函数单调性的研究

合集下载

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。

高中数学中的函数单调性性质总结

高中数学中的函数单调性性质总结

高中数学中的函数单调性性质总结高中数学中,函数单调性是非常重要的概念之一。

在函数的研究中,单调性是指一种自变量变化时,函数值的增减性质。

在本文中,我们将对函数单调性的性质进行总结和探讨,希望能对同学们更好地掌握这一概念。

一、函数单调性及其分类函数单调性是指在定义域内,自变量变大时,函数值单调递增或者单调递减,称为函数的单调性。

具体来说,若对于定义域内的任意两个自变量,我们有f(x2) ≥ f(x1) ,则函数为单调递增函数;若对于定义域内的任意两个自变量,我们有f(x2) ≤ f(x1) ,则函数为单调递减函数。

二、单调性的判定方法首先,我们需要了解单调性的判定方法。

通常有两种方法:导数法和图像法。

导数法,顾名思义,通过计算函数的导数来判断函数的单调性。

具体来说,若f‘(x)>0,则函数单调递增;若f‘(x)<0,则函数单调递减。

图像法,我们可以画出函数的图像,并观察函数的走向和斜率。

若函数的图像在定义域内逐渐上升,则函数单调递增;若函数的图像在定义域内逐渐下降,则函数单调递减。

三、几类常见函数的单调性1. 常函数:常函数的导数为0,因此常函数的单调性为常数函数。

2. 一次函数:一次函数是一条直线,因此单调性的判定非常简单。

若a>0,则函数单调递增;若a<0,则函数单调递减。

3. 幂函数:幂函数分为2种情况:a>0和a<0。

当a>0时,若n为偶数,则函数在左半轴上单调递减,在右半轴上单调递增;若n为奇数,则函数在整个定义域内单调递增。

当a<0时,若n为偶数,则函数在左半轴上单调递增,在右半轴上单调递减;若n为奇数,则函数在整个定义域内单调递减。

4. 指数函数:指数函数y=a^x,a>0且a≠1。

当a>1时,函数单调递增;当0<a<1时,函数单调递减。

5. 对数函数:对数函数y=logax,a>0且a≠1。

当a>1时,函数单调递增;当0<a<1时,函数单调递减。

函数的单调性及应用

函数的单调性及应用
函数的单调性及应用
contents
目录
• 函数的单调性定义 • 函数的单调性性质 • 函数的单调性应用 • 反函数的单调性 • 单调性在实际问题中的应用 • 总结与展望
01 函数的单调性定义
增函数的定义
增函数的定义
如果对于函数$f(x)$的定义域内的任 意$x_{1}, x_{2}$($x_{1} < x_{2}$), 都有$f(x_{1}) < f(x_{2})$,则称函数 $f(x)$在其定义域内是增函数。
06 总结与展望
函数单调性的重要性
数学基础
单调性是函数的重要性质之一,是数学分析、微积分等学科的 基础概念,对于理解函数的变化规律和性质具有重要意义。
解决实际问题
单调性在解决实际问题中也有广泛应用,如经济学、生物学、 工程学等领域的研究中,单调性可以帮助我们更好地理解和描
述事物的发展趋势和变化规律。
判断函数值大小
通过比较原函数和反函数的单调性,可以判 断两个函数值的大小关系。
优化问题
在某些优化问题中,可以利用反函数的单调 性来寻找最优解。
05 单调性在实际问题中的应 用
在经济问题中的应用
总结词
单调性在经济分析中有着广泛的应用,可以 帮助我们理解经济现象和预测未来的趋势。
详细描述
在经济学中,单调性可以用于研究商品价格 的变化趋势、消费者需求的变化趋势、劳动 力市场的供求关系等。通过分析这些经济变 量的单调性,我们可以更好地理解经济规律 ,预测未来的经济走势,为决策提供依据。
单调性法
利用函数的单调性,可以确定函数在某个区间 内的最大值或最小值,从而求解最值问题。
导数法
通过求导数,可以判断函数的单调性,从而确 定函数的最值。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

证明函数单调性的方法

证明函数单调性的方法

证明函数单调性的方法证明一个函数的单调性是数学分析中的重要内容,它涉及到函数的增减性质,对于函数的研究具有重要意义。

在数学分析中,我们常常需要证明一个函数在某个区间上是单调递增或者单调递减的。

下面,我将介绍几种常见的方法来证明函数的单调性。

1. 导数法。

导数法是证明函数单调性常用的方法之一。

对于给定的函数f(x),如果它在某个区间上具有一阶导数,那么我们可以通过导数的正负来判断函数的单调性。

具体来说,如果在某个区间上f'(x)大于0,则函数在该区间上是单调递增的;如果f'(x)小于0,则函数在该区间上是单调递减的。

2. 函数的增减表。

函数的增减表是一种通过导数的符号来判断函数单调性的方法。

我们可以通过求出函数的导数,并列出导数的符号随着自变量的变化而变化的情况,从而得出函数在某个区间上的单调性。

通过增减表,我们可以清晰地看出函数的单调性,并进行证明。

3. 极值点和拐点。

对于一个函数f(x),它的极值点和拐点也可以帮助我们证明函数的单调性。

如果在某个区间上f'(x)恒大于0,并且f''(x)恒大于0,那么函数在该区间上是单调递增的;如果f'(x)恒小于0,并且f''(x)恒小于0,那么函数在该区间上是单调递减的。

