意;B. 明天太阳从东方升起,是必然事件,故选项B符合题意;C. 买一张福利彩票,不会中奖,是随机事件,故选项C不合题意;D. 掷一枚质地均匀的硬币,正面朝上,是随机事件,故选项D不合题意.故选B.【点睛】本题考查必然事件,掌握必然事件定义与不可能事件以及随机事件的区别,能在事件中区分出必然事件是解题关键.4、A【解析】【分析】依据各选项中事件的可能性进行判断即可.【详解】解:A中“明天有雪”是随机事件,正确,符合要求;B中“太阳从西方升起”是不可能事件,错误,不符合要求;C中“翻开九年上册数学课本,恰好是第88页”是随机事件,错误,不符合要求;D中射击运动员射击一次,命中十环是随机事件,错误,不符合要求;故选A.【点睛】本题考查了随机事件,必然事件与不可能事件.解题的关键在于明确各名词的含义.5、D【解析】【分析】先根据题意得列出表格,可得共有12种等可能结果,抽到的两张卡片上都恰好印的既是中心对称又是轴对称的图形的有6种,再根据概率公式,即可求解.【详解】解:根据题意得列出表格如下:∵不平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称又是轴对称的图形,∴共有12种等可能结果,抽到的两张卡片上都恰好印的既是中心对称又是轴对称的图形的有6种,∴抽到的两张卡片上都恰好印的既是中心对称又是轴对称的图形的概率为61 122.故选:D 【点睛】本题主要考查了利用画树状图或列表格求概率,能根据题意画出树状图或列出表格是解题的关键.6、D【解析】【分析】本题需要根据调查事件的不同,选择需要全面普查还是抽样调查,根据事件本身判断事件是必然事件还是随机事件.【详解】解:A、对于传染疾病预防,应该对每一个人进行核酸检测,所以应选择普查的方式,选项说法错误,不符合题意;B、程晨投篮投中的概率是0.6,说明他投10次篮球可能中6次,而非一定中6次,选项说法错误,不符合题意;C、直径是特殊的弦,无论两条直径是否垂直都互相平分,所以这不是一个必然事件,选项说法错误,不符合题意;D、在一张纸上随意画两个直角三角形,这两个直角三角形有可能相似,有可能不相似,所以为随机事件,选项说法正确,符合题意;故选D.【点睛】本题考查统计方式的选择和必然事件,随机事件的判断,以及相似三角形的概念,根据题意选择适当的方式进行数据统计是解决本题的关键.7、A【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x 个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%14=, ∴4144x =+, 解得:x =12,经检验x =12是原方程的根,故白球的个数为12个.故选:A .【点睛】本题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.8、D【解析】【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【详解】解:估计这名球员投篮一次,投中的概率约是2860781041241532520.550100150200250300500++++++≈++++++, 故选:D .【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.9、D【解析】【分析】先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.【详解】解:该班级学生这次体能评定为“较差”的频数是:50281552, 则该班级学生这次体能评定为“较差”的频率是:20.04,50故选D【点睛】 本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.10、C【解析】【分析】首先确定不等式的解集,然后利用概率公式计算即可.【详解】解:解231x -≥得:2x ≥,所以满足不等式的数有2和3两个,所以从-2,0,2,3中随机选一个数,是231x -≥的解的概率为:2142=, 故选:C .【点睛】考查了概率公式的知识,解题的关键是正确的求解不等式,难度不大.二、填空题1、6【解析】【分析】设袋子内有n个白球,则有2155n=,计算求解即可.【详解】解:设袋子内有n个白球,则有2 155 n=解得n=6故答案为:6.【点睛】本题考查了概率.解题的关键在于正确的列方程.2、24【解析】【分析】由摸到白色球的频率稳定在0.2,得到摸到白色球的概率为0.2,再利用概率公式列方程即可. 【详解】解:摸到白色球的频率稳定在0.2,∴摸到白色球的概率为0.2,设袋子里黑色球有x个,60.2,6xx经检验符合题意;解得:24,所以估计袋子里黑色球的个数为24.故答案为:24【点睛】本题考查的是利用频率估计概率,利用概率公式列方程,掌握“利用频率估计概率得到摸到白色球的概率为0.2”是解本题的关键.3、35##0.6【解析】【分析】根据概率公式直接进行解答即可.【详解】解:某同学在同一条件下练习投篮共500次,其中300次投中,∴该同学投篮一次能投中的概率约是3000.6=;500故答案为:0.6.【点睛】本题考查了概率公式,解题的关键是掌握:概率=所求情况数与总情况数之比.4、0.95【解析】【分析】根据题意及频率估计概率可直接进行求解.