新能源材料论文
新能源材料的发展前景及趋势论文
新能源材料的发展前景及趋势论文随着全球环境问题愈发凸显,新能源材料的研究和应用日益受到关注。
新能源材料是指能够高效转化、存储和利用能量的材料,代表了未来能源技术的发展方向。
在当前新能源热潮的推动下,新能源材料的发展前景前所未有地广阔,趋势也愈发清晰。
一方面,在能源全球化和多样化的趋势下,石油、煤炭等传统能源资源的有限性和环境污染问题已经日益凸显,这也促使了新能源材料的发展。
太阳能、风能等可再生能源因其清洁、无限的特点而备受关注,而新能源材料作为这些能源的核心组成部分,其研究和应用将为新能源技术的发展提供强有力支撑。
另一方面,随着科技的不断进步,新能源材料领域也在不断涌现出各种创新材料。
比如,具有高效能量转化率和稳定性的光催化材料、高能量密度和长循环寿命的电池材料等,都是当前研究的热点。
这些新材料的研究不仅可以推动新能源技术的创新,也有助于解决能源存储和利用方面的难题。
未来,新能源材料的发展趋势将主要体现在以下几个方面:首先,新能源材料将更加注重材料本身的性能和稳定性。
随着新能源技术的商业化进程加快,对材料的稳定性、成本效益等方面的要求也将越来越高。
其次,新能源材料的研究将更加跨学科化。
新能源技术的发展需要材料学、物理学、化学等多个学科的共同努力,不同学科之间的融合将为新能源材料的研究带来更多可能性。
再次,新能源材料的开发将更加注重实际应用。
材料的研究不仅需要追求基础科学的突破,更需要关注材料在实际应用中的表现,以满足不同场景下的需求。
总的来说,新能源材料的发展前景广阔,趋势也逐渐清晰。
未来的发展将离不开对新能源材料性能的不断提升和跨学科合作的深化,相信在多方合作的推动下,新能源材料必将迎来更加辉煌的发展前景。
新能源材料与能源转化技术毕业论文
新能源材料与能源转化技术毕业论文作为新能源科学与工程专业的研究领域,新能源材料与能源转化技术在解决全球能源问题、推动可持续发展以及减少环境污染方面具有重要意义。
本论文将对新能源材料与能源转化技术的发展现状、应用领域以及未来前景进行深入探讨。
第一章:引言1.1 研究背景1.2 研究目的与意义第二章:新能源材料的概述与分类2.1 光伏材料2.1.1 单晶硅材料2.1.2 多晶硅材料2.1.3 可撒型薄膜太阳能电池材料2.2 燃料电池材料2.2.1 氢氧化物燃料电池(Alkaline Fuel Cell, AFC)2.2.2 聚合物电解质膜燃料电池(Polymer Electrolyte Membrane Fuel Cell, PEMFC)2.2.3 固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)2.3 锂离子电池材料2.3.1 正极材料2.3.2 负极材料2.3.3 电解质材料第三章:能源转化技术的研究进展与应用3.1 光伏发电技术3.1.1 单晶硅太阳能电池3.1.2 薄膜太阳能电池3.1.3 多结太阳能电池3.2 燃料电池技术3.2.1 聚合物电解质膜燃料电池应用3.2.2 固体氧化物燃料电池应用3.2.3 燃料电池发电系统3.3 锂离子电池技术3.3.1 锂离子电池在电动车领域的应用3.3.2 锂离子电池在储能领域的应用第四章:新能源材料与能源转化技术的挑战与未来展望4.1 挑战4.1.1 成本4.1.2 储能技术4.1.3 可持续性4.2 未来展望4.2.1 新型材料的开发4.2.2 能源转化效率的提高4.2.3 可再生能源的推广与应用第五章:结论5.1 主要研究成果5.2 存在的问题与不足5.3 进一步研究的方向与建议参考文献以上是对新能源材料与能源转化技术的毕业论文大纲的一个示范。
在正式写作时,可以进一步扩展每个章节的内容,并引用相关的文献和实验数据,以支持论文的论述。
【论文】新能源材料结课论文
【关键字】论文18 宋正坤电气与电子工程学院电气1007班新能源材料结课论文对于新能源而言,目前有较大规模发展的大致有风能、太阳能、生物质能三类。
对于新能源的利用,最有前景的方式莫过于用来发电。
相比较而言,风力发电更有其规模性与技术基础。
下面首先分析太阳能发电与生物质能发电的优缺点。
太阳能发电的优点:1:太阳能取之不尽,用之不竭,地球表面接受的太阳辐射能,足够目前全球能源需求的1万倍,只要在全球4%的沙漠安装太阳能就可以满足全球需要。
2:安全可靠,不受能源危机和燃料市场不稳定的冲击。
3:太阳能处处可得到,不必远距离运输,躲免长距离输电线路的损失。
4:不用燃料,运行成本很低。
5:太阳能发电没有运动部件不易损坏,维护简单。
6:太阳能发电过程中不易产生污染废弃物,是理想的清洁能源。
7:太阳能发电系统建设周期短,方便灵活,可以根据负荷的增减,任意添加或减少太阳能方阵,躲免浪费。
太阳能发电的缺点:1:地面应用时有间歇性,在晚上或阴雨天不能或很少发电。
2:能量密度低,一般情况下,每平方米,太阳强度为1000W/m2。
3:目前价格较高,为常规电价的5-15倍。
针对太阳能发电的优缺点可知,太阳能发电具有极大的地域限制以及规模化生产限制,大面积覆盖在短期内实现仍有较大难度。
生物质能发电的优点:生物质能与传统化石能源相比具有可再生性、低污染性、分布广泛性和储量丰富的特点。
生物质属可再生资源,通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用。
生物质的硫含量、氮含量低,燃烧过程中生成的硫化物、氮化物较少,因而可有效地减轻温室效应。