通过分析极值点和拐点,我们可以得出函数的单调性。

4. 函数图像法。

最直观的方法是通过函数的图像来观察函数的单调性。

我们可以通过绘制函数的图像,并观察函数在某个区间上的变化趋势,从而得出函数的单调性。

通过观察函数的图像,我们可以直观地理解函数的单调性,并进行证明。

综上所述,证明函数单调性的方法有多种多样,我们可以根据具体的函数和问题选择合适的方法进行证明。

在实际应用中,我们需要灵活运用这些方法,从而准确地判断函数的单调性,为数学分析和实际问题的解决提供有力的支持。

利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。

函数的单调性

函数的单调性

函数的单调性函数的单调性南京师大附中陶维林一、内容和内容解析函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如函数单调增表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质.函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法.这就是,加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.定义域上未必具有单调性,说明函数的单调性是函数的局部性质;3.对于一个具体的函数,能够用单调性的定义,证明它是增函数还是减函数:在区间上任意取x1,x2,设x1<x2,作差f(x2)-f(x1),然后判断这个差的正、负,从而证明函数在该区间上是增函数还是减函数.三、教学问题诊断分析学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应.学生还了解函数有三种表示方法,特别是可以借助图象对函数特征加以直观考察.此外,还学习过一次函数、二次函数、反比例函数等几个简单而具体的函数,了解它们的图象及性质.尤其值得注意的是,学生有利用函数性质进行两个数大小比较的经验.“图象是上升的,函数是单调增的;图象是下降的,函数是单调减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难.困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述.即把某区间上“随着x的增大,y也增大”(单调增)这一特征用该区间上“任意的x1<x2,有f(x1)<f(x2)”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的x1,x2.教学中,通过二次函数这个具体函数的图象及数值变化特征的研究,得到“图象是上升的”,相应地,即“随着x的增大,y也增大”,初步提出单调增的说法.通过讨论、交流,让学生尝试,就一般情况进行刻画,提出“在某区间上,如果对于任意的x1<x2有f(x1)<f(x2)”则函数在该区间上具有“图象是上升的”、“随着x的增大,y也增大”的特征.进一步给出函数单调性的定义.然后通过辨析、练习等帮助学生理解这一概念.企图在一节课中完成学生对函数单调性的真正理解可能是不现实的.在今后,学生通过判断函数的单调性,寻找函数的单调区间,运用函数的单调性解决具体问题,等一系列学习活动可以逐步理解这个概念.四、教学支持条件分析为了有效实现教学目标,条件许可,可以借助计算机或者计算器绘制函数图象,同时辅以坐标计算、跟踪点以及等手段观察函数的数字变化特征.用好节前单调性的“直单调性的“描单调性的“定单调性的五、教学基本流程六、教学过程设计1.用好节前语,引出课题函数是描述事物运动变化规律的数学模型.如果了解了函数的变化规律,那么也就掌握了相应事物的变化规律,因此研究函数的性质十分必要.在事物变化过程,保持不变的特征就是这个事物的性质.问题1 观察图1中各个函数的图象,你能说说它们分别反映了相应函数的哪些变化规律吗?图1 设计意图:从形到数,借助对函数图象的观察,想象相应的函数的性质.引导单调函数的“直观定义”.可能的回答是,第一个图中的函数图象,自左而右是上升的;第二个图中的函数图象,自左而右,有时是上升的有时是下降的;第三个图中的函数图象,自左而右也是有时上升有时下降的,而且是关于y轴对称的.师:对于运动变化问题,最基本的就是描述变化的快与慢、增与减……相应的,函数的特征就包含:函数的增与减,我们把函数的这种性质称为“单调性”.教师结合上述直观认识,写出课题:函数的单调性.2.函数单调性的“直观定义”结合上述直观认识,给出单调函数的“直观定义”:设函数的定义域为I,区间D I.在区间D上,若函数的图像(从左至右看)总是上升的,则称函数在区间D上是增函数,区间D称为函数的单调增区间;在区间D上,若函数的图像(从左至右看)总是下降的,则称函数在区间D上是减函数,区间D称为函数的单调减区间.例1 (教科书第29页例1)图2是定义在区间[-5,5]上的函数y=f(x)的图象,根据函数图象说出函数的单调区间,以及在每一个单调区间上,它是增函数还是减函数?设计意图:用“直观定义”判断单调性,并强调单调性的“局部性”.图2 3.函数单调性的“描述性定义”仅从图象上观察出函数的性质,只是得到了“定性刻画”,对函数的变化情况只是“大致了解”,显然不够,我们希望“量化”,这样才能准确.教师借助几何画板作出函数y=x2的图像,并在函数y=x2的图像上任画一点P,测量出其横坐标与纵坐标,制作表格.拖动点P,表格自动增行.问题2 根据函数的定义,对于自变量x的每一个确定的值,变量y有唯一确定的值与它对应.那么,当一个函数在某一区间上是单调增(或单调减)的时候,相应的,自变量的值与对应的函数值的变化规律是怎样的呢?设计意图:对函数的单调性的刻画,从图形的刻画过渡到数量关系,即从图形语言的表述过渡到自然语言的表述.由上面的表格可见,点P的纵坐标(即函数值)y的变化规律:在区间(-∞,0]上,随着自变量x增大,函数值y减少;在区间[0,+∞)上,随着自变量x增大,函数值y也增大.由此得到单调函数的“描述性定义”:设函数的定义域为I,区间D I.在区间D上,若随着自变量x增大,函数值y也增大,则称函数在区间D上是增函数;在区间D上,若随着自变量x增大,函数值y反而减小,则称函数在区间D上是减函数.4.从“定性定义”过渡到“定量定义”虽然完成了对函数单调性的从图形语言表述到自然语言的表述,但这样的描述还不是“量化”的,所以,要把定性的数量变化关系转化为定量的数量变化关系.这是本课的重点,也是难点所在.从上面的结论,可以看到,函数在区间D 上是增函数,那么随着自变量x增大,函数值y 也增大.问题3 如果对于区间(a,b)上的任意x 有f(x)>f(a),则函数f(x)在区间(a,b)上单调增.这个说法对吗?请你说明理由(举例或者画图).设计意图:继续企图通过对描述性定义的辨析,逐渐引出定量定义.必须是两个变化的量的比较.问题4 函数f(x)在区间(a,b)上有无数个自变量x,使得当a<x1<x2<…<…<b时,有f(a)<f(x1)<f(x2)<…<…f(b),能不能说明它在(a,b)单调增?请你说明理由(举例或者画图).设计意图:本问题较为贴近描述性定义,但这是对描述性定义的误解.通过对函数描述性定义的辨析,逐渐使得同学们认识到要使函数f(x)在区间(a,b)上具有单调增的特征,必须允许自变量x在区间(a,b)上“任意取”,且只要“取两个”就够了.也给学生使用符号说明单调性以示范或提示.从上面的讨论可以看到,函数f(x)在区间(a,b)对任意x有f(x)>f(a),也不能说明它在(a,b)单调增;在区间(a,b)上有无数个自变量x,使得当a<x1<x2<…<…<b时,有f(a)<f(x1)<f(x2)<…<…f(b)也不能说明它在(a,b)单调增.那么自变量x在区间(a,b)上到底该怎样取值好呢?我们再来看一看具体的函数f(x)=x2.教师利用几何画板演示:在函数f(x)=x2的图象上,位于区间[0,+∞)任选两个点,自变量大的函数值也一定大.并提出问题5 在函数f(x)=x2,x∈[0,+∞)的图象上任意取两点,自变量大的函数值也一定大,能否说明函数f(x)=x2在[0,+∞)上单调增?设计意图:由问题4可见,刻画函数单调性不在于所取自变量个数的多少,关键在于是否能够任意取值,而且必须任意取两个.这个问题的答案是显然的.教师立即提出“怎样用符号来表示?”的问题.引导学生获得“只要任意x1<x2,有f(x1)<f(x2)”即可.经过议论,获得共识——函数单调性的定义.一般地,设函数f(x)的定义域为I.如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.这个定义中的关键词是什么呢?是“任意”二字.5.单调性定义的应用(课堂练习)练习1 画出反比例函数f(x)=1x的图象,并回答下列问题:(1)指出这个函数的单调性;(2)是否可以说“这个函数在定义域I上是单调减?”为什么?设计意图:通过具体问题,使学生认识函数的单调性是函数在定义域的某个区间上的性质,是函数的局部性质(在整体上未必有).进一步认识“任意”二字的意义,加深对函数单调性的认识.答:(1)函数f(x)=1x在区间(-∞,0)上单调减,在区间(0,+∞)上也单调减.(图象略).(2)这个函数的定义域I=(-∞,0)∪(0,+∞).不能说“这个函数在定义域I上是单调减”.事实上,取x1=-1,x2=1,而f(-1)=-1,f(1)=1,f(-1)<f(1).练习2 物理学中的波利尔定律p=kV(k是正常数)告诉我们,对于一定量的气体,当体积V减小,压强p将增大.试用函数的单调性证明之.(教科书第29页例2)设计意图:函数单调性概念的应用.逐步掌握利用单调性定义证明一个函数在某区间上具有某种单调性的步骤.加深对函数单调性的理解.分析 怎样来证明“体积V 减小,压强p 将增大”呢,根据函数单调性的定义,只要证明函数p =k V (k 是正常数)是减函数.怎样证明函数p =k V (k 是正常数)是减函数呢,只要在区间(0,+∞)(因为体积V >0)任意取两个大小不相等的值,证明较小的值对应的函数值较大,即设V 1<V 2,去证明p 1>p 2.也就是只要证明p 1-p 2>0.证明:设V 1<V 2,V 1,V 2∈(0,+∞).p 1-p 2=k V 1-k V 2=k (V 2-V 1)V 1 V 2. 因为k 是正常数,V 1<V 2,所以k (V 2-V 1)V 1 V 2>0,p 1>p 2.所以,体积V 减小,压强p 将增大.6.课堂小结这节课,我们学习了“函数的单调性”,“如果函数在区间(a,b)单调减,那么这个函数有什么特征?”设计意图:企图明确,f(x)在区间D上是减函数⇔f(x)的图像在区间D上是下降的⇔在区间D上自变量增大函数值减小.类似地,f(x)在区间D上是增函数⇔f(x)的图像在区间D 上是上升的⇔在区间D上自变量增大函数值也增大.教师总结研究问题的过程(突出思想方法)——“图形直观——定性刻画——定量刻画”,最后用不等式,即“大小比较”的方法刻画一种变化规律,描述一个变化过程.7.布置课后作业教科书第39页,习题1.3,第1,2,3题.。

