高中物理动量守恒定律人船模型复习过程

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人船模型

“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。

1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于

水面移动的距离?

说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。

变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?

M

L

m

M

L

变形2:如图所示,质量为M 的

1

4

圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?

“人船模型”的应用

① 等效思想”

如图所示,长为L 质量为M

立质量为m 1、m 2(m 1>m 2船在水平方向移动了多少?

②“人船模型”和机械能守恒的结合

如图所示,质量为M 的物体静止于光滑水平面上,其上有一个半径为R 的光滑半圆形轨道,现把质量为m 的小球自轨道左测最高点静止释放,试计算:

1.摆球运动到最低点时,小球与轨道的速度是多少? 2.轨道的振幅是多大?

M

人船模型之二

动量守衡定律是自然界最重要最普遍的归律之一,利用该定律只考虑相互作用物体作用前后动量变化的关系,省去了具体细节的讨论,为我们解决力学问题提供了一种简捷的方法和思路。人船模型问题是一种很常见的题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到的效果。

[例1] 如图1所示,静水面上停有一小船,船长L = 3米,质量M = 120千克,一人从船头走到船尾,人的质量m = 60千克。那么,船移动的距离为多少?(水的阻力可以忽略不计)

※[例2] 一质量为M的船,静止于湖水中,船身长L,船的两端点有质量分别为m1和m2的人,且m1>m2,当两人交换位置后,船身位移的大小是多少?(不计水的阻力)

※[例3] 某人在一只静止的小船上练习射击,船和人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹射出枪口时相对地面的速度为v O,在发射一颗子弹时,前一颗粒子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少(不计水的阻力)。

※[例4] 如图2所示,在光滑水平地面上,有两个光滑的直角三

形木块A和B,底边长分别为a、b,质量分别为M、m,若M = 4m,且

不计任何摩擦力,当B滑到底部时,A向后移了多少距离?

[例5]质量为M的气球下系一质量可忽略的足够长的绳子,绳子上距地面H高处有一质量为m的猴子。开始时气球和猴子均静止在空中,猴子从某时刻开始沿绳子缓慢下滑,要它恰能滑到地面,开始下滑时,它下面的绳子至少应为多长?

相关文档
最新文档