混凝土耐久性分析

合集下载

混凝土的耐久性分析

混凝土的耐久性分析

混凝土的耐久性分析混凝土是一种广泛应用的建筑材料,具有良好的力学性能和耐久性。

然而,混凝土结构在长期使用过程中会遭受多种因素的影响,如环境、荷载、施工质量等,使其性能和耐久性逐渐降低,甚至出现严重的损坏和破坏。

因此,混凝土的耐久性分析是保证混凝土结构安全和延长使用寿命的重要手段。

混凝土的耐久性分析包括以下几个方面:1.环境因素对混凝土的影响混凝土结构长期处于不同的环境中,如气候、温度、湿度、酸碱度、盐度等都会对混凝土的性能和耐久性产生影响。

例如,气候变化会导致混凝土的收缩和膨胀,从而引起裂缝;高温会导致混凝土的强度和刚度下降;潮湿环境会加速混凝土的腐蚀等。

2.荷载对混凝土的影响混凝土结构承受着各种荷载,如自重、外力、地震等,这些荷载会导致混凝土的变形和破坏。

例如,在地震荷载下,混凝土结构受到强烈的震动和振动,从而引起裂缝和变形;在大风荷载下,混凝土结构受到强风的吹袭,从而引起风载荷作用下的变形和破坏。

3.施工质量对混凝土的影响混凝土结构的施工质量直接影响其性能和耐久性。

施工中需要注意混凝土的拌合、浇筑、养护等过程,以保证混凝土的强度和耐久性。

例如,在混凝土拌合过程中需要严格控制水灰比,以保证混凝土的质量;在浇筑过程中需要注意振捣和排气,以保证混凝土的密实度;在养护过程中需要注意湿润和保温,以保证混凝土的强度和耐久性。

4.混凝土的性能分析混凝土的性能分析包括强度、抗压、抗拉、抗弯等各项指标。

例如,混凝土的强度是衡量其承载能力的重要指标,强度的高低直接影响混凝土结构的耐久性和使用寿命;混凝土的抗压、抗拉、抗弯等指标也是衡量其性能和耐久性的重要指标,这些指标的高低直接影响混凝土结构的抗震性和承载能力。

5.混凝土结构的检测与评估混凝土结构的检测和评估是保证其耐久性和安全的重要手段。

通过现场检测和试验,可以获取混凝土结构的实际性能和耐久性,以便评估其使用寿命和安全性。

例如,可以通过超声波检测、钢筋探伤等手段来检测混凝土结构的缺陷和损伤;可以通过荷载试验、振动试验等手段来评估混凝土结构的抗震性和承载能力。

混凝土耐久性问题要点全总结

混凝土耐久性问题要点全总结

混凝土耐久性问题要点全总结一、什么是混凝土的耐久性混凝土耐久性是指结构在规定的使用年限内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、正常使用和可接受的外观能力。

混凝土耐久性与诸多因素有关,但在很大程度上取决于施工过程中的质量控制和质量保证以及结构使用过程中的正确维修与例行检测。

二、混凝土结构耐久性问题的分析混凝土耐久性问题,是指结构在所使用的环境下,由于内部原因或外部原因引起结构的长期演变,最终使混凝土丧失使用能力。

即所为的耐久性失效,耐久性失效的原因很多,有抗冻失效,碱-集料反应失效,化学腐蚀失效,钢筋锈蚀造成结构破坏等。

下面作具体分析。

1混凝土的冻融破坏结构处于冰点以下环境时,部分混凝土内孔隙中的水将结冰,产生体积膨胀,过冷的水发生迁移,形成各种压力,当压力达到一定程度时,导致混凝土的破坏。

混凝土发生冻融破坏的最显著的特征是表面剥落,严重时可以露出石子。

混凝土的抗冻性能与混凝土内部的孔结构和气泡含量多少密切相关。

孔越少越小,破坏作用越小,封闭气泡越多,抗冻性越好。

影响混凝土抗冻性的因素,除了孔结构和含气量外,还包括:混凝土的饱和度,水灰比,混凝土的龄期,集料的孔隙率及其间的含水率等。

氯盐环境下混凝土结构耐久性理论与设计方法¥97.5购买2、混凝土的碱-集料反应混凝土的碱-集料反应,是指混凝土中的碱与集料中活性组分发生的化学反应,引起混凝土的膨胀,开裂,甚至破坏。