证明函数单调性的方法

证明函数单调性的方法

证明函数单调性的方法在数学中,证明函数的单调性是一个非常重要的问题。

函数的单调性指的是函数在定义域内的增减性质,即函数的取值随自变量的增减而增加或减少。

证明函数的单调性有多种方法,下面我们将介绍几种常见的方法。

一、导数法。

证明函数单调性的常用方法之一是利用导数。

对于给定的函数,我们可以求出其导数,并通过导数的正负性来判断函数的单调性。

具体来说,如果函数在某个区间上的导数恒大于零(或恒小于零),那么函数在该区间上就是单调递增(或单调递减)的。

以求证函数f(x)在区间(a, b)上单调递增为例,我们可以先求出函数f(x)在该区间上的导数f'(x),然后证明f'(x)恒大于零。

如果能够证明f'(x)>0,那么就可以得出函数f(x)在区间(a, b)上单调递增的结论。

二、一阶导数和二阶导数法。

除了利用导数的正负性来证明函数的单调性外,我们还可以利用一阶导数和二阶导数的关系来进行证明。

具体来说,如果函数在某个区间上的一阶导数恒大于零,而二阶导数恒大于或恒小于零,那么函数在该区间上就是单调递增的。

同理,如果一阶导数恒小于零,而二阶导数恒大于或恒小于零,那么函数在该区间上就是单调递减的。

三、零点法。

另一种证明函数单调性的方法是利用函数的零点。

具体来说,如果函数在某个区间上的导数恒大于零(或恒小于零),那么函数在该区间上就是单调递增(或单调递减)的。

而函数的导数恒大于零(或恒小于零)又可以通过证明函数的导数在该区间上没有零点来得到。

因此,我们可以通过证明函数的导数在某个区间上没有零点来证明函数在该区间上的单调性。

四、其他方法。

除了上述方法外,还有一些其他方法可以用来证明函数的单调性,比如利用函数的图像、利用函数的定义等。

在具体问题中,我们可以根据函数的性质和给定条件选择合适的方法来进行证明。

总结。

综上所述,证明函数的单调性有多种方法,包括导数法、一阶导数和二阶导数法、零点法以及其他方法。

函数单调性 图文

函数单调性 图文

(1)函 数f ( x) 1 在 定 义 域 上 单 调 递 减(。× )
x
(2)函
数f
(
x)


x, x2
x0 1, x

在R上 0



增.(

)
四、探究 探 究2.试 探 究 函 数f ( x) x 1 在[1,)上 的
x 单 调 性,并 证 明 。
用定义法证明函数单调性时,四个步骤:
y
f (x) x
f (x) x2
•y
o
x

图1
y
o
x
图3
o
x
图2
观察图像,试说说 这些函数图像特征。
一、定义探究
y
上 升
O
y f(x)
f (x1) f(x2)
x1
x2 x
y
y f(x)
下 f(x1)

f (x 2 )
O
x1 x2
x
变化趋势
文字语言
符号语言
自左向右 看,上升
自左向右 看,下降
?
存在某两个自变量的 值x1、x2,当x1<x2时, f(x1)<f(x2)
随着x增大,
相应的f(x)也增大 ?
无穷多对自变量的值 x1、x2,当x1<x2时, f(x1)<f(x2)
随着x增大, 相应的f(x)也增大

对任意两个自变量的 值x1、x2,当x1<x2时, f(x1)<f(x2)
一、定义
则 函 数y f ( x)在 区 间( , )上 是 增 函 数.( × )
(2)函 数y f ( x)的 定 义 域 为[0, ),若 对 于 任 意 的x2 0, 都 有f ( x2 ) f (0),则 函 数y f ( x)在 区

函数单调性及其应用的研究

函数单调性及其应用的研究

函数单调性及其应用的研究
函数单调性指的是函数在其定义域上的增减性质。

具体来说,如果函数f的定义域上的任意两个自变量x1和x2满足x1<x2,则有f(x1)<f(x2)(即f单调递增),或者f(x1)>f(x2)(即f单调递减)。

如果函数既不单调递增也不单调递减,则称之为不单调。

函数单调性的研究在数学分析、微积分、数值分析、优化等领域中有着广泛的应用。

以下是一些具体的应用:
1. 函数单调性可以帮助我们确定函数的最值和极值,从而指导我们在实际问题中找到最优解。

2. 在微积分中,函数单调性可以帮助我们证明一些基本定理,例如中值定理、罗尔定理等。

3. 函数单调性还可以为数值计算提供依据。

如果我们知道函数f在一个区间上单调递增或递减,那么我们就可以使用二分法等技术来快速找到这个区间内的零点或极值点。

4. 在优化问题中,函数单调性可以帮助我们确定最优解空间的边界和方向,从而指导我们设计更加高效的优化算法。

总之,函数单调性是数学中一个非常重要的概念,它不仅可以帮助我们求解各种实际问题,还可以为理论研究提供有力的工具和方法。

函数的单调性

函数的单调性
解 因为 f(x)=13x3-x2+2x-5, 所以f′(x)=x2-2x+2=(x-1)2+1>0, 所以函数 f(x)=13x3-x2+2x-5 在 R 上单调递增.
(2)f(x)=x-1x-ln x;
解 因为 f(x)=x-1x-ln x,x∈(0,+∞), 所以 f′(x)=1+x12-1x=x2-xx2+1=x-12x22+43>0, 所以 f(x)=x-1x-ln x 在(0,+∞)上单调递增.
跟踪训练2 求下列函数的单调区间. (1)f(x)=x2·e-x;
解 易知函数的定义域为(-∞,+∞). f′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x·(2x-x2), 令f′(x)=0,得x=0或x=2, 当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0
三、由导数的信息画函数的大致图象
例 3 已 知 导 函 数 f′(x) 的 下 列 信 息 : 当 x<0 或 x>7 时 , f′(x)>0 ; 当 0<x<7时,f′(x)<0;当x=0或x=7时,f′(x)=0,试画出函数f(x)的大 致图象.
解 当x<0或x>7时,f′(x)>0,可知函数f(x)在区间(-∞,0)和(7,+∞) 上都是单调递增的; 当0<x<7时,f′(x)<0,可知函数f(x)在区间(0,7)上单调递减; 当x=0或x=7时,f′(x)=0, 这两个点比较特殊,我们称它们为“临界点”. 故如图,
1234
课堂小结
1.知识清单: (1)函数的单调性与其导数的关系. (2)利用导数判断函数的单调性. (3)利用导数求函数的单调区间. (4)由导数的信息画函数的大致图象. 2.方法归纳:方程思想、分类讨论. 3.常见误区:忽略定义域的限制.

1.3.1函数的单调性

1.3.1函数的单调性

x
p p p p 单调区间有 [ p , ], [ , ],[ , p] 单调区间有[-2,-1],[-1,0],[0,1],[1,2] 2 2 2 2 p p 其中单调减区间为[-2,-1],[0,1] 单调减区间[ p, ],[ , p] 2 2 单调增区间为[-1,0],[1,2] p p 单调增区间[ , ] 2 2
证明: 任取 x1 , x2 , 且 x1
证明步骤: 例2.证明函数 f x 2 x 1在 , 上是增函数。

x2 ,

①取值
∴ f ( x1 )

f ( x2 ) (2x1 1) (2 x2 1) ②作差
x1 x2 x1 x2 0
还是减函数?
3 变式2:讨论函数f(x)= 在定义域上的 x 单调性. 3 结论:函数f(x)= 在其定义域上不具有 x
单调性.
如何用x与 f(x)来描述上升的图象?
y
y f (x)
f (x1 )
f (x 2 )
x2
x
在给定区间上任取 x1 , x2 ,
x1 x2 f(x1 ) f(x2 )
函数的基本性质
§1.3.1 函数的单调性
研究一次函数f ( x) x和二次函数f ( x) x2的单调性
y
f ( x) x
y
f ( x) x2
0
x
0
x
观察f ( x) x,f ( x) x2的图象, 当自变量x的值增大时,函数值f ( x)是如何变化的?
如何用x与 f(x)来描述上升的图象?
例3 判断函数 f ( x) x 2x 的单调性,并加以证明.

