活性炭吸附试验报告
活性炭吸附实验报告
活性炭吸附实验1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。
2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。
它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。
活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。
它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。
其孔隙占活性炭总体积的 70%~ 80%,每克活性炭的表面积可高达 500 ~ 1700 平方米,但 99.9%都在多孔结构的内部。
活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。
2.2活性炭吸附特征活性炭的孔隙大小分布很宽,从 10-1nm 到104nm 以上,一般按孔径大小分为微孔、过渡孔和大孔。
在吸附过程中,真正决定活性炭吸附能力的是微孔结构。
活性炭的全部比表面几乎都是微孔构成的,粗孔和过渡孔只起着吸附通道作用,但它们的存在和分布在相当程度上影响了吸附和脱附速率。
研究表明,活性炭吸附同时存在着物理吸附、化学吸附和离子交换吸附。
在活性炭吸附法水处理过程中,利用3种吸附的综合作用达到去除污染物的目的。
对于不同的吸附物质,3种吸附所起的作用不同。
(1)物理吸附分子力产生的吸附称为物理吸附,它的特点是被吸附的分子不是附着在吸附剂表面固定点上,而稍能在界面上作自由移动。
物理吸附可以形成单分子层吸附,又可形成多分子层吸附。
由于分子力的普遍存在, 一种吸附剂可以吸附多种物质,但由于吸附物质不同,吸附量也有所差别。
这种吸附现象与吸附剂的表面积、细孔分布有着密切关系,也和吸附剂表面力有关。
活性碳吸附综合实验报告
1 实验目的(1) 通过实验进一步了解活性炭的吸附工艺及性能;(2) 熟悉整个实验过程的操作;(3) 掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4) 学会使用一级动力学、二级动力学方程拟合分析,对 PAC 的吸附进行动力学分析研究;(5) 了解活性炭改性的方法以及其影响因素。
2 实验原理2.1 活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。
此外,还有朗缪尔吸附等温式,它通常用来描述物质在均一表面上的单层吸附,表达式为:由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。
活性炭吸附实验报告
活性炭吸附实验报告
引言概述:
本实验旨在研究活性炭材料在吸附过程中的性能和效果。
活性炭是一种具有高孔隙度和高吸附能力的材料,广泛应用于水处理、空气净化、废气处理等领域。
通过实验确定活性炭的吸附性能,可以为其在工业和环境应用中提供科学依据。
正文内容:
1.活性炭的原理和特性
1.1活性炭的制备方法
1.2活性炭的物理特性和表面结构
1.3活性炭的吸附原理
2.实验设计和方法
2.1活性炭的选择和准备
2.2吸附试剂的选择和制备
2.3实验装置和操作流程
3.吸附实验结果与分析
3.1吸附平衡实验
3.1.1吸附剂用量对吸附效果的影响
3.1.2吸附剂颗粒大小对吸附效果的影响
3.1.3吸附剂pH值对吸附效果的影响
3.2吸附动力学实验
3.2.1吸附速率对吸附效果的影响
3.2.2吸附温度对吸附效果的影响
3.2.3吸附剂可重复使用性能的评估
4.吸附实验的结果讨论
4.1吸附平衡实验结果分析
4.2吸附动力学实验结果分析
4.3吸附剂的选择和应用前景
5.实验改进和未来研究方向
5.1实验方法的改进和优化
5.2活性炭的改良和性能提升
5.3活性炭在环境治理中的应用研究
总结:
通过本实验,我们对活性炭吸附过程的性能和效果进行了研究。
实验结果表明,活性炭吸附效果受到吸附剂用量、颗粒大小、pH值、吸附速率和温度等因素的影响。
活性炭作为一种有潜力的吸附材料,在水处理、空气净化、废气处理等领域具有广阔的应用前
景。
未来的研究可以着重于改进实验方法、提升活性炭的吸附性能,并进一步探索其在环境治理中的应用。
活性碳吸附综合实验报告.docx
活性碳吸附综合实验报告.docx1实验⽬的(1)通过实验进⼀步了解活性炭的吸附⼯艺及性能;(2)熟悉整个实验过程的操作;(3)掌握⽤“间歇法”、“连续流”法确定活性炭处理污⽔的设计参数的⽅法;(4)学会使⽤⼀级动⼒学、⼆级动⼒学⽅程拟合分析,对PAC 的吸附进⾏动⼒学分析研究;(5)了解活性炭改性的⽅法以及其影响因素。
2实验原理2.1活性炭间隙性吸附实验原理活性炭吸附就是利⽤活性炭的固体表⾯对⽔中⼀种或多种物质的吸附作⽤,⼰达到净化⽔质的⽬的。
活性炭的吸附作⽤产⽣于两个⽅⾯,⼀是由于活性炭内部分⼦在各个⽅向都受到同等⼤⼩的⼒⽽在表⾯的分⼦则受到不平衡的⼒,这就使其他分⼦吸附于其表⾯上,此为物理吸附;另⼀个是由于活性炭与被吸附物质之间的化学作⽤,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表⾯的浓度均不在变化,⽽达到平衡,此时的动平衡称为活性炭吸附平衡⽽此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能⼒以吸附量q表⽰。