因反应的因素在混凝土内部,其危害作用往往是不能根冶的,是混凝土工程中的一大隐患。

许多国家因碱-集料反应不得不拆除大坝,桥梁,海堤和学校,造成巨大损失,国内工程中也有碱-集料反应损害的类似报道,一些立交桥,铁道轨枕等发生不同程度的膨胀破坏。

混凝土碱-集料反应需具备三个条件,即有相当数量的碱,相应的活性集料,水份。

反应通常有三种类型:碱-硅酸反应,碱-碳酸盐反应,慢膨胀型碱-硅酸盐反应,避免碱-集料反应的方法可采用:①尽量避免采用活性集料;②限制混凝土的碱含量;③掺用混合材。

混凝土耐久性试验方法

混凝土耐久性试验方法

混凝土耐久性试验方法
混凝土耐久性试验方法包括以下几种常见的方法:
1. 压缩强度试验:通过在混凝土试块上施加压力,测定混凝土的抗压强度。

常用的试验方法有标准立方体试块试验和标准圆柱试块试验。

2. 抗拉强度试验:通过引拉混凝土试块,测定混凝土的抗拉强度。

常用的试验方法有直接拉伸试验和剪切试验。

3. 抗冻融试验:通过在混凝土试块上进行冻融循环,观察混凝土的融化后的性能变化,评估混凝土的抗冻融性能。

4. 密实度试验:通过测量混凝土的密实度,评估混凝土的抗渗透性能。

常用的试验方法有振动试验、湿密度试验和试块压实试验等。

5. 干缩试验:通过测量混凝土试块的干缩量,评估混凝土干缩性能的试验方法。

6. 硬度试验:通过测量混凝土的硬度,评估混凝土的耐磨性和耐磨性能。

这些试验方法可以根据具体需求和标准进行选择和执行,以评估混凝土的耐久性能。

混凝土耐久性研究

混凝土耐久性研究

混凝土耐久性研究混凝土是建筑工程中常用的一种材料,具有优良的耐久性和强度,但是在实际应用过程中,由于受到环境、荷载等多种因素的影响,混凝土的耐久性问题也成为了工程中的一个重要研究内容。

本文将对混凝土的耐久性进行研究,并探讨其影响因素及相关的解决方法。

一、混凝土耐久性的影响因素1. 环境因素混凝土在不同的环境中会受到不同程度的侵蚀和破坏,比如气候条件、化学腐蚀、生物侵蚀等。

在潮湿的环境中,混凝土易受到水分侵蚀,导致混凝土内部空隙被侵蚀并加速腐蚀。

在酸雨的腐蚀下,混凝土内的水泥基质会被溶解,从而降低混凝土的强度和耐久性。

生物的侵蚀也是影响混凝土耐久性的一个重要因素,生长在混凝土表面的植物根系、细菌和真菌会对混凝土产生破坏作用,进一步减少混凝土的使用寿命。

2. 结构设计及施工工艺混凝土结构设计的合理与否,以及施工工艺的优劣都会直接影响混凝土的耐久性。

比如在结构设计中,应该充分考虑到混凝土在使用寿命内可能受到的荷载及变形,以及预留的防护层等,以降低混凝土的受力状态。

施工工艺的好坏也会直接影响混凝土的质量,比如浇筑时的震动、密实度和成坯的养护等。

3. 材料选用混凝土的耐久性还与使用的材料有直接关系,如水泥的品质、骨料的优劣、添加剂和外加剂的选用等。

其中水泥的品质直接影响混凝土的耐久性,因为其决定了混凝土的强度和抗渗透性,而骨料的优劣会影响混凝土的强度和耐久性,添加剂和外加剂的选用则会影响混凝土的工作性能和耐久性。

二、混凝土耐久性的研究方法及解决方案1. 实验研究对混凝土的耐久性进行实验研究是比较常用的方法之一。

通过模拟不同环境条件对混凝土的侵蚀和破坏,研究混凝土的耐久性变化规律,并探讨其影响因素。

比如可以通过浸泡试验、腐蚀试验、冻融试验等,来评价混凝土的耐久性,并根据实验结果提出相应的解决方案。

2. 数值模拟利用数值模拟的方法对混凝土的耐久性进行研究,通过建立相应的数学模型,模拟不同环境条件下混凝土的受力和破坏过程,预测混凝土在不同环境下的使用寿命,为设计和施工提供参考依据。