导数研究函数单调性

导数研究函数单调性

导数研究函数单调性在数学中,函数单调性是一个非常重要的概念。

它描述了函数在定义域内的增减规律,是研究函数导数的一个重要应用。

本文将探讨导数与函数单调性之间的关系,并介绍相关的定理和方法。

一、函数的单调性函数的单调性是指函数在定义域内的增减规律。

1.1单调递增与单调递减如果对于定义域内的任意两个实数x1和x2,当x1<x2时,有f(x1)<f(x2),则函数f(x)在定义域内是单调递增的;如果对任意两个实数x1和x2,当x1<x2时,有f(x1)>f(x2),则函数f(x)在定义域内是单调递减的。

1.2严格单调性与非严格单调性如果对于定义域内任意两个不相等的实数x1和x2,当x1<x2时,有f(x1)<f(x2)或f(x1)>f(x2),则函数f(x)在定义域内是严格单调的;如果对于任意两个实数x1和x2,当x1≤x2时,有f(x1)≤f(x2)或f(x1)≥f(x2),则函数f(x)在定义域内是非严格单调的。

函数的导数是描述函数变化率的重要工具。

导数可以用来研究函数的单调性。

2.1导数与函数增减变化如果函数在其中一区间内的导数始终大于零,那么函数在这个区间内是递增的;如果函数在其中一区间内的导数始终小于零,那么函数在这个区间内是递减的。

2.2导数与函数极值函数在极值点(即导数为零的点)处可能发生函数单调性的转折。

如果函数在极值点的导数发生正负跳变,那么函数在极值点是非严格单调的;如果函数在极值点的导数保持正负不变,那么函数在极值点是严格单调的。

三、函数单调性的判定方法3.1一阶导数法首先求函数的一阶导数,然后根据一阶导数的正负变化情况来判断函数的单调性。

当一阶导数始终大于零时,函数为递增函数;当一阶导数始终小于零时,函数为递减函数。

3.2二阶导数法求函数的二阶导数,然后根据二阶导数的正负来判断函数的单调性。

当二阶导数始终大于零时,函数为凸函数,是严格单调递增的;当二阶导数始终小于零时,函数为凹函数,是严格单调递减的。

复合函数的单调性的研究

复合函数的单调性的研究

复合函数的单调性的研究摘要:函数单调性是函数的核心内容之一,也是高考中重点考查的知识,又多以考查复合函数的单调性居多. 复合函数的单调性的复合规律为:若函数y=f(u)与u=g(x)的增减性相同(相反),则y=f[g(x)]是增(减)函数,可概括为“同增异减”.[1]为了帮助考生对复合函数的单调性进一步有一个全面的认识,本文结合例题,对复合函数的单调区间的求法及单调性的应用加以归纳总结,进行全面的研究.关键词:复合函数、函数单调性、定义域、单调递增、单调递减正文部分一、引言:什么是复合函数.对于函数y=f(u) u∈B与u=g(x) x∈A,如果x∈A时u=g(x)的值域C与函数y=f(u)的定义域B的交集非空,即C∩B≠φ,那么就说y=f(u) u∈B 与u=g(x) x∈A可以复合,称函数y=f(g(x))叫做y=f(u) u∈B与u=g(x) x∈A的复合函数,其中y=f(u)叫做外函数,u=g(x)叫做内函数.比如, (x∈R)的复合函数是u=-X2 ∵u=-x2≤0与u≥0的交集为{0},∴二者可以复合,但定义域发生了变化,复合后的函数的定义域既不是u≥0,也不是x∈R,而是x=0.也就是说复合函数的定义域既受外函数的制约也受内函数的制约(主要受外函数的制约).由定义知道就不能复合成f(g(x)).二.复合函数单调性的判断总体步骤:复合函数y=f[g(x)]的单调性可按下列步骤判断:(1) 将复合函数分解成两个简单函数:y=f(u)与u=g(x).其中y=f(u)又称为外层函数, u=g(x)称为内层函数;(2) 确定函数的定义域;(3) 分别确定分解成的两个函数的单调性;(4) 若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数y=f[g(x)]为增函数;(5) 若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数y=f[g(x)]为减函数.复合函数的单调性可概括为一句话:“同增异减”.[2]三.详细分析3.1观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?第一组:第二组:显然第一组函数,函数值y随x的增大而增大;第二组组函数,函数值y随x的增大而减小.这正是两组函的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一个函数却具有一种共同的性质.。

14导数、利用导数研究函数的单调性(含答案)

14导数、利用导数研究函数的单调性(含答案)

14导数:利用导数研究函数的单调性1.函数的单调性与导数的关系2.确定不含参数的函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求f′(x).(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.3.确定含参数的函数的单调性的基本步骤(1)确定函数f(x)的定义域.(2)求f′(x),并尽量化为乘积或商的形式.(3)令f′(x)=0,①若此方程在定义域内无解,考虑f′(x)恒大于等于0(或恒小于等于0),直接判断单调区间.如举例说明中a≥1时,f′(x)>0,a≤0时,f′(x)<0.②若此方程在定义域内有解,则用之分割定义域,逐个区间分析f′(x)的符号确定单调区间.如举例说明中0<a<1时,f′(x)=0有一个实根练习1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是( )答案 C解析由y=f′(x)的图象易得,当x<0或x>2时,f′(x)>0;当0<x<2时,f′(x)<0.所以函数y=f(x)在(-∞,0)和(2,+∞)上单调递增,在(0,2)上单调递减,故选C.2.f(x)=x3-6x2的单调递减区间为( )A.(0,4) B.(0,2)C.(4,+∞) D.(-∞,0)答案 A解析f′(x)=3x2-12x=3x(x-4),由f′(x)<0得0<x<4,所以f(x)的单调递减区间为(0,4).3.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)答案 D解析函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=e x+(x-3)e x =(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)e x>0,解得x>2.4.函数f(x)=e x-e x,x∈R的单调递增区间是( )A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)答案 D解析 依题意得f ′(x )=e x -e.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=e x -e>0,解得x >1.5.函数f (x )=3xx 2+1的单调递增区间是___________. 解析 函数f (x )的定义域为R ,f ′(x )=31-x 2x 2+12=31-x 1+xx 2+12.要使f ′(x )>0,只需(1-x )(1+x )>0,解得x ∈(-1,1).6.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5. 但-1∉(0,+∞),舍去. 当x ∈(0,5)时,f ′(x )<0; 当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).7.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是.答案 ⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2解析 因为f (x )=x sin x +cos x ,所以f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )>0,得x cos x >0. 又因为-π<x <π,所以-π<x <-π2或0<x <π2, 所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.8.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .①当a ≥1时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a, 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫1-a2a ,+∞时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a2a ,+∞上单调递增. 综上所述,当a ≥1时,f (x )在(0,+∞)上单调递增; 当a ≤0时,f (x )在(0,+∞)上单调递减; 当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝ ⎛⎭⎪⎫1-a2a ,+∞上单调递增.9.已知函数f (x )=(x -1)e x -x 2,g (x )=a e x -2ax +a 2-10(a ∈R ).(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数h(x)=f(x)-g(x)(x>0)的单调性.解(1)由题意,得f′(x)=x e x-2x,则f′(1)=e-2.又f(1)=-1,故所求切线方程为y-(-1)=(e-2)(x-1),即y=(e-2)x+1-e.(2)由已知,得h(x)=f(x)-g(x)=(x-a-1)e x-x2+2ax-a2+10.此函数的定义域为(0,+∞).则h′(x)=e x+(x-a-1)e x-2x+2a=(x-a)(e x-2).①若a≤0,则x-a>0.当0<x<ln 2时,h′(x)<0,当x>ln 2时,h′(x)>0.所以h(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增.②若0<a<ln 2,则当0<x<a或x>ln 2时,h′(x)>0.当a<x<ln 2时,h′(x)<0.所以h(x)在(0,a)上单调递增,在(a,ln 2)上单调递减,在(ln 2,+∞)上单调递增.③若a=ln 2,则h′(x)≥0,所以h(x)在(0,+∞)上单调递增.④若a>ln 2,则当0<x<ln 2或x>a时,h′(x)>0;当ln 2<x<a时,h′(x)<0.所以h(x)在(0,ln 2)上单调递增,在(ln 2,a)上单调递减,在(a,+∞)上单调递增.10.设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是?解析∵f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]′>0.∴f(x)g(x)在(-∞,0)上单调递增,又f(x),g(x)分别是定义在R上的奇函数和偶函数,∴f(x)g(x)为奇函数,f(0)g(0)=0,∴f(x)g(x)在(0,+∞)上也是增函数.∵f(3)g(3)=0,∴f(-3)g(-3)=0.∴f(x)g(x)>0的解集为(-3,0)∪(3,+∞).11.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间, 所以当x ∈(0,+∞)时, 1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1. 又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞). (2)因为h (x )在[1,4]上单调递减, 所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max , 而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716,又因为a ≠0,所以a 的取值范围是 ⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞). 12.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )答案 D解析 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 项符合题意.13.已知函数f (x )=x 3+ax ,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a ≥0时,f ′(x )=3x 2+a ≥0,f (x )在R 上单调递增,“a >0”是“f (x )在R 上单调递增”的充分不必要条件.故选A.14.已知函数f (x )=3x +2cos x ,若a =f (32),b =f (2),c =f (log 27),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a答案 D解析 ∵f (x )=3x +2cos x 的定义域为R ,f ′(x )=3-2sin x >0,∴f (x )为R 上的单调递增函数.又y =log 2x 为(0,+∞)上的单调递增函数,∴2=log 24<log 27<log 28=3.∵y =3x 为R 上的单调递增函数,∴32>31=3,∴2<log 27<3 2.∴f (2)<f (log 27)<f (32),即b <c <a .15.若函数f (x )=e x -(a -1)x +1在(0,1)上单调递减,则a 的取值范围为( )A.(e+1,+∞) B.[e+1,+∞)C.(e-1,+∞) D.[e-1,+∞)答案 B解析由f(x)=e x-(a-1)x+1,得f′(x)=e x-a+1.因为函数f(x)=e x -(a-1)x+1在(0,1)上单调递减,所以f′(x)=e x-a+1≤0在(0,1)上恒成立,即a≥e x+1在(0,1)上恒成立,令g(x)=e x+1,x∈(0,1),则g(x)在(0,1)上单调递增,所以g(x)<g(1)=e+1.所以a≥e+1.所以实数a的取值范围为[e+1,+∞).故选B.16.已知定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)<0,其中f′(x)是函数f(x)的导函数.若2f(m-2019)>(m-2019)f(2),则实数m的取值范围为( )A.(0,2019) B.(2019,+∞)C.(2021,+∞) D.(2019,2021)答案 D解析令h(x)=f xx,x∈(0,+∞),则h′(x)=xf′x-f xx2.∵xf′(x)-f(x)<0,∴h′(x)<0,∴函数h(x)在(0,+∞)上单调递减,∵2f(m-2019)>(m-2019)f(2),m-2019>0,∴f m-2019m-2019>f22,即h(m-2019)>h(2).∴m-2019<2且m-2019>0,解得2019<m<2021.∴实数m的取值范围为(2019,2021).17.已知f(x)=1+ln x2ax(a≠0,且a为常数),求f(x)的单调区间.解因为f(x)=1+ln x2ax(a≠0,且a为常数),所以f′(x)=-2a ln x2ax2=-ln x2ax2,x>0.所以①若a>0,当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.即a>0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).②若a<0,当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.即a <0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1). 18.已知函数f (x )=x 3+ax 2+2x -1.(1)若函数f (x )在区间[1,3]上单调递增,求实数a 的取值范围; (2)若函数f (x )在区间[-2,-1]上单调递减,求实数a 的取值范围. 解 由f (x )=x 3+ax 2+2x -1,得f ′(x )=3x 2+2ax +2.(1)因为函数f (x )在区间[1,3]上单调递增,所以f ′(x )≥0在[1,3]上恒成立.即a ≥-3x 2-22x 在[1,3]上恒成立.令g (x )=-3x 2-22x ,则g ′(x )=-3x 2+22x 2,当x ∈[1,3]时,g ′(x )<0,所以g (x )在[1,3]上单调递减,所以g (x )max =g (1)=-52,所以a ≥-52.(2)因为函数f (x )在区间[-2,-1]上单调递减,所以f ′(x )≤0在[-2,-1]上恒成立,即a ≥-3x 2-22x 在[-2,-1]上恒成立,由(1)易知,g (x )=-3x 2-22x 在[-2,-1]上单调递减,所以a ≥g (-2),即a ≥72.。