式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污⽔体积,L;C0、C ——分别为吸附前原⽔及吸附平衡时污⽔中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度⼀定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提⾼⽽提⾼,两者之间的变化称为吸附等温线,通常费⽤兰德⾥希经验公式加以表达。
式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。
此外,还有朗缪尔吸附等温式,它通常⽤来描述物质在均⼀表⾯上的单层吸附,表达式为:由于间歇式静态吸附法处理能⼒低、设备多,故在⼯程中多采⽤连续流活性炭吸附法,即活性炭动态吸附法。
活性炭吸附实验报告
活性炭吸附实验报告一、实验目的活性炭处理工艺是运用吸附的方法来去除异味、色度、某些离子以及难生物降解的有机物。
在吸附过程中,活性炭的比表面积起着主要作用,同时被吸附物质在溶剂中的溶解度也直接影响吸附速率,被吸附物质浓度对吸附也有影响。
此外,PH值的高低、温度的变化和被吸附物质的分散程度也对吸附速率有一定的影响。
本实验采用活性炭间隙和连续吸附的方法确定活性炭对水中某些杂质的吸附能力。
通过本实验,希望达到以下目的:1、加深理解吸附的基本原理;2、掌握活性炭吸附设备操作步骤,包括吸附工作过程和再生过程。
二、实验原理吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。
大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回液相或气相中去,这种现象称为解吸或脱附。
在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称为吸附剂。
活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
活性炭吸附的作用产生于两个方面:一方面由于活性炭内部分子在各个方面都受着同等大小而在表面的分子则受到不平衡的力,这使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由活性炭与被吸附物质之间的化学作用,此过程为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡。
此时的动态平衡称为活性炭吸附平衡。
三、实验装置与设备(1) PH计或精密PH试纸、温度计;(2)大小烧杯、漏斗;(3)活性炭吸附柱;(4)自配废水;(5)恒位箱注:A、B都为活性炭活性炭吸附工艺流程图四、实验步骤1、配制水样,使其含COD50~100mg/L;2、用高锰酸盐指数法测定原水的COD含量,同时测水温和PH;3、在活性炭吸附柱中各装入活性炭并进行洗清,至出水不含炭粉为止;4、启动水泵,将配制好的水样连续不断地送入活性炭柱内,控制好流量;5、运行稳定5min后测定并记录各活性炭柱出水COD或浊度、色度;6、连续运行2~3h,并每隔60min取样测定和记录各活性炭柱出水COD、浊度或色度;7、停泵,关闭活性炭柱进、出水阀门,并进行活性炭再生;8、打开反冲洗阀门与反冲洗进水阀门;9、启动水泵,将清水以较大的速度送入活性炭柱内,带走活性炭中的杂质实现再生目的;10、运行5min后,停泵,关闭反冲洗阀门及进水阀门。
活性炭吸附实验实验报告[活性炭吸附实验]
活性炭吸附实验实验报告[活性炭吸附实验] 活性炭吸附实验一实验目的1、通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作2、掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法二实验原理活性炭吸附过程包括物理吸附和化学吸附。
其基?原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:V(C0?C)qe?m式中 qe—活性炭吸附量,即单位重量的吸附剂所吸附的物质量,mg/g;V—污水体积,L;C0、C—分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L;m—活性炭投加量,g;在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用Fruendlich式加以表达。
qe?K?Cn式中 K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的性质有关的常数;K、n值求法如下:通过间歇式活性炭吸附实验测得qe、C相应之值,将式上式到对数后变换为下式:1lgqe?lgK?lgCn将qe、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。
三实验设备及用具1、振荡器一台;2、分析天平一台;3、分光光度计一台;4、250mL三角烧杯5个;5、100mL容量瓶6个;6、活性炭(粉状和粒状);7、亚甲基兰。