混凝土耐久性评估方法

混凝土耐久性评估方法

混凝土耐久性评估方法混凝土是一种常见的建筑材料,其耐久性对于保障建筑物的使用寿命具有至关重要的作用。

而混凝土的耐久性评估方法能够帮助我们准确判断混凝土材料的长期性能和使用寿命。

本文将介绍几种常见的混凝土耐久性评估方法。

一、物理性能测试物理性能测试是混凝土耐久性评估中最常用的方法之一。

该方法通过对混凝土材料的密度、抗压强度、吸水性等指标进行测试,来判断混凝土的耐久性。

常见的物理性能测试方法包括:1. 密度测试:使用密度计或气排水法测试混凝土的密度。

密度越大,混凝土越耐久。

2. 抗压强度测试:通过在混凝土试样上施加压力来测试混凝土的抗压强度。

抗压强度越高,混凝土的耐久性越好。

3. 吸水性测试:将混凝土试样浸泡在水中,观察其吸水量。

吸水量越小,混凝土越耐久。

二、化学性能测试化学性能测试通常用于评估混凝土中可能存在的化学侵蚀问题。

常见的化学性能测试方法包括:1. pH值测试:测试混凝土水化后的pH值,即混凝土的碱度。

碱度越高,混凝土越耐久。

2. 氯离子含量测试:测试混凝土中氯离子的含量,高氯离子含量会导致混凝土腐蚀,降低耐久性。

3. 硫酸盐含量测试:测试混凝土中硫酸盐的含量,高硫酸盐含量会导致混凝土腐蚀,降低耐久性。

三、热循环实验热循环实验是评估混凝土耐久性的一种常用方法。

该方法通过将混凝土试件置于不同温度的环境中,进行多次循环加热和冷却,观察混凝土的性能变化。

热循环实验可以模拟混凝土在不同温度下的膨胀和收缩情况,从而评估混凝土的耐久性。

四、电化学测试电化学测试是评估混凝土耐久性的一种先进方法。

该方法通过测量混凝土试件中的电流、电压等参数,来评估混凝土的腐蚀程度和耐久性。

电化学测试可以准确判断混凝土中钢筋的腐蚀情况,对混凝土的耐久性评估具有重要意义。

综上所述,混凝土耐久性评估方法涵盖了物理性能测试、化学性能测试、热循环实验和电化学测试等多个方面。

通过这些方法的综合应用,可以准确评估混凝土材料的耐久性和使用寿命,为建筑物的设计和维护提供科学依据。

混凝土的耐久性评价方法

混凝土的耐久性评价方法

混凝土的耐久性评价方法一、前言混凝土是建筑工程中常用的材料之一,其耐久性是评价混凝土质量和使用寿命的重要指标之一。

为了确保混凝土的耐久性,需要对其进行评价和检测。

本文将介绍混凝土的耐久性评价方法。

二、混凝土的耐久性混凝土的耐久性是指混凝土在使用过程中能够承受外部环境和负荷的能力,包括抗渗、抗裂、抗冻融、抗硫酸盐侵蚀、抗碳化、抗氯离子侵蚀等方面。

混凝土的耐久性与其材料、配合比、施工工艺、使用条件等因素有关。

三、混凝土的耐久性评价方法(一)混凝土抗渗性检测1. 试验方法:利用渗透试验仪进行试验,按照相关标准进行操作。

2. 检测指标:水渗透深度、渗透系数等。

3. 评价方法:根据试验结果评价混凝土的抗渗性,通常采用评分法或分类法。

(二)混凝土抗裂性检测1. 试验方法:采用三点弯曲试验或直接拉伸试验进行试验,按照相关标准进行操作。

2. 检测指标:极限弯曲荷载、极限拉伸荷载、抗裂韧性等。

3. 评价方法:根据试验结果评价混凝土的抗裂性,通常采用评分法或分类法。

(三)混凝土抗冻融性检测1. 试验方法:采用冻融试验仪进行试验,按照相关标准进行操作。

2. 检测指标:冻融循环次数、质量损失等。

3. 评价方法:根据试验结果评价混凝土的抗冻融性,通常采用评分法或分类法。

(四)混凝土抗硫酸盐侵蚀性检测1. 试验方法:采用硫酸盐浸泡试验进行试验,按照相关标准进行操作。

2. 检测指标:质量损失、抗压强度损失等。

3. 评价方法:根据试验结果评价混凝土的抗硫酸盐侵蚀性,通常采用评分法或分类法。

(五)混凝土抗碳化性检测1. 试验方法:采用碳化试验进行试验,按照相关标准进行操作。

2. 检测指标:碱度损失、碳化深度等。

3. 评价方法:根据试验结果评价混凝土的抗碳化性,通常采用评分法或分类法。

(六)混凝土抗氯离子侵蚀性检测1. 试验方法:采用氯离子浸泡试验进行试验,按照相关标准进行操作。