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。

常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。

二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。

函数单调性与最值问题的探究

函数单调性与最值问题的探究

2023年4月上半月㊀解法探究㊀㊀㊀㊀函数单调性与最值问题的探究◉甘肃省静宁县成纪中学㊀朱亚龙1引言函数的单调性和奇偶性是函数的基本性质.常见的函数单调性的求法有:①定义法;②图象法;③导数法.还有一些与函数单调性有关的结论:若函数f(x), g(x)均为增(减)函数,则f(x)+g(x)为增(减)函数;若f(x)为增(减)函数,则-f(x)为增(减)函数;若函数f(x)为增(减)函数且f(x)>0,则1f(x)为减(增)函数,f(x)为增(减)函数;互为反函数的两函数具有相同的单调性.求函数的最值时,若函数在某连续闭区间上单调,则其最值在两端点处取得;分段函数的最值需要讨论;含参函数求最值时,更能培养学生的数学思维能力和应用意识,也是函数知识中的重点和难点.2例题解析例1㊀函数f(x)=a x在[0,1]上的最小值与最大值的和是3,求a的值为(㊀㊀).A.12㊀㊀㊀㊀B.2㊀㊀㊀㊀C.4㊀㊀㊀㊀D.14分析:指数函数的单调性由底数决定,f(x)的解析式中底数为参数a,而a的变化影响函数f(x)的单调性,需分类讨论;根据函数在连续闭区间上单调时,其最值在两端点处取得,按条件去求最值.解法1:分类讨论法.①若a>1时,f(x)在[0,1]上单调递增.所以当x=0时,f(x)有最小值1;当x=1时,f(x)有最大值a.由题意得1+a=3,即a=2.②若0<a<1时,f(x)在[0,1]上单调递减.所以当x=0时,f(x)有最大值1;当x=1时,f(x)有最小值a.由题意得a+1=3,即a=2,与0<a<1矛盾.故选:B.解法2:当a>0且aʂ1时,y=a x是R上的单调函数,所以其最值在xɪ[0,1]的两个端点取得,必有1+a=3,所以a=2.故选项B正确.点评:本题考查指数函数的单调性和单调闭区间上的最值问题.只要熟练掌握指数函数的性质,对含参数的底数分类讨论即可得到结果.本题的关键是对单调性和最值的理解.例2㊀已知f(x)=a x,x>1,(4-a2)x+2,xɤ1{是R上的单调递增函数,则实数a的取值范围为(㊀㊀).A.(1,8)㊀B.[4,8)㊀C.(1,+ɕ)㊀D.(4,8)分析:本题考查分段函数的单调性,其中一段是指数函数,另一段是一次函数.给出分段函数为增函数,所以函数在每一段上应该也是增函数,同时注意分段处的函数值,把参数a求解出来即可.解:因为题意f(x)是R上的单调递增函数,所以f(x)=a x在(1,+ɕ)上单调递增,即a>1;由f(x)=(4-a2)x+2在(-ɕ,1]上单调递增,可得4-a2>0,则a<8;又由f(x)在R上单调递增,得aȡ4-a2+2,即aȡ4.综上,4ɤa<8.故选项B正确.点评:本题考查分段函数的单调性,根据给出的条件分别讨论每一段的单调性,再去处理端点函数值的大小,是常规方法的训练,提升学生对单调性的进一步理解.本题也可以用排除法.当a=2时,有f(1)=5>4=f(2),不符合f(x)在R上单调递增,所以排除A,D.当a=10时,f(x)=-x+2在(-ɕ,1]上单调递减,不符合题意,故排除C.对于选择题来说,很多时候排除法能更快地选出答案.此题也是对学生解题技巧的培养.例3㊀若函数f(x)=x3-6a x的单调递减区间为(-2,2),则a的取值范围为(㊀㊀).A.(-ɕ,0]㊀㊀㊀㊀㊀B.[-2,2] C.{2}D.[2,+ɕ)分析:本题用定义法求解比较困难,可以采用导数法.要根据给出的单调区间对参数a进行分类讨论,最终确定a的取值.解:由f(x)=x3-6a x,得fᶄ(x)=3x2-6a.①若aɤ0,则在区间(-2,2)上fᶄ(x)ȡ0,所以f(x)单调递增,不符合题意.②若a>0时,由fᶄ(x)=0,解得x=ʃ2a.当x<-2a,或x>2a时,fᶄ(x)>0,f(x)单调递增;当-2a<x<2a时,fᶄ(x)<0,f(x)57Copyright©博看网. All Rights Reserved.解法探究2023年4月上半月㊀㊀㊀单调递减.所以f (x )的单调减区间为(-2a ,2a ).由题意,得2a =2,即a =2.故选项C 正确.点评:本题考查了用导数法求函数的单调区间,并对参数a 进行分类讨论.其中,f (x )的单调递减区间是(-2,2)与f (x )在(-2,2)上单调递减不同,应加以区分.所以本题还可以转化为x =ʃ2是方程fᶄ(x )=3x 2-6a =0的两个根,进而解得a =2.通过本题的练习,加深学生对函数单调性的理解,也提升学生的学科素养.例4㊀函数y =l o g13(x 2-3x )的单调递减区间为㊀㊀㊀㊀.分析:本题为复合函数单调区间的求解,注意函数复合时定义域的变化.函数是y =l o g 13t ,t =x 2-3x 复合得到的,分别判断它们的单调性,再根据定义域和复合函数的单调性相关知识即可解决.解:设y =l o g13t ,t =x 2-3x ,则由t >0,解得x <0,或x >3.所以函数y =l o g 13(x 2-3x )定义域为(-ɕ,0)ɣ(3,+ɕ).因为二次函数t =x 2-3x 的对称轴为x =32,所以此函数在(-ɕ,0)上单调递减,在(3,+ɕ)上单调递增.而函数y =l o g13t 为单调递减函数,则根据复合函数单调性可知,函数y =l o g 13(x 2-3x )的单调递减区间为(3,+ɕ).点评:本题是对复合函数单调性的考查,首先应该弄清楚这个函数是哪几个基本函数复合而来的,以及这些函数复合时定义域的变化,从而得出复合函数的定义域;清楚每个基本函数的单调性后,再根据复合函数的单调性求解.培养学生的数学思维能力和解题能力,提升学生对学科解题策略的认知.例5㊀已知对任意x ,y ɪR 函数y =f (x )均有f (x )+f (y )=f (x +y );当x >0时,f (x )<0,f (1)=-23.(1)证明:f (x )为奇函数;(2)判断并证明f (x )在R 上的单调性;(3)求f (x )在区间[-3,3]上的最值.分析:本题为函数单调性的判断与抽象函数的应用.先找特殊值x =y =0,求出f (0),再由y =-x ,得f (x )为奇函数;根据函数单调性的定义证明f (x )为单调减函数;最后由f (x )为单调函数,即可求得f (x )在区间[-3,3]上的最值.证明:(1)令x =y =0,得f (0)=0;令y =-x ,可得f (-x )=-f (x ),所以f (x )为奇函数.(2)f (x )在R 上是单调递减函数.证明:在R 上任取x 1,x 2且x 1<x 2,则x 2-x 1>0.结合函数f (x )为奇函数,可得f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1).又因为x >0时,f (x )<0,所以f (x 2-x 1)<0.即f (x 2)<f (x 1).故由定义可知f (x )在R 上为单调递减函数.(3)由f (x )在R 上是减函数,可知f (x )在[-3,3]上也是减函数,则f (-3)最大,f (3)最小.由f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3ˑ(-23)=-2,得f (-3)=-f (3)=2.故f (x )在[-3,3]上最大值为2,最小值为-2.点评:特殊值赋值法是解决抽象函数问题的关键.在求解抽象函数时经常会出现形如 f (x +y )=f (x )+f (y ) f (x y )=f (x )+f (y ) 等形式,解题过程中需注意三点.一是抽象函数的定义域,二是利用函数的奇偶性活用抽象函数符号 f 前的 负号 ,三是利用函数单调性去掉函数符号 f .学生对函数的理解进一步升华,应变能力和抽象能力以及学科素养等大力提升.3方法归纳(1)有关指数函数最值题型:①需分类讨论,确定函数的单调性;②当函数在连续闭区间上单调时,其最值在区间两端点处取得;③按条件去求最值.(2)分段函数单调性题型:①分清每段分别是哪类函数;②讨论每一段上函数的单调性与整体的关系;③讨论分段处的函数值;④求解参数.(3)函数单调性与导数题型:①求原函数的导函数;②讨论导函数函数值大于0的情况,可以按fᶄ(x )=0来分区间;③求解参数.(4)复合函数单调性题型:①分清原函数是由哪些初等函数复合而成的;②求各初等函数的单调性;③根据复合函数性质求单调性.(5)抽象函数题型:①找特殊值,如x =y =0,y =-x 等,确定相关的值;②再根据函数的单调性定义来研究抽象函数的单调性,注意使用其中的特殊值;③结合单调性求最值.4结语函数的单调性与最值问题涉及知识面广,对能力的要求也高.因此要首先要熟练掌握初等函数的性质,再寻求答题技巧和答题方法,多练习,加强对抽象函数的理解和掌握,以及函数与不等式㊁分段函数等知识的衔接,迅速提升解题策略和学科素养.Z67Copyright ©博看网. All Rights Reserved.。