8、活性炭连续流吸附实验装置四实验步骤1、间歇式活性炭吸附实验①配制浓度为50mg/L的亚甲兰溶液于1000mL容量瓶中;②用十倍稀释法依次配制浓度为5mg/L、1mg/L、0.5mg/L、0.1mg/L、0.05mg/L、0.01mg/L的亚甲兰溶液于100mL容量瓶中;③用分光光度计测定其吸光度值(吸附波长为665nm),记录到表1中,绘制标准曲线;④取5个250mL的三角瓶,用天平分别称取100mg、200mg、300mg、400mg、500mg的粉活性炭投入三角瓶中,每瓶中加入100mL50mg/L 亚甲基兰溶液;⑤将三角烧瓶放在振荡器上振荡(震荡器的速度要由小变大,但也不能太大,否则会将活性碳粉粘到瓶壁上),当达到吸附平衡时停止振荡。
活性炭吸附试验报告
一、实验原理1、活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。
有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。
当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
如果在一定压力和温度条件下,用 m 克活性炭吸附溶液中的溶质,被吸附的溶质为 x 毫克,则单位重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:q e=x/m (1) q e的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。
一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,q e值就比较大。
描述吸附容量q e与吸附平衡时溶液浓度 C 的关系有Langmuir、BET 和 Fruendlieh 吸附等温式。
在水和污水处理常用 Fruendlich 表达式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即q e=KC1/n (2)式中:q e——吸附容量(mg/g);K——与吸附比表面积、温度有关的系数;n——与温度有关的常数,n>1;C——吸附平衡时的溶液浓度(mg/L)。
这是一个经验公式,通常用图解方法求出 K,n 的值.为了方便易解,往往将式(2)变换成线性对数关系式Lgq e=lg(C0-C/m)=lgK+lgC/n (3)式中:C0——水中被吸附物质原始浓度(mg/L);C——被吸附物质的平衡浓度(mg/L);m——活性炭投加量(g/L)。
活性炭吸附实验报告
活性炭吸附实验报告
活性炭吸附实验报告
一、实验目的
掌握活性炭的吸附特性,了解活性炭的吸附能力和吸附速度。
二、实验原理
活性炭是一种具有活化处理的炭材料,具有巨大的比表面积和强大的吸附能力。
通过活性炭的孔隙结构,能够吸附并固定气体、溶液中的有机物、无机物等。
三、实验仪器和试剂
仪器:活性炭吸附仪;
试剂:活性炭,甲苯溶液。
四、实验步骤
1. 准备实验仪器和试剂。
2. 将活性炭样品加入活性炭吸附仪中,调节仪器参数,使系统处于正常工作状态。
3. 将甲苯溶液滴加到活性炭吸附仪内,记录下溶液滴加的时间和滴加的量。
4. 观察活性炭的吸附过程,记录下吸附过程的时间和活性炭的颜色变化。
5. 当活性炭吸附饱和或滴加完甲苯溶液后,关闭吸附仪,取出活性炭样品。
五、实验结果与分析
根据实验结果,记录下甲苯溶液滴加的时间和量,并观察活性炭吸附过程的时间和颜色变化。
六、结论与讨论
通过实验我们可以得到活性炭的吸附能力和吸附速度。
根据实验结果,我们可以发现活性炭对于甲苯具有较好的吸附能力,能够将溶液中的甲苯吸附并固定在其孔隙结构中。
同时,通过观察活性炭的颜色变化,我们也可以了解活性炭的吸附过程和吸附饱和点。
七、实验总结
通过本次实验,我们深入了解了活性炭的吸附特性和吸附能力。
活性炭在工业和环境领域具有广泛的应用价值,例如在水处理、空气净化中的应用。
了解活性炭的吸附能力和吸附速度有助于我们正确选择和使用活性炭材料,提高其吸附效果和利用率。
同时,也为我们今后研究更多类型的吸附材料提供了基础。
活性碳吸附综合实验报告
活性碳吸附综合实验报告1实验目的(1)通过实验进一步了解活性炭的吸附工艺及性能;(2)熟悉整个实验过程的操作;(3)掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4)学会使用一级动力学、二级动力学方程拟合分析,对PAC 的吸附进行动力学分析研究;(5)了解活性炭改性的方法以及其影响因素。
2实验原理2.1活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。
此外,还有朗缪尔吸附等温式,它通常用来描述物质在均一表面上的单层吸附,表达式为:由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。
活性炭吸附实验报告
活性炭吸附实验1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。
2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。
它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。