2. 检测指标:抗压强度损失、氯离子渗透深度等。

3. 评价方法:根据试验结果评价混凝土的抗氯离子侵蚀性,通常采用评分法或分类法。

混凝土的强度与耐久性分析

混凝土的强度与耐久性分析

混凝土的强度与耐久性分析在建筑领域,混凝土是一种广泛应用的重要材料。

无论是高楼大厦、桥梁道路,还是各类基础设施,混凝土都扮演着不可或缺的角色。

而混凝土的强度和耐久性则是衡量其质量和性能的关键指标,直接关系到建筑物的安全性、使用寿命以及维护成本。

混凝土的强度,简单来说,就是它抵抗外力破坏的能力。

这就好比一个人的力气大小,力气越大,就越能承受重负。

混凝土的强度主要取决于几个方面。

首先是原材料的质量。

水泥是混凝土中的胶凝材料,其品质和标号对强度起着基础性的作用。

高质量、高标号的水泥往往能赋予混凝土更高的强度。

骨料,也就是石子和沙子,它们的强度、粒径和级配也会影响混凝土的强度。

好比搭积木,积木的质量和大小搭配得好,搭出来的结构才更稳固。

其次是水灰比。

水灰比是指水和水泥的比例。

如果水加得太多,就像汤太稀了,混凝土的强度就会降低;相反,水太少又会导致搅拌不均匀,施工困难。

所以,合适的水灰比至关重要。

再者是施工工艺。

搅拌是否均匀、浇筑是否密实、振捣是否到位,都会影响混凝土内部的结构,从而影响强度。

就像做蛋糕,如果搅拌不均匀,烤出来的蛋糕可能会有孔洞,口感和质量都会大打折扣。

养护条件也是影响混凝土强度的重要因素。

混凝土在浇筑后需要一定的时间和条件来进行养护,以保证水泥充分水化,从而获得足够的强度。

如果养护不当,比如在混凝土还没有充分硬化时就受到风吹日晒或者过早承受荷载,强度就难以达到设计要求。

说完强度,再来说说耐久性。

耐久性指的是混凝土在使用过程中抵抗各种破坏因素的能力,通俗地讲,就是混凝土能“活”多久。

耐久性的影响因素众多。

其中,混凝土的渗透性是一个关键因素。

如果混凝土的孔隙率大、渗透性强,水分、氧气、氯离子等有害物质就容易侵入,从而导致钢筋锈蚀、混凝土劣化。

就像一个房子,如果墙壁有很多缝隙,雨水和潮气就容易渗进来,房子就容易损坏。

化学侵蚀也是影响耐久性的重要因素。

比如在一些工业环境中,混凝土可能会受到酸、碱、盐等化学物质的侵蚀。

高性能混凝土耐久性分析

高性能混凝土耐久性分析

混凝土材料在建筑工程项目建设当中占有基础地位,是众多建筑材料当中不可缺少的建筑原材料。

为了从根本上提高建筑工程的质量,最大化的满足建筑工程长期使用的要求,就必须提高混凝土材料的质量,而且是要提高混凝土的耐久性。

高性能混凝土则能够有效满足建筑要求,同时在耐久性方面也较为突出。

通过将高性能混凝土应用到工程建设当中能够有效提高建筑工程质量和使用寿命,还能够起到保护环境以及节约资源的作用。

1 高性能混凝土特征高性能混凝土是利用普通材料和一般工艺,通过掺入外加剂,矿物细粉等配料制成的优良混凝土,这一类型的混凝土有以下几个突出特点:第一,高耐久性。

高性能混凝土是一种区别普通混凝土的建筑材料,最为显著的特点就是有着较高的耐久性。

通过将高耐久性的高性能混凝土应用到建筑工程当中可以显著提高工程使用年限和工程寿命,极大程度上节约资源和保护环境。

第二,高工作性。

高性能混凝土具备极强的高工作性特点,也就是在实际建筑应用当中能够有效符合工程建设的要求,有着极高的密实性、稳定性、填充性等多种工作特点。

第三,技术内容丰富。

高性能混凝土包含了技术内容十分多元,通过运用大量成本较低的技术可以显著改善混凝土的性能,尤其是可以提升其耐久性。

高性能混凝土和普通混凝土在功能上的对比差异,主要体现在以下几个方面:第一,强度较大且使用能力较强。

第二,混凝土拌合物的流动性较为突出,可以有效满足工程建设的实际要求。

第三,混凝土在成型时容易有效充满浇铸模型,提升体积稳定性。

第四,能够有效满足结构工程建设以及具体工艺应用的需要,进而起到减少造价和增强混凝土使用寿命的作用。

2 提升混凝土耐久性的技术方法2.1 掺入高效减水剂提高混凝土耐久性的一个方法就是要减少毛细管孔隙率,其中常用的手段就是要减少拌合混凝土时的用水量。