利用导数研究函数的单调性专题

利用导数研究函数的单调性专题

利用导数研究函数的单调性1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数f′(x0)=0x0附近的左侧f′(x)<0,右侧条件x0附近的左侧f′(x)>0,右侧f′(x)<0f′(x)>0图象形如山峰形如山谷极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )(3)函数的极大值一定大于其极小值.( )(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )A.1B.2C.3D.43.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是( )A.1eB.2eC.eD.e24.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.单调递增D.单调递减5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( )A.4B.2或6C.2D.6考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,求函数g (x )的单调减区间. 【规律方法】 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增B.在(0,+∞)上递减C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x(e x-a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6 (2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )ex ,则不等式F (x )<1e2的解集为( )A.(-∞,1)B.(1,+∞)C.(1,e)D.(e ,+∞)角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x .(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A.4f (1)<f (2)B.4f (1)>f (2)C.f (1)<4f (2)D.f (1)>4f ′(2) (2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( ) A.(-∞,-2] B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12【基础巩固题组】(建议用时:40分钟) 一、选择题1.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )2.函数f (x )=x ·e x -e x +1的单调递增区间是( )A.(-∞,e)B.(1,e)C.(e ,+∞)D.(e -1,+∞)3.(2019·青岛二中调研)若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A.k ≤-3或-1≤k ≤1或k ≥3B.不存在这样的实数kC.-2<k <2D.-3<k <-1或1<k <34.已知f (x )=ln xx,则( )A.f (2)>f (e)>f (3)B.f (3)>f (e)>f (2)C.f (3)>f (2)>f (e)D.f (e)>f (3)>f (2)5.(2019·济宁一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1)D.(-∞,+∞)二、填空题6.已知函数f (x )=(-x 2+2x )e x(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.【能力提升题组】(建议用时:20分钟)11.(2017·山东卷)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.14.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________.答案1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )(3)函数的极大值一定大于其极小值.( )(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )【答案】(1)×(2)√(3)×(4)×(5)√【解析】(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.【教材衍化】2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为( )A.1B.2C.3D.4【答案】 A【解析】由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正.3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是( )A.1eB.2eC.eD.e2【答案】 C【解析】因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0<x<e;当f′(x)<0时,解得x>e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.【真题体验】4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.单调递增D.单调递减【答案】 D【解析】 易知f ′(x )=-sin x -1,x ∈(0,π), 则f ′(x )<0,所以f (x )=cos x -x 在(0,π)上递减.5.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )【答案】 D【解析】 设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3,由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0;当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),所以函数f (x )在(-∞,x 1),(x 2,x 3)上单调递减,在(x 1,x 2),(x 3,+∞)上单调递增,观察各选项,只有D 选项符合.6.(2019·豫南九校考评)若函数f (x )=x (x -c )2在x =2处有极小值,则常数c 的值为( ) A.4 B.2或6 C.2D.6【答案】 C【解析】 函数f (x )=x (x -c )2的导数为f ′(x )=3x 2-4cx +c 2, 由题意知,在x =2处的导数值为12-8c +c 2=0,解得c =2或6,又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正,而当e =6时,f (x )=x (x -6)2在x =2处有极大值,故c =2.【考点聚焦】考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,求函数g (x )的单调减区间. 【答案】见解析【解析】(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=12x (x +1)(x +4)e x.令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 【规律方法】 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增B.在(0,+∞)上递减C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________. 【答案】 (1)D (2)⎝⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2 【解析】 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2. 考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x(e x-a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围. 【答案】见解析【解析】(1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2,故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0,即0>a ≥-2e 34时,f (x )≥0. 综上,a 的取值范围是[-2e 34,0].【规律方法】 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.【答案】见解析【解析】因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax.(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6 (2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )ex ,则不等式F (x )<1e2的解集为( )A.(-∞,1)B.(1,+∞)C.(1,e)D.(e ,+∞)【答案】 (1)B (2)B【解析】 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x.由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cosπ4,即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4. (2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )ex,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减. 由F (x )<1e2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞).角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x .(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 【答案】见解析【解析】h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x-ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1. 所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x ,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.【规律方法】 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( ) A.(-∞,-2] B.⎣⎢⎡⎭⎪⎫12,+∞C.[2,+∞)D.⎝⎛⎦⎥⎤-∞,12【答案】 (1)B (2)B【解析】 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 【反思与感悟】1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决. 【易错防范】1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.3.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是( )【答案】 D【解析】由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.2.函数f(x)=x·e x-e x+1的单调递增区间是( )A.(-∞,e)B.(1,e)C.(e,+∞)D.(e-1,+∞)【答案】 D【解析】由f(x)=x·e x-e x+1,得f′(x)=(x+1-e)·e x,令f′(x)>0,解得x>e-1,所以函数f(x)的单调递增区间是(e-1,+∞).3.(2019·青岛二中调研)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是( )A.k≤-3或-1≤k≤1或k≥3B.不存在这样的实数kC.-2<k <2D.-3<k <-1或1<k <3 【答案】 D【解析】 由f (x )=x 3-12x ,得f ′(x )=3x 2-12, 令f ′(x )=0,解得x =-2或x =2,只要f ′(x )=0的解有一个在区间(k -1,k +1)内,函数f (x )在区间(k -1,k +1)上就不单调,则k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3. 4.已知f (x )=ln xx,则( )A.f (2)>f (e)>f (3)B.f (3)>f (e)>f (2)C.f (3)>f (2)>f (e)D.f (e)>f (3)>f (2)【答案】 D【解析】 f (x )的定义域是(0,+∞),∵f ′(x )=1-ln x x2, ∴x ∈(0,e),f ′(x )>0,x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e),又f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,则f (e)>f (3)>f (2).5.(2019·济宁一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1)D.(-∞,+∞)【答案】 B【解析】 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2, 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1. 二、填空题6.已知函数f (x )=(-x 2+2x )e x(x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________. 【答案】 (-2,2)【解析】 因为f (x )=(-x 2+2x )e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f ′(x )>0,即(-x 2+2)e x>0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2).7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 【答案】 (-3,0)∪(0,+∞)【解析】 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点.需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞).8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 【答案】 ⎝ ⎛⎭⎪⎫-19,+∞【解析】 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间. 【答案】见解析【解析】(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,且x >0, ∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0.