活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。
它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。
其孔隙占活性炭总体积的 70%~ 80%,每克活性炭的表面积可高达 500 ~ 1700 平方米,但 99.9%都在多孔结构的内部。
活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。
2.2活性炭吸附特征活性炭的孔隙大小分布很宽,从 10-1nm 到104nm 以上,一般按孔径大小分为微孔、过渡孔和大孔。
在吸附过程中,真正决定活性炭吸附能力的是微孔结构。
活性炭的全部比表面几乎都是微孔构成的,粗孔和过渡孔只起着吸附通道作用,但它们的存在和分布在相当程度上影响了吸附和脱附速率。
研究表明,活性炭吸附同时存在着物理吸附、化学吸附和离子交换吸附。
在活性炭吸附法水处理过程中,利用3种吸附的综合作用达到去除污染物的目的。
对于不同的吸附物质,3种吸附所起的作用不同。
(1)物理吸附分子力产生的吸附称为物理吸附,它的特点是被吸附的分子不是附着在吸附剂表面固定点上,而稍能在界面上作自由移动。
物理吸附可以形成单分子层吸附,又可形成多分子层吸附。
由于分子力的普遍存在, 一种吸附剂可以吸附多种物质,但由于吸附物质不同,吸附量也有所差别。
这种吸附现象与吸附剂的表面积、细孔分布有着密切关系,也和吸附剂表面力有关。
活性炭吸附实验报告
实验3 活性炭吸附实验报告一、研究背景:1.1、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。
活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。
活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。
在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。
除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
1.2、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
1.3、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。
活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理。
(2)掌握活性炭吸附公式中常数的确定方法。
(3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。
(4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。
K为直线的截距,1/n为直线的斜率三、主要仪器与试剂本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。
3.1仪器与器皿:恒温振荡器1台、分析天平1台、分光光度计1台、三角瓶5个、1000ml容量瓶1个、100ml容量瓶5个、移液管3.2试剂:活性炭、亚甲基蓝四、实验步骤(1)、标准曲线的绘制1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。
吸附实验的实验报告
一、实验目的1. 熟悉吸附实验的基本原理和方法。
2. 掌握活性炭吸附实验的操作步骤和数据处理方法。
3. 分析活性炭吸附实验的影响因素,并优化吸附条件。
二、实验原理吸附是指吸附剂表面吸附质的过程。
活性炭作为一种常用的吸附剂,具有发达的孔隙结构和较大的比表面积,能有效去除水中的有机污染物、重金属离子等。
本实验采用活性炭吸附实验,研究活性炭对水中有机污染物的吸附效果。
三、实验仪器与试剂1. 仪器:锥形瓶、振荡器、滤纸、电子天平、移液管、比色计等。
2. 试剂:活性炭、有机污染物溶液、去离子水、pH缓冲溶液等。
四、实验步骤1. 配制一定浓度的有机污染物溶液,作为实验样品。
2. 称取一定量的活性炭,放入锥形瓶中。
3. 将配制好的有机污染物溶液加入锥形瓶中,搅拌均匀。
4. 将锥形瓶放入振荡器中,在一定温度下振荡一定时间。
5. 振荡结束后,用滤纸过滤溶液,测定滤液中的有机污染物浓度。
6. 计算活性炭对有机污染物的吸附率,并绘制吸附等温线。
7. 分析影响吸附效果的因素,并优化吸附条件。
五、实验结果与分析1. 吸附等温线根据实验数据,绘制活性炭对有机污染物的吸附等温线,如下所示:吸附等温线图由图可知,活性炭对有机污染物的吸附过程符合Langmuir吸附模型。
在低浓度范围内,吸附速率较快;在高浓度范围内,吸附速率较慢。
2. 影响吸附效果的因素(1)吸附剂用量:实验结果表明,随着吸附剂用量的增加,吸附率逐渐提高。
但吸附剂用量达到一定值后,吸附率变化不大。
(2)振荡时间:实验结果表明,在一定时间内,随着振荡时间的增加,吸附率逐渐提高。
但振荡时间达到一定值后,吸附率变化不大。
(3)pH值:实验结果表明,pH值对吸附效果有一定影响。
当pH值为中性时,吸附效果最佳。
(4)温度:实验结果表明,在一定温度范围内,随着温度的升高,吸附率逐渐提高。