【详解】解:由表格得:当每批粒数为50时,则种子发芽的频率为450.950=;当每批粒数为100时,则种子发芽的频率为960.96100=;当每批粒数为300时,则种子发芽的频率为2830.943300≈;当每批粒数为400时,则种子发芽的频率为3800.95400=;当每批粒数为500时,则种子发芽的频率为4740.948500=;当每批粒数为1000时,则种子发芽的频率为9480.9481000=; ∴该植物种子发芽的概率的估计值是0.95;故答案为0.95.【点睛】本题主要考查利用频率估计概率,熟练掌握利用频率估计概率是解题的关键.5、14【解析】【分析】先画出树状图,从而可得(,)P m n 的所有等可能的结果,再找出(,)P m n 在第四象限的结果,然后利用概率公式进行计算即可得.【详解】解:画出树状图如下:由此可知,(,)P m n 的所有等可能的结果共有12种,其中,(,)P m n 在第四象限的结果有3种,则(,)P m n 在第四象限的概率为31124P ==, 故答案为:14. 【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.三、解答题1、 (1)300(2)120m =,30%n =,见解析(3)108︒【解析】【分析】(1)用6070x ≤<的频数为30÷10%计算即可;(2)7080x ≤<频数90÷本次调查的总人数300可求该组的频率,用8090x ≤<的频率40%×本次调查的总人数300得出该组的频数,即可补画频数分布直方图;(3)用360°×该组的频率30%即可.(1)解:∵6070x ≤<的频数为30,占10%,∴本次调查的学生总人数是30÷10%=300人,故答案为:300人;(2)解:∵7080x ≤<,频数90,∴n =90÷300=0.3=30%,∵8090x ≤<占40%,∴m=300×40%=120人,(3)解:成绩在7080x≤<的百分比为30%,成绩在7080x≤<的学生所对应的扇形圆心角度数360°×30%=108°.【点睛】本题考查频数,频率,补画频数分布直方图,求扇形统计图中圆心角度数,正确理解题意是解题关键.2、 (1)3 4(2)3 8【解析】【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所以等可能的情况数,找出摸出的2个球都是红球的情况数,然后根据概率公式即可得出答案.(1)解:∵甲布袋里有3个红球,1个白球,共有4个球,∴摸出的小球是红球的概率是34,故答案为:34;(2)解:根据题意,画树状图为:所有等可能的结果有8个,其中摸出的两个球都是红球的有3个,所以摸出的两个小球都是红球的概率是38.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.3、 (1)甲社区的中位数是82岁,众数是85岁(2)1 3【解析】【分析】(1)根据中位数及众数的定义解答;(2)列树状图解答即可.(1)甲社区老人的15个年龄居中的数为:82,故中位数为82岁,出现次数最多的年龄是85,故众数是85岁;(2)年龄小于70岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,()41 123P∴==来自同一个社区.【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.4、 (1)20;0. 08;(2)该九年级一分钟跳绳测试结果不小于140的人数为324人(3)选出的2人为一个男生一个女生的概率为2 3【解析】【分析】(1)根据扇形统计图可算出个数在140≤x<170之间的频率,进而可算出频数,通过前三组的频率可计算出b的值;(2)根据样本中一分钟跳绳测试结果不小于140的人数在样本中所占比例,估算一分钟跳绳测试结果不小于140的人数在整体中的比例进而算出人数;(3)画出树状图解决即可.(1)解:抽取学生总数为:5÷0.1=50(人),故1445020360a︒=⨯=︒,14410.10.420.08360b ︒=---=︒, 故答案为:20;0.08.(2)解:样本中一分钟跳绳测试结果不小于140的人数在样本中所占比例为:0.080.40.48+=, 一分钟跳绳测试结果不小于140的人数约为:6750.48324⨯= (人)答:估算该九年级一分钟跳绳测试结果不小于140的人数为324人.(3)树状图如图所示:根据树状图可知选出的2人为一个男生一个女生的概率为23, 答:选出的2人为一个男生一个女生的概率为23. 【点睛】本题考查概率统计,以及数据的处理,能够通过统计图结合统计表分析出关键数据并处理是解决本题的关键.5、 (1)③ (2)14(3)112【解析】【分析】(1)根据绕着旋转中心旋转180°后,能与自身重合的图形是中心对称图形,即可求解;(2)根据题意得:一共有4种等可能结果,投放正确的结果有1种,再根据概率公式,即可求解;(3)根据题意画出树状图,可得共有12种等可能的结果,其中小明恰好正确分类处理垃圾的结果有1种,再根据概率公式,即可求解.(1)解:上面图标(不包含文字)是中心对称图形的是③;(2)解:根据题意得:一共有4种等可能结果,投放正确的结果有1种,所以小明投放正确的概率是14;(3)根据题意得:旧报纸属于可回收垃圾,而废弃电池属于有害垃圾,则可画树状图如图所示:由树状图可知,共有12种等可能的结果,其中小明恰好正确分类处理垃圾的结果有1种,所以他恰好正确分类的概率是112.【点睛】本题主要考查了利用画树状图或列表法求概率,中心对称图形,根据题意准确画出树状图或列出表格是解题的关键.。