所以函数f (x )的增区间为(5,+∞),减区间为(0,5).10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0. 【答案】见解析【解析】(1)解:由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=ex -1-x ,则s ′(x )=ex -1-1. 当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x >0.【能力提升题组】(建议用时:20分钟)11.(2017·山东卷)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x【答案】 A【解析】 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x=⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x·cos x ,则g ′(x )=2e xcos ⎝⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确.12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 【答案】 D【解析】f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f(-ln x)=f(ln x). 则原不等式可变形为f(ln x)<f(1)⇔f(|ln x|)<f(1). 又f′(x)=xcos x +2x =x(2+cos x), 由2+cos x>0,得x>0时,f′(x)>0. 所以f(x)在(0,+∞)上单调递增. ∴|ln x|<1⇔-1<ln x<1⇔1e<x<e.13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-13,13 【解析】 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2x +a cos x +53,f (x )在R上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.14.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.【答案】见解析【解析】(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9. 【新高考创新预测】15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________. 【答案】 -3 (0,2)【解析】 由函数f (x )的图象过点(-1,-6),得m -n =-3.① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 所以g (x )=f ′(x )+6x =3x 2+(2m +6)x +n .21因为g (x )的图象关于y 轴对称,所以-2m +62×3=0, 所以m =-3,代入①得n =0,所以f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )<0,得0<x <2,所以f (x )的单调递减区间是(0,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数单调性的研究1指导思想与理论依据本节课以探究性理论“在问题解决中自主学习”为指导思想,因为“问题学习”是建构主义所提倡的一种教学方式.本节课的教学设计所依据的理论突出体现在以下四个方面.(一)培养学生问题意识在传统的教学过程中,一般都是教师讲,学生听,教师按照预先设计好的教学思路和教学过程进行教学.即使中间穿插一些提问,也主要是对一些事实现象的再现,没有多大的思考余地.建构主义以相反的思路来设计教和学,主张“在问题解决中学习”.同时心理学的研究也表明,发现问题是思维的起点,也是思维的源泉和动力,没有问题的思维是肤浅的思维.因此,在课堂教学中,教师应注重激发学生思维的积极性,培养学生的问题意识.问题意识是指学生在认识活动中意识到一些难以解决的、疑惑的实际问题或理论问题时产生的一种怀疑、困惑、焦虑、探究的心理状态,这种心理状态驱使学生积极思维,不断提出问题和解决问题.(二)鼓励学生探索问题在课堂教学中,教师不仅要培养学生的问题意识,还要善于挖掘素材,努力创设各种问题情境,鼓励、引导学生多角度、多层面地深入探索问题,用疑问开启学生思维的心扉,启迪学生智慧,帮助他们不断挑战自我,挑战极限,享受到探索问题给自己所带来的快乐.从而在探索问题的过程中,将知识的理解引向深入.(三)引导学生解决问题教学过程实际上就是设疑、质疑、释疑的过程,也是教学生学会学习,提高学习能力的过程,同时也是培养学生创新能力和实践能力的过程.解决问题的过程,也就是学生学会学习的过程.教师要引导、培养学生从不同的角度去思考、判断和解决问题,从而在问题的解决中学会学习,学会创新.(四)激发学生学习的求知欲求知欲是学生追求知识的欲望,是激发学生学习兴趣,提高学习质量的内在动力. 求知欲越强,学习的自觉性越强. 教学过程是教师导、学生学的双边活动.教学效果既受教师主导作用的影响,也受学生主体作用的影响;教师的主导作用要通过学生的主体作用来实现.所以要提高教学质量,就必须激活学生的求知欲望.学生有了强烈的求知欲望,教学就能取得最佳效果.很多时候,学生有学习的欲望,有动机,有上进心,却不知道如何去学,或学习的效率低下.建构主义理论关于“在解决问题中学习”的理念能引导学生进行探究性学习,激发学习兴趣,激活求知欲望,培养创造性思维能力,使他们在发现问题、探索问题及解决问题的过程中不断获取知识、巩固知识.2教学背景分析(一)教材的地位和作用学生高一学习函数时,已经知道了增函数、减函数和单调函数的概念,并且会用增函数、减函数的定义判断和证明函数在给定区间上的单调性.前几节课又学习了导数的概念以及导数的运算,这就为学生用导数研究函数的单调性问题做好了铺垫.学生通过学习可以体会用导数研究函数的单调性比用初等数学研究方法要简洁得多,另外函数的单调性又是下一步研究函数的极值与最值的基础,也是学生将来进一步学习高等数学的基础.(二)学生的情况和教材内容的调整课本上给出了f′(x)>0??f(x)为增函数,f′(x)0??f(x)为增函数,f′(x)<0??f(x)为减函数的逆命题和函数单调性的充要条件的探究,培养学生思维的深刻性.(三)教学的重点和难点重点:函数单调性与其导数的关系难点:函数单调性的充要条件的探究(四)教学方式和教学手段的说明1.教学方法本节课我采用了“启发探究”式的教学方法,根据本节课教材的特点和学生的实际情况在教学中重点突出以下两点:(1)由教材内容的特点确立以问题探究为教学的主线教师先引导学生自主地提出课题,用导数研究函数的单调性,然后引导学生提出要研究的问题:问题1导数和函数的单调性之间有什么关系?在学生得出f′(x)>0??f(x)为增函数,f′(x)<0??f(x)为减函数以后,教师进一步提出:问题2:上述命题的逆命题成立吗?问题3:函数单调性的充要条件是什么?问题4:如何求函数的单调性?问题5:函数的单调区间如何合并?在这一连串的问题中让学生充分体会数学知识的发生与发展过程.(2)由学生学习风格的特点确立自主探索式的学习方法考虑到学生的数学基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,在教学中从提出学习课题到最后的课堂小节,我都通过创设问题情境,启发引导学生运用科学的思维方法进行自主探索.将学生的独立思考、自主探究、交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体地位.2.教学手段本节课中,除经常使用的常规教具外,我还使用了多媒体投影和计算机来辅助教学.其作用主要有两个:(1)将数学问题直观、形象地展示出来,帮助学生思考;(2)快速显示学生的研究成果,便于大家交流和讨论.3本课教学目标设计根据本课教材的特点、高中数学教学大纲对本节课的教学要求以及学生身心发展的合理需要,我从三个不同的方面确定了以下教学目标:(一)掌握函数的单调性与导数之间的关系,会用求导的方法判断函数的单调性,渗透数形结合、类比以及等价转化等数学思想.(二)通过对函数的单调性与导数之间关系的探索,发展学生的探究能力,通过由特殊到一般、由一般到特殊,由直觉猜想到推理论证等思维方法的训练,提高学生的科学思维素养.(三)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,使学生经历数学思维过程,获得成功的体验.4教学过程与教学资源设计为达到本节课的教学目标,我把教学过程设计为四个阶段.在知识引入阶段通过对高一学过的函数单调性的复习提出所要学习的课题;在知识探索阶段对三个内容进行探索:第一探索可导函数单调性与导数之间的关系;第二探索求可导函数单调性的解题步骤;第三探索单调区间的合并;在知识应用阶段通过对例题的分析求解使学生初步体会运用导数的方法研究函数的单调性的新方法;在学习小结阶段带领学生对所学的知识和方法进行梳理、归纳和总结.具体过程如下:(一)知识引入阶段在本阶段的教学中通过对高一学过的函数单调性的复习,揭示单调性的刻画方法,学习了导数知识后,使学生产生联想,自主地提出能否以导数为工具来研究函数单调性的问题.具体的教学安排:1.回顾高一学过的函数单调性的刻画方法教学中我首先向同学指出:高一学习函数的时候,函数的单调性是怎么刻画的?2.提出新课题――用导数作为工具研究函数的单调性在回顾的基础上我启发学生思考:我们已经学习导数的概念和运算,函数的单调性体现出了函数值y随自变量x的变化而变化的情况,而导数也正是研究自变量的增加量与函数值的增加量之间的关系,能否把导数作为工具研究函数的单调性呢?在学生回答之后明确出三个问题:问题1导数和函数的单调性之间有什么关系?问题2如何求函数的单调区间?问题3如何进行函数单调区间的合并?同时指出这就是本节课我们要研究和学习的主题.设计意图用问题引入,激发学生的探究欲望,引发学生的学习兴趣,明确本节课研究的内容.(二)知识探索阶段1..探索导数和函数单调递增之间的关系导数和函数单调性的关系包括导数与增函数的关系和导数与减函数的关系,为了研究方便,我们先研究导数与增函数的关系.1.1探索f′(x)>0与f(x)为增函数的关系引导学生从特殊到一般,利用数形结合的数学思想方法从函数的图象上发现规律:在区间(a,b)上切线的斜率为正,即在(a,b)内的每一点处的导数值为正,函数在区间(a,b)内单调递增,即f′(x)>0??f(x)为增函数.教师进一步追问:上述命题的逆命题是否成立?引发学生进一步探索. 在学生探索的过程中,教师引导学生通过反例(如:f(x)=x??3,f(x)在[WTHZ]R[WTBZ]上是增函数,但f′(0)=0.)来说明由f(x)为增函数推不出f′(x)>0,所以f′(x)>0是f(x)为增函数的充分不必要条件.1.2探索f′(x)≠0,f′(x)>0与f(x)为增函数的关系若将f′(x)=0的根作为分界点,因为规定了f′(x)≠0,即抠去了分界点,此时f(x)为增函数,就一定有f′(x)>0. 所以当f′(x)≠0时,f′(x)>0是f(x)为增函数的充分必要条件.1.3探索f′(x)≥0与f(x)为增函数的关系f(x)为增函数,一定可以推出f′(x)≥0,但反之不一定,因为f′(x)≥0,即为f′(x)>0或f′(x)=0. 当函数在某个区间内恒有f′(x)=0,则f(x)为常数,函数不具有单调性. 所以f′(x)≥0是f(x)为增函数的必要不充分条件.1.4探索函数f(x)为增函数的充分必要条件当f′(x)≠0时,f′(x)>0是f(x)为增函数的充分必要条件;当f′(x)=0有不连续的解时,f′(x)≥0是f(x)为增函数的充分必要条件.2.探索函数的导数与其单调递减之间的关系引导学生用类比的数学思想得出:2.1f′(x)<0是f(x)为减函数的充分不必要条件;2.2当f′(x)≠0时,f′(x)<0是f(x)为减函数的充分必要条件;2.3f′(x)≤0是f(x)为减函数的必要不充分条件;2.4当f′(x)≠0时,f′(x)<0是f(x)为减函数的充分必要条件;当f′(x)=0有不连续的解时,f′(x)≤0是f(x)为减函数的充分必要条件.设计意图问题的连续探究,目的是培养和发展学生的思维,渗透研究问题的思想和方法,展示知识的形成过程.3.探索函数单调性的求解步骤用导数法确定函数的单调性的步骤是:(1)求出函数的导函数;(2)求解不等式f′(x)>0,求得其解集,再根据解集写出单调递增区间;(3)求解不等式f′(x)<0,求得其解集,再根据解集写出单调递减区间.设计意图大部分教师都是先做例题,然后从做题的过程中总结解题的步骤. 我是先让学生设计解题步骤,学生设计的步骤在后面的例题中再进行检验和修正,目的是培养和发展学生的理性思维.4.探索单调区间合并函数单调区间的合并主要是依据函数f(x)在(a,b)单调递增,在(b,c)单调递增,又知函数在x=b处连续,因此f(x)在(a,c)上单调递增. 同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则这两个区间可以合并为一个区间.设计意图区间的合并问题,由于学生在高一学习函数的单调性时,没有学习函数的连续,因此对于区间的合并教师只能从函数的图象上进行解释,现在学生有了函数连续的知识,教师可以引导学生探索合并区间的真正原因,这也有利于学生对以前概念的重新认识.(三)知识应用阶段在本阶段的教学中,我选用了三道典型例题,其中第一题是引导学生对证明函数单调性的方法进行对比,感受用导数判断或证明函数在给定区间上的单调性要简洁得多;第二题选用的目的是让学生通过解题实践初步体会用导数方法判断函数调性的新思路和解题步骤;第三题选用的目的是让学生体会函数单调性的充要条件在解决问题中的应用.(四)学习小结阶段本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识、技能、方法的一般规律,为后续学习打好基础.具体的教学安排:(1)知识、方法小结:在知识层面上我首先引导学生归纳函数的单调性与导数之间的关系.在方法层面上我带领学生回顾探索过程中用到的思维方法和数学思想方法,对重要的思维方法如类比、观察、猜想、归纳、总结和数学思想方法如数形结合、等价转化等进行梳理.(2)课后思考题:1.可导函数的单调性与其导数之间关系的证明;2.初等数学证明函数单调性与用导数法证明函数单调性之间有什么内在的联系?(3)练习题设计意图思考题主要是对学有余力的学生进行编制的,让学生可以在课后继续探究,发展他们的能力. 三道练习题是与例题相配套的,但比例题的难度稍大一些,目的是对所学的知识进行巩固,加深学生对所学知识的理解.(五)教学流程:图15学习效果评价设计(一)本节课实效性强从知识的角度来说,我通过对教学大纲和考试说明的研究,教学内容在课本内容的基础上进行了补充和延展,目的是把可导函数的单调性与其导数的关系探讨清楚,否则学生学习完本节内容后,容易求函数的单调区间,但对于已知函数在某区间上增或减,求字母的取值范围一类的问题很难解决. 从这个角度来说,本节课内容充实,实效性强.(二)本节课注重知识的形成过程数学是一门系统性很强的学科,知识间的内在联系十分紧密,任何新知识都有它的发生、形成和发展过程. 教学中,如果压缩掉这种过程,就知识教知识,那么学生只能得到零散的、孤立的知识,只知其然,而不知其所以然,只能是知识的积累,而不能使学生原有的知识结构得到扩充和改造.因此,我在教学设计时,重视知识的发生、形成和发展过程的教学,在本节课我通过设计一系列的问题,让学生在问题的解决中学习,让学生在积极参与教学的过程中,充分发挥他们的学习主体作用,使知识得到很好地内化,使认知结构发生质的变化.(三)本节课重在培养学生的思维和能力本节课渗透了重要的数学思想和方法,在学生探究f′(x)>0与f(x)为增函数的关系时,渗透了从特殊到一般以及数形结合的数学思想,我先探索函数单调性的求解步骤,然后再在具体题目中应用,这又渗透了从一般到特殊的思维方法,在探究完f′(x)>0与f(x)为增函数的关系后探究导数与函数单调递减之间的关系时,渗透了类比的思维方法.。

相关文档
最新文档