但是盲目减少用水的方法很有可能会导致混凝土的工作性能下降,为捣实成型等工作带来难题,不仅影响到混凝土强度,还降低其整体的耐久性。

水泥当中加水搅拌之后会出现絮凝状的结构,在该结构当中存有大量拌合水,进而导致新拌混凝土的工作性能达不到标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土耐久性分析
摘要:近年来,随着科学技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。

关键词:混凝土耐久性;施工;措施
区别于传统混凝土,耐久防腐混凝土以耐久性作为首要指标,有重点地予以保证其耐久性、工作性、强度、体积稳定性以及经济性等。

目前,国内外高性能混凝土的研究与应用方兴未艾。

在荷兰,对已使用3~63年的64座海工结构(其中90%的结构采用磨细矿渣混凝土)调查发现,结构基本完好,氯离子扩散系数仅为普通混凝土的1/10~1/15。

典型事例为东谢尔德挡潮闸工程,其设计使用寿命是250年,80年不维修,其基本防腐措施就是采用水胶比为0.4的大渗量(65%)磨细矿渣混凝土。

在英、美、加、日和中东等国家和地区,也都有类似的成功工程应用实例。

在我国,配制防腐耐久混凝土主要是采用高效减水剂与粉煤灰双掺技术,分别于1987年应用于厦门高集跨海公路大桥和1997年应用于厦门海沧大桥,在上海南浦大桥、杨浦大桥和黄浦江越江隧道等工程中,也得到了应用。

一、影响混凝土耐久性的主要因素
1、混凝土的抗渗性
混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。

如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。

2、混凝土的抗冻性
混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。

从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。

提高混凝土的抗冻性可以采用以下措施;
1)引气
这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。

一般说来、混凝土的抗冻性随着阴气量的增加而增加。

而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。

2)控制水灰比
水泥石内的大孔隙量与水灰比和水化程度有关。

一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。

由于表面张力的原因、大孔隙内的水比小孔隙内
的水更易于结冰、因此、在同等条件下、水灰比大的水泥石内可结冰的水更多、发生冻融破坏的几率更大。

3)降低饱和度
混凝土的饱和度对冻融破坏有很大的影响、干燥的或部分干燥的混凝土不容易受到冻融破坏。

一般存在一个临界饱和度、当混凝土的含水量大于此饱和度、混凝土易受冻破损剥落。

在混凝土工程中、通过控制养护条件可以使混凝土的饱和度低于临界饱和度。

3、钢筋锈蚀
混凝土中钢筋的锈蚀主要属电化学腐蚀、必须同时具备4个条件才会发生腐蚀。

①钢筋表面要有电位差、不同电位的区段之间形成阳极-阴极;②在阴极和阳极之间、电解质溶液的电阻很小;③在阳极:钢筋表面要处于活性状态、容易进行氧化反应。

④在阴极:钢筋表面要有足够数量的水分和溶解氧。

4、盐渍地区
盐渍土及沿海岸工程的混凝土结构,由于长期处于氯离子的潮湿空气中,土壤和水中还有大量的氯盐、镁盐和磷酸盐,它们与混凝土中的水泥水化产物Ca(OH)2作用后生产CaCl2,CaSO4等易溶物质,NaCl又提高其溶解度,增大了混凝土的孔隙率,使混凝土遭受腐蚀;而氯离子引起的钢筋锈蚀导致该处混凝土结构被破坏最为常见,同时,磷酸盐侵蚀也是威胁钢筋混凝土结构耐久性的重要因素之一,已有研究发现掺入适量的胶凝材料可以提高混凝土的抗硫酸盐侵蚀能力。