但温度过高时,吸附率反而下降。
六、实验结论1. 活性炭对有机污染物具有良好的吸附效果,吸附过程符合Langmuir吸附模型。
最新活性炭吸附实验报告
最新活性炭吸附实验报告
实验目的:
本实验旨在探究活性炭对水中有机污染物的吸附能力,以及影响吸附效果的各种因素,如活性炭的类型、粒径、吸附时间、污染物浓度和pH值等。
实验方法:
1. 材料准备:选取两种不同来源的活性炭样品,分别为木质活性炭和果壳活性炭。
2. 仪器设备:电子天平、恒温水浴、磁力搅拌器、pH计、紫外分光光度计等。
3. 实验步骤:
a. 配制一定浓度的目标污染物溶液。
b. 称取一定质量的活性炭样品,加入到含有污染物的溶液中。
c. 在设定的pH值和温度条件下,使用磁力搅拌器进行搅拌,使活性炭充分吸附。
d. 经过一定时间后,使用离心机分离活性炭和溶液。
e. 采用紫外分光光度计测定上清液中污染物的浓度,从而计算吸附率。
f. 改变实验条件(如活性炭粒径、pH值、吸附时间等),重复上述步骤,获取不同条件下的吸附数据。
实验结果:
实验数据显示,木质活性炭和果壳活性炭对目标污染物均有一定的吸附效果,但木质活性炭的吸附容量略高于果壳活性炭。
吸附效果随活性炭粒径的减小而增加,且在pH值为7左右时达到最佳。
随着吸附时间的延长,吸附率逐渐增加,但在达到某个时间点后,吸附率的提升趋于平缓。
污染物初始浓度的增加会导致吸附率的下降。
结论:
通过本次实验,我们得出了活性炭对水中有机污染物的吸附特性,并找到了优化吸附效果的条件。
这些发现对于实际的水处理工艺具有重要的参考价值。
未来的工作可以进一步探索其他影响因素,如共存污染物的影响、活性炭的再生能力等,以提高活性炭在水处理领域的应用效率。
活性炭吸附实验报告
活性炭吸附实验报告活性炭吸附实验报告引言:活性炭是一种常见的吸附剂,广泛应用于水处理、空气净化、食品加工等领域。
本实验旨在研究活性炭对某种有机溶剂的吸附性能,并探讨吸附过程中的影响因素。
实验方法:1. 实验材料准备:活性炭样品、某种有机溶剂(甲醇)、量筒、烧杯、计时器等。
2. 实验步骤:a. 将一定量的活性炭样品加入烧杯中,并称量其质量。
b. 将一定量的甲醇倒入量筒中,并记录其初始体积。
c. 将烧杯中的活性炭与甲醇接触,开始计时。
d. 每隔一段时间,记录甲醇体积的变化。
e. 当甲醇体积不再变化时,停止计时,并记录此时甲醇体积。
f. 重复实验步骤2-5,以获得可靠的数据。
实验结果:通过实验,我们得到了活性炭对甲醇的吸附曲线,如图1所示。
实验结果显示,在初始阶段,活性炭对甲醇的吸附速度较快,随着时间的推移,吸附速度逐渐减慢,直至达到平衡吸附。
[插入图1]实验讨论:1. 吸附速率与吸附量之间的关系:根据实验结果,我们可以看到活性炭对甲醇的吸附速率随着时间的增加而减慢。
这是因为在初始阶段,活性炭表面上的吸附位点较多,吸附速率较快;随着吸附位点逐渐饱和,吸附速率逐渐减慢。
吸附量与吸附速率呈正相关关系,即吸附速率越快,吸附量越大。
2. 吸附平衡与吸附容量:实验结果显示,当甲醇体积不再变化时,活性炭对甲醇的吸附已达到平衡状态。
这表明活性炭的吸附容量有限,即活性炭表面上的吸附位点有限。
吸附容量是评价活性炭吸附性能的重要指标,吸附容量越大,表示活性炭对目标物质的吸附能力越强。
3. 影响因素:活性炭吸附性能受多种因素的影响,包括活性炭的孔径、表面性质、温度等。
孔径是影响吸附性能的关键因素之一,孔径越大,活性炭的吸附容量越大。
表面性质也是影响吸附性能的重要因素,活性炭表面的化学性质和电荷分布会影响目标物质与活性炭之间的相互作用。
温度对吸附性能的影响较为复杂,一般情况下,温度升高会增加吸附速率,但对吸附容量的影响不确定。
活性炭吸附实验报告
活性炭吸附实验报告一、实验目的。
本实验旨在通过对活性炭吸附性能的研究,探讨活性炭在去除水中有机物污染物方面的应用效果,为活性炭的工程应用提供理论依据。
二、实验原理。
活性炭是一种多孔性吸附剂,其吸附性能主要取决于孔隙结构和表面化学性质。
当有机物分子接触到活性炭表面时,会发生吸附现象,从而将有机物分子从水中去除。
三、实验方法。
1. 实验材料,活性炭、有机物溶液、实验装置。
2. 实验步骤:a. 准备一定浓度的有机物溶液。
b. 将活性炭加入实验装置中,建立吸附平衡。
c. 测定吸附后溶液中有机物浓度的变化。
四、实验结果与分析。
通过实验数据的测定和分析,我们得出了以下结论:1. 随着活性炭用量的增加,有机物的去除率呈现出逐渐增加的趋势。
2. 在一定范围内,有机物溶液的初始浓度对活性炭的吸附效果有一定影响,但随着活性炭用量的增加,这种影响逐渐减弱。
3. 活性炭的孔隙结构对有机物的吸附也有一定影响,孔径较大的活性炭对大分子有机物的吸附效果更好。
五、实验结论。
活性炭对有机物的吸附效果受到多种因素的影响,包括活性炭用量、有机物溶液浓度和活性炭的孔隙结构等。
在工程应用中,需要综合考虑这些因素,选择合适的活性炭材料和操作条件,以达到最佳的去除效果。
六、实验总结。
通过本实验,我们对活性炭的吸附性能有了更深入的了解,这对于活性炭在水处理、环境保护等领域的应用具有重要的指导意义。
同时,本实验也为今后进一步深入研究活性炭吸附性能提供了基础。
七、参考文献。
1. 王明,刘强. 活性炭吸附理论与应用. 化学工程,2008,30(2),45-50。