概率第一、二章测试题(含答案)

概率第一、二章测试题(含答案)

第1章 随机事件和概率、第2章 条件概率与独立性一、选择题1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃ 2.(01,难度值0.93)对于任意二事件A 和B ,与B B A =⋃不等价的是 (A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3.设A 、B 是任意两个事件,A B ⊂,()0P B >,则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ).A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+-6.对于任意两事件A 与B ,()P A B -=( ).A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()()P A P A P A B +-7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A =8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9.设A 、B 互不相容,()()0,0P A P B ≠≠,则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A > .C ()()()P AB P A P B = .D ()()P A B P A -=10.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A=( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111.(98,难度值0.69)设A ,B 是两个随机事件,且0<P(A)<1,P(B)>0,)|()|(A B P A B P =,则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠ 12.随机事件A , B ,满足21)()(==B P A P 和1)(=⋃B A P ,则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P(D )0)(=-B A P13.设随机事件A 与B 互不相容,0)(>A P ,0)(>B P ,则下面结论一定成立的是 (A )A ,B 为对立事件 (B )A ,B 互不相容 (C ) A, B 不独立 (D )A, B 独立 14.对于事件A 和B ,设B A ⊃,P(B)>0,则下列各式正确的是 (A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+(D ))()(A P B A P =+15.设事件A 与B 同时发生时,事件C 必发生,则 (A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P (C ) )()(AB P C P = (D ))()(B A P C P ⋃=16.(98,难度值0.62)设A,B,C 是三个相互独立的随机事件,且0<P(C)<1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件的概率测试题 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8
第26章 随机事件的概率
姓名_____________
一、选择题: 1.
设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2
只,从中任意取出1只,是二等品的概率是( )A .121 B.61 C.4
1 D.
12
7
2.
某电视台举行歌手大奖赛,每场比赛都有编号1~10号,共10道综合素
质测试题供选手随机抽取作答,在某场比赛中,前两位选手分别抽走了2号题,7号题,第3位选手抽到8号题的概率是( )A .
101 B .91 C .8
1 D .71
3.
下列说法正确的是( )
A .在同一年出生的400人中至少有两人的生日相同
B .一个游戏的中奖率是1%,买100张奖券,一定会中奖
C .一副扑克牌中,随意提取一张是红桃K
D .一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是53
4.
某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是( )
A .87
B .76
C .81
D .71
二、填空题: 5. 同时掷两颗大小不同的骰子,则点数和为5的概率是_________ 6.
从一副拿掉大、小王的扑克牌中,任抽取一张则抽到红心的概率是
_________抽到黑桃的概率为_____抽到红心3的概率为______ 7.
从小明、小亮、小丽3名同学中选1人当语文课代表,选中小丽的概率
为_______,小丽不被选中的概率为_________ 8.
英文“概率”是这样写的“Probability ”,若从中任意抽出一个字母,
则(1)抽到字母b 的概率为___(2)抽到字母w 的概率为____
三、解答题:
9.小王制定一个玩飞行棋的游戏规则为:抛掷两枚均匀的正四面体骰子(四面依次标上数字1、2、3、4),掷得点数之和为5时才“可以起飞”,请你根据该规则计算“可以起飞”的概率(要求用树状图或列表法求解)。

10.九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是;(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.
11.初三年(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中
①、②两个转盘(两个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解).
转盘②
转盘①
12.不透明的口袋中装有白、黄、蓝三种除颜色外其余都相同的小球,其中白球1个,黄球2个,蓝球1个,第一次任意摸出一个球不放回,第二次再从中随机摸出一个球,求两次都摸到黄球的概率。

13.将背面相同,正面分别标有数字1234
,,,的四张卡片洗匀后,背面朝上放在桌面上.
(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;
(2)先从中随机抽取一张卡片(不放回
...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.
14.甲、乙、丙三名学生各自随机选择到A、B两个书店购书.
(1)求甲、乙两名学生在不同书店购书的概率;
(2)求甲、乙、丙三名学生在同一书店购书的概率.
15.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个。

若从中任意摸出
一个球,它是蓝球的概率为1
4
.(1)求袋中黄球的个数;(2)第一次任意摸一
个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
16.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为
1
2

(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
17.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
(1)计算“3点朝上”的频率和“5点朝上”的频率.(4分)
(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗为什么(4分)
(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.(4分)
18.某中学九年级共有6个班,要从中选出两个班代表学校参加一项重大活动,九(1)班是先进班,学校指定该班必须参加,另外再从九(2)班到九(6)班选出一个班,九(4)班有同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就派几班参加.(1)请用列表或画树状图的方法列举出摸出的两球编号的所有可能出现的结果;(2)如果采用这一建议选班,对五个班是一样公平的吗?请说明理由.
19.
20.某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.
21.一枚质量均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,连续抛掷两次.
(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为p,q,若把p,q分别作为点A的横坐标
和纵坐标,求点A(p,q)在函数
12
y
x
的图象上的概率.。

相关文档
最新文档