二、案例分析
福州江阴港铁路支线西港特大桥、鸡角屿特大桥、福厝后特大桥以及沿线几座框架涵环境作用等级为L3、H2级,属严重腐蚀环境。

因此对桥涵下部混凝土结构耐久(防腐)要求特别高。

图1 西港特大桥所处海域环境
西港特大桥采用双掺技术(粉煤灰掺合料+高效减水缓凝剂),通过减少水泥中易被腐蚀的氢氧化钙和水化铝酸钙,即用粉煤灰替代一部分水泥掺入,显著减小水化热,降低混凝土内外温差,减少微裂缝等缺陷,增加硬化混凝土的体积稳定性(密实度)和化学稳定性。

1、海水腐蚀混凝土机理
1)海水的化学成分
在分析海上构筑物混凝土的破坏条件及选择提高混凝土耐腐蚀性能的措施时,必须把海水成分可能发生的化学变化因素考虑进去。

海水中共有元素80多种,本区范围内海水的pH值平均约8.3-8.4。

表1主要盐分含量
2)腐蚀机理
水泥中存在极易被化学变化产生沉淀的Ca(OH)2 和水化铝酸钙,一旦与海水直接接触会产生如下反应:
以上两种沉淀物均无胶凝特性,从而使结构软化,而产生的Ca2+一部分形成可溶性CaCl2 随扩散被带出混凝土,使得混凝土空隙率和渗透性提高,从根本上影响混凝土的耐久性。

2、配合比的设计
为了验证海水腐蚀混凝土机理,进行了如下试验:
2009年6月,分别用纯P.O42.5水泥和内掺50%I级粉煤灰分别制作两组混凝土试件,标养14天后,各有1组试件继续标养,另外一组放入海水中(如图2、3所示)。

图2 海水养护池图3 标准养护室
2010年6月20日将两组试件进行强度试验,试验结果如下表示:
表2 抗压强度对比表
研究结果表明:海水对纯硅酸盐水泥配制的混凝土有较大的腐蚀性;掺入50%粉煤灰后,海水对混凝土强度影响是非常小的。

因此,防腐耐久混凝土掺入一定比例的掺合料(粉煤灰)对其强度、抗渗性有很大作用。

三、提高混凝土耐久性的主要技术措施
为了提高混凝土的耐久性、目前一些重要的工程中已开始采用高性能混凝土。

相对于普通混凝土而言、高性能混凝土具有更低的水灰比。

此外,西港特大桥、通过掺入不同品中、不同细度及不同掺量的外加剂、取代混凝土中部分水泥后、会使混凝土的密实度高、体积稳定性好、强度也高、故耐久性也更好。

这些都是高性能混凝土的特点。

如何提高混凝土耐久性的技术措施,本文笔者根据多年经验及收及资料认为可从以下几个方面入手:
1、合理加入减水剂
混凝土配合比的一个关键参数是水/胶比,即水/胶凝材料(水泥+活性矿物混合材)之比。

水/胶比越高,新拌塑性混凝土的工作性越好,越容易施工,但是硬化混凝土强度越低。

为了解决这个矛盾,即保证工作性的同时提高强度,或者保持工作性和强度的同时降低水泥用量,就需要加入减水剂。

2、合理选用水泥
3、控制混凝土的水灰比和水泥用量
配制混凝土尽量使用较小的水灰比、可以确保混凝土凝结、硬化后孔隙率小;在可能的条件下多加些水泥、会显得混凝土水泥浆较多、这两点式保证混凝土成型密实度的关键。

4、加强振捣、提高混凝土构件的密实度
5、在混凝土表面加保护层
地下混凝土结构作外墙防水层加以保护、使其不受地下水和土壤的侵蚀;地上混凝土结构外墙作装修、如抹灰、刷涂料、黏贴材料(贴瓷砖、锦砖、面砖、花岗石板材、水磨石板材等)、还可以作水刷石、干黏石、剁假石以及拉毛等、使混凝土结构可不直接受曝晒、不直接受风、雨、雪的侵蚀、不受大气中有害气体的腐蚀、从而提高耐久性。

参考文献:
[1] 靳长青.浅析公路桥梁混凝土施工[J].建筑知识,2009.35.
[2] 卢召军.影响混凝土耐久性的因素及对策[J].城市公用事业,2009,23。

相关文档
最新文档