2. 张磊,李华. 活性炭孔结构对有机物吸附性能的影响. 环境科学研究,2010,18(3),78-82。
八、致谢。
在本次实验中,我们受到了老师和同学们的大力支持,在此向他们表示衷心的感谢。
以上为活性炭吸附实验报告的全部内容。
活性炭吸附实验报告
活性炭吸附实验报告一、实验目的通过活性炭的吸附实验,探究不同因素对活性炭吸附效果的影响,并研究活性炭的吸附性能。
二、实验原理活性炭是一种有孔的炭质材料,具有较大的比表面积和较高的吸附能力。
活性炭主要通过物理吸附和化学吸附来吸附气体、液体中的杂质。
三、实验步骤1.实验前准备:取一定质量的活性炭样品,研磨成颗粒状。
2.吸附实验:将活性炭样品均匀放置于吸附设备中,设定各种实验条件。
3.吸附过程:根据设定条件,将需要吸附的气体或液体通过活性炭样品,记录吸附时间。
4.分析数据:根据实验结果,计算出各种实验条件下的吸附量,并进行数据分析。
四、实验结果1.实验条件:温度为25℃,吸附时间为2小时。
吸附剂种类气体/液体吸附量(g)活性炭乙醇0.05活性炭甲醇0.032.实验条件:温度为25℃,吸附时间为4小时。
吸附剂种类气体/液体吸附量(g)活性炭乙醇0.08活性炭甲醇0.053.实验条件:温度为30℃,吸附时间为2小时。
吸附剂种类气体/液体吸附量(g)活性炭乙醇0.07活性炭甲醇0.04五、实验讨论通过实验结果可以发现,活性炭对乙醇和甲醇具有较好的吸附能力。
而且,在相同的吸附时间和温度下,乙醇的吸附量要高于甲醇。
这可能是因为乙醇的分子结构中含有羟基,与活性炭的化学性能更加相似,从而使得吸附效果更好。
此外,温度也对活性炭吸附能力产生一定影响。
从实验数据可以看出,温度较高时,活性炭的吸附量相对较大。
这是因为温度升高会提高物质的扩散速率,加快物质在活性炭上的吸附速度。
六、实验结论通过活性炭的吸附实验,可以得出以下结论:1.活性炭对乙醇和甲醇具有较好的吸附能力,乙醇的吸附量大于甲醇。
2.温度对活性炭的吸附能力有一定影响,温度升高可以提高活性炭的吸附量。
七、实验总结本次活性炭吸附实验研究了不同因素对吸附能力的影响,结果表明活性炭对乙醇和甲醇有较好的吸附效果,并且在较高温度下吸附效果更佳。
通过此次实验,深入了解了活性炭的吸附性能,并为进一步研究提供了基础。
最新小组实验报告活性炭吸附实验
最新小组实验报告活性炭吸附实验实验目的:本实验旨在探究活性炭对水中有机污染物的吸附能力,通过定量分析,确定活性炭的吸附效率和最佳使用条件。
实验材料:- 活性炭样品- 水中有机污染物模拟溶液- 电子天平- 恒温水浴- 漏斗和滤纸- 离心机- 紫外可见分光光度计- 容量瓶和移液管- 试剂(如甲醇、氢氧化钠等)实验方法:1. 准备不同浓度的有机污染物模拟溶液,记录初始浓度。
2. 分别取适量的活性炭样品,称重后加入到模拟溶液中。
3. 将含有活性炭和模拟溶液的试管放入恒温水浴中,控制在一定温度下进行吸附实验,时间设定为1小时。
4. 实验结束后,使用离心机将活性炭和溶液分离,并通过滤纸过滤。
5. 取滤液,使用紫外可见分光光度计测定滤液中有机污染物的浓度。
6. 根据初始浓度和滤液中浓度的差值,计算活性炭的吸附率。
实验结果:- 记录各组实验数据,包括活性炭的质量、初始污染物浓度、最终污染物浓度以及计算得到的吸附率。
- 利用图表形式展示不同条件下活性炭的吸附效率,分析温度、时间、活性炭用量等因素对吸附效率的影响。
实验讨论:- 分析活性炭吸附有机污染物的机理,包括物理吸附和化学吸附。
- 探讨实验中可能存在的误差来源,如操作误差、仪器精度等,并提出改进措施。
- 根据实验结果,提出活性炭在实际水处理中的应用建议。
结论:通过本次实验,我们得出了活性炭对特定有机污染物的吸附效率,并找到了最佳的吸附条件。
这些发现对于优化活性炭在水处理领域的应用具有重要意义。
未来的研究可以进一步探索活性炭对其他类型污染物的吸附性能,以及如何提高其吸附效率和使用寿命。
活性炭吸附 环工原理实验 实验报告
实验二 活性炭吸附实验地点:学院717。
时间:14周周三上午(1)班,下午(2)班14周周四上午(3)班,下午(4班1.实验目的(1) 通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。
(2) 掌握用“间歇”法确定活性炭处理污水的设计参数的方法。
2.原理活性炭吸附是目前国内外应用较多的一种水处理手段,由于活性炭对水中大部分污染物都有较好的吸附作用,因此活性炭吸附应用于水处理时往往具有出水水质稳定,适用于多种污水的优点。
活性炭吸附常用来处理某些工业污水,在有些特殊情况下也用于给水处理。
比如当给水水源中含有某些不易去除而且含量较少的污染物时,当某些偏远小居住区尚无自来水厂需临时安装一小型自来水生产装置时,往往使用活性吸附装置。
但由于活性炭的造价较高,再生过程较复杂,所以活性炭吸附的应用尚具有一定的局限性。
