中考数学 平行四边形综合试题附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=1
2
,求BE2+DG2的值.
【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.
【解析】
分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;
②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;
(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;
(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.
详解:(1)①BG⊥DE,BG=DE;
②∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(2)∵AB=a,BC=b,CE=ka,CG=kb,
∴BC CG b
==,
DC CE a
又∵∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(3)连接BE、DG.
根据题意,得AB=3,BC=2,CE=1.5,CG=1,
∵BG⊥DE,∠BCD=∠ECG=90°
∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.
点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.
2.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E.
(1)如图1,线段AB与OE之间的数量关系为.(请直接填结论)
(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.
①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.
②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.
③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)
【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,
【解析】
试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;
(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得
EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
③同②的方法可证.
试题解析:(1)∵AC,BD是正方形的对角线,
∴OA=OC=OB,∠BAD=∠ABC=90°,
∵OE⊥AB,
∴OE=1
2 AB,
∴AB=2OE,
(2)①AF+BF=2OE
证明:如图2,过点B作BH⊥OE于点H
∴∠BHE=∠BHO=90°
∵OE⊥MN,BF⊥MN
∴∠BFE=∠OEF=90°
∴四边形EFBH为矩形
∴BF=EH,EF=BH
∵四边形ABCD为正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠HOB=∠OBH+∠HOB=90°
∴∠AOE=∠OBH
∴△AEO≌△OHB(AAS)
∴AE=OH,OE=BH
∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.
②AF﹣BF=2OE
证明:如图3,延长OE,过点B作BH⊥OE于点H
∴∠EHB=90°
∵OE⊥MN,BF⊥MN
∴∠AEO=∠HEF=∠BFE=90°
∴四边形HBFE为矩形
∴BF=HE,EF=BH
∵四边形ABCD是正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠BOH=∠OBH+∠BOH
∴∠AOE=∠OBH
∴△AOE≌△OBH(AAS)
∴AE=OH,OE=BH,
∴AF﹣BF
=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE
③BF﹣AF=2OE,
如图4,作OG⊥BF于G,则四边形EFGO是矩形,