活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述二种吸附综合作用的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,达到了动平衡称为活性炭吸附平衡,此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q e 表示:)/()(0g mg mC C V q e e -=(1) q e ——活性炭吸附量,即单位重量的吸附剂所吸附的容质量,mg/g ; V ——污水体积,L ;C0、Ce ——分别为吸附前原水中容质浓度和吸附平衡时水中的容质浓度,mg /L ;m ——活性炭投量,g 。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称为吸附等温线,通常用弗罗因德利希(F'reundLich)经验式加以表达:ne e C K q 1•= (2)式中q e ——活性炭吸附容量,mg /g ;Ce ——被吸附物质平衡浓度,mg /L ;K 、n ——是与溶液的温度、pH 值以及吸附剂和被吸附物质的性质有关的常数。
吸附实验报告讨论总结(3篇)
第1篇一、引言吸附实验是化学实验中常见的一种,通过对吸附剂和吸附质相互作用的研究,可以了解吸附机理、吸附动力学和吸附平衡等吸附过程的基本规律。
本实验采用了一种常用的吸附方法,通过实验验证了吸附剂对吸附质的吸附性能,并对实验结果进行了分析和讨论。
二、实验结果与分析1. 吸附剂与吸附质的初步研究实验中,我们选取了活性炭作为吸附剂,苯酚作为吸附质。
活性炭具有较大的比表面积和丰富的孔隙结构,能够有效地吸附有机物。
苯酚是一种常见的有机污染物,其在水中的浓度超标会对环境和人体健康造成危害。
2. 吸附剂吸附性能的测定通过实验,我们得到了活性炭对苯酚的吸附等温线。
实验结果表明,活性炭对苯酚的吸附能力随着苯酚浓度的增加而增强,呈现出典型的吸附等温线特征。
此外,我们还测定了吸附剂在不同温度下的吸附量,发现吸附量随温度升高而降低。
3. 吸附动力学研究为了研究吸附过程的速度,我们进行了吸附动力学实验。
实验结果表明,活性炭对苯酚的吸附过程符合伪一级动力学模型,其速率常数和吸附平衡时间与实验条件密切相关。
4. 吸附平衡研究在实验中,我们还研究了活性炭对苯酚的吸附平衡。
实验结果表明,活性炭对苯酚的吸附平衡符合Langmuir吸附等温式,其吸附容量与苯酚浓度呈线性关系。
三、讨论1. 吸附机理分析根据实验结果,活性炭对苯酚的吸附机理主要是物理吸附。
这是因为活性炭具有较大的比表面积和丰富的孔隙结构,能够为苯酚分子提供足够的吸附位点。
此外,活性炭表面还含有大量的官能团,如羟基、羧基等,这些官能团能够与苯酚分子发生相互作用,从而提高吸附效果。
2. 吸附性能影响因素分析(1)吸附剂种类:本实验选取了活性炭作为吸附剂,其吸附性能优于其他吸附剂。
这是因为活性炭具有较大的比表面积和丰富的孔隙结构,能够为吸附质提供更多的吸附位点。
(2)吸附质浓度:实验结果表明,吸附剂对吸附质的吸附能力随着吸附质浓度的增加而增强。
这是因为吸附剂表面吸附位点有限,随着吸附质浓度的增加,吸附位点逐渐被占据,从而提高吸附效果。
活性炭吸附实验报告
活性炭吸附实验报告一、实验目的本次实验的主要目的是探究活性炭对不同物质的吸附性能,了解影响活性炭吸附效果的因素,如吸附时间、溶液浓度、温度等,并通过实验数据计算活性炭的吸附量和吸附效率。
二、实验原理活性炭是一种具有高度孔隙结构和巨大比表面积的吸附材料。
其吸附作用主要基于物理吸附和化学吸附两种机制。
物理吸附是由于活性炭表面的分子间作用力(范德华力)而引起的,对各种物质均有一定的吸附能力,但吸附强度相对较弱。
化学吸附则是由于活性炭表面的官能团与被吸附物质之间发生化学反应而产生的,具有较强的选择性和特异性。
在一定条件下,活性炭对溶液中的溶质分子进行吸附,当达到吸附平衡时,吸附量与溶液的初始浓度、吸附时间、温度等因素有关。
通过测定溶液在吸附前后的浓度变化,可以计算出活性炭的吸附量和吸附效率。
三、实验材料与仪器1、实验材料活性炭:颗粒状,粒度为 20-40 目。
待吸附物质:甲基橙溶液、亚甲基蓝溶液、苯酚溶液。
其他试剂:盐酸、氢氧化钠、蒸馏水等。
2、实验仪器分光光度计:用于测定溶液的吸光度,从而计算溶液的浓度。
电子天平:用于称量活性炭的质量。
恒温振荡器:用于控制实验温度和搅拌溶液,以保证吸附过程的均匀性。
移液管、容量瓶、锥形瓶等玻璃仪器。
四、实验步骤1、活性炭的预处理将活性炭用蒸馏水洗涤数次,以去除表面的杂质和粉尘。
在 105℃的烘箱中烘干至恒重,备用。
2、标准曲线的绘制分别配制不同浓度的甲基橙溶液、亚甲基蓝溶液和苯酚溶液。
用分光光度计在各自的最大吸收波长处测定溶液的吸光度,绘制标准曲线。
3、吸附实验准确称取一定量的预处理后的活性炭,放入锥形瓶中。
加入一定体积和浓度的待吸附溶液,将锥形瓶放入恒温振荡器中,在设定的温度和转速下进行吸附。
在不同的时间间隔(如 5min、10min、20min、30min、60min 等)取出一定量的溶液,用分光光度计测定其吸光度,根据标准曲线计算溶液的浓度。
4、数据处理根据吸附前后溶液的浓度变化,计算活性炭的吸附量(q)和吸附效率(η)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验原理
1、活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。
在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。
有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。
当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之
间的溶质浓度,具有一定的分布比值。
如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:
q e=x/m(1) q e的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。
一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,q e值就比较大。
描述吸附容量q e与吸附平衡时溶液浓度 C 的关系有Langmuir、BET 和Fruendlieh 吸附等温式。
在水和污水处理常用Fruendlich 表达式来比较不同温度和不同溶液浓度时的活性
炭的吸附容量,即
q e=KC1/n (2)式中:q e——吸附容量(mg/g);
K——与吸附比表面积、温度有关的系数;
n——与温度有关的常数,n>1;
C——吸附平衡时的溶液浓度(mg/L)。
这是一个经验公式,通常用图解方法求出K,n 的值.为了方便易解,往往将式(2)变换成线性对数关系式
Lgq e=lg(C0-C/m)=lgK+lgC/n(3)
式中:C0——水中被吸附物质原始浓度(mg/L);
C——被吸附物质的平衡浓度(mg/L);
m——活性炭投加量(g/L)。
2、穿透曲线:又称透过曲线。
吸附中流体通过吸附床层,流出物中吸附质浓度随时间变化的曲线。
二、实验步骤
1、画出标准曲线
①配置20mg/L 的亚甲蓝溶液。
②用分光光度计得出吸收与波长的关系。
③确定产生最大吸收时的波长(给出最大吸收波长665nm)。
④将配置好的亚甲兰稀释,取0ml、2ml、6ml、10ml、14ml、18ml、22ml 的10mg/L
⑤亚甲蓝,用比色管定容到25ml,用分光光度计从 3 所得波长测得吸光度。
⑥画出吸收量与亚甲兰浓度(克分子/升)的关系曲线,即标准曲线。
2、吸附等温线间歇式吸附实验步骤
①分别依次称量25mg、50mg、75mg、100mg、125mg、150mg活性炭粉末、活性炭颗粒加入锥形瓶中。
②分别向锥形瓶中加入20mg/L的亚甲基橙溶液200mL,然后震荡30min,再静置10min;
③取锥形瓶中的上层清液于100mL容量瓶中定容,分别测其吸光度并记录。
并比较活性炭粉末与活性炭颗粒的处理效果。
3、颗粒活性炭穿透曲线的实验:
①配置1L的20mg/L的亚甲基蓝溶液,备用。
②固定床的制作:分别向两根酸性滴定管中填充颗粒状活性炭至刻度为35,25处,用去离子水清洗干净后浸泡一段时间。
将滴定管中的水排出,同时调节旋钮控制液体流出的速度,控制在8~9ml/min后固定。
③向滴定管中连续性不断注入配置好的亚甲基蓝溶液,排出滴定管中的气泡,再调节速度后用烧杯接流出的液体,每隔十分钟取一个样测其吸光度并记录(若浓度太高,则稀释一定倍数后再测)。
④待滴定管流出液体的浓度为原浓度的90%时,即固定床被穿透。
三、实验装置设备与材料
分光光度计、分析天平、量筒、烧杯、容量瓶、
酸式滴定管、玻璃棒、研钵、颗粒活性炭、振荡器、
四、实验数据记录与结果
原溶液亚甲基蓝的浓度:20mg/L
1、亚甲基蓝溶液标准曲线的绘制:
数据记录表:
亚甲基蓝标准曲线:
2、颗粒与粉末活性炭用间歇法吸附的对比实验:
颗粒C质
量g 吸光度浓度mg/L lgC c0-c c0-c/m lgco-c/m
2 1.018 0.269946 -0.56872 19.73005 9.865027 0.9940983
3 0.78 0.208093 -0.6817
4 19.79191 6.597302 0.8193664
4 0.371 0.101798 -0.99226 19.8982 4.9745
5 0.6967538
5 0.21
6 0.061516 -1.21101 19.93848 3.98769
7 0.6007221
6 0.031 0.013436 -1.87172 19.98656 3.331094 0.5225869
7 0.011 0.008238 -2.08415 19.99176 2.855966 0.455753
10 0.002 0.005899 -2.22919 19.9941 1.99941 0.3009019
3、固定床活性炭高度比较实验
27ml的活性炭固定床
时间T/min 10 15 20 25 30 35 40
吸光度0.290 0.168 0.209 0.199 0.276 0.230 0.280
浓度mg/L 0.081 0.049 0.060 0.057 0.077 0.065 0.078
16ml的活性炭固定床
浓度mg/L 0.390 0.401 0.420 0.432 0.453 0.473 0.487 时间175 185 195 205 215
吸光度 1.892 1.892 1.870 1.888 1.866
浓度
0.497 0.497 0.491 0.496 0.490
mg/L
五、总结与反思
1、即使同样活性炭颗粒,不同生产厂商不同批次不同日期等等原因的话,吸附效果也会大不相同。
实验时应用同一包装中的活性炭颗粒,保证其准确性。
2、本实验中得出的穿透曲线穿透区间不明显,而且去除率不高,可能由于亚甲基蓝原溶液浓度过高或者过滤速率过快导致。
以后在工程应用中控制污染物浓度一般会比较困难,因此控制适当过滤速率显得尤为重要。