生物质能储量丰富,根据专家估算,地球陆地每年生产1000-1250亿吨生物质,海洋年生产500亿吨生物质。
生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。
生物质能发电的缺点:燃烧秸杆发电是一种,成本高,效率低,应用范围很小的发电方式。
新能源材料与器件论文
新能源材料与器件论文随着社会的不断发展,新能源领域的研究日益受到重视。
新能源材料与器件作为新能源技术发展的核心,其研究和应用具有重要的意义。
本文将重点探讨目前新能源材料与器件领域的最新进展和研究趋势。
新能源材料研究新能源材料的研究是新能源技术发展的基础,其性能和稳定性直接影响着新能源器件的效率和可靠性。
近年来,钙钛矿材料作为一种热门的光伏材料备受关注。
其高光吸收系数、光电转换效率和低制备成本使其成为一种理想的太阳能电池材料。
除此之外,石墨烯作为一种具有优异导电性和热传导性的二维材料,也在新能源领域展现出巨大潜力。
研究人员通过改性石墨烯的方法,成功提高了其在光伏和储能器件中的应用性能。
新能源器件设计与制备新能源器件的设计与制备是新能源技术发展的关键环节。
光伏电池作为新能源产业的核心设备,在新能源材料的基础上不断进行优化和创新。
研究人员通过设计新型光伏结构和调控器件界面,提高了光伏器件的光电转换效率和稳定性。
此外,储能技术也是新能源领域的热点之一。
纳米材料作为储能器件的关键材料之一,具有高比表面积和较强的化学稳定性,为储能器件的高性能提供了可能。
新能源材料与器件的未来发展新能源材料与器件领域的研究将会持续深入,未来的发展方向主要包括提高材料性能、降低制备成本、优化器件结构和提高系统整体效率等方面。
随着新能源技术的不断创新和完善,新能源材料与器件将更好地满足社会对清洁能源的需求,推动新能源产业的快速发展。
综上所述,新能源材料与器件作为新能源技术发展的关键领域,其研究和应用具有重要的意义。
不断创新和提高材料性能,将推动新能源技术的发展,为人类社会的可持续发展做出贡献。
期待在未来的研究中,新能源材料与器件领域能取得更大的突破和进步。
新能源材料论文
题目:新能源材料的应用与发展前景学院:材料科学与工程学院2013年11月26日目录0.摘要 (2)1.太阳能电池及光伏材料 (2)2.风电机组叶片材料 (3)3.贮氢材料 (4)4.镍氢电池和锂离子电池 (5)4.1.镍氢电池 (5)4.1.1.镍氢电池基本简介 (6)4.1.2.镍氢电池电池材料 (6)4.1.3.镍氢电池研究进展 (7)4.2.锂离子电池 (7)4.2.1.锂离子电池基本简介 (7)4.2.2.锂离子电池充放电原理及其电池材料 (7)4.2.3.锂离子电池的应用前景 (9)5.燃料电池 (10)5.1.燃料电池的基本原理及组成 (10)5.2.燃料电池的分类 (11)5.3.燃料电池的优缺点 (12)6. 新能源材料有待解决的课题 (12)7.参考文献 (12)摘要人类社会对能源的需求持续增长,能源需求结构也在发生变化,与此同时人类又面临着矿物能源环境污染和枯竭的难题,这一切都激励着新能源的出现和发展。
太阳能、氢能、核能、生物能、风能、地热能、海洋能等被认为是新能源,但它们必须依靠新材料的开发与应用才能得以实现,并进一步提高效率、降低成本。
新能源材料就是用于新能源生产、转换和应用所需的材料。
新能源材料有以下特点:1.新材料把原来已经使用的能源变成新能源,更便于使用;2.一些新材料可提高储能和能量转化效果;3.新材料保障了核反应堆等新能源的安全;4.材料工艺决定着新能源的成本。
AbstractHuman society’s demand for energy continued growth, energy demand structure is changing, at the same time the human faces pollution and depletion of fossil energy environment problem, this all motivated the emergence of new energy and development. Solar energy, hydrogen energy, nuclear energy, bio energy, wind energy, geothermal energy, ocean energy is considered to be a new energy, but they must rely on the development and application of the new materials can be realized, and further improve efficiency, reduce costs. Shinno source material for ability of Industrial sources, Change sum Application required plant material. Shinno source material have the following Features:1.New materials have used the original energy into new energy sources, easier touse;2.Some new materials to improve energy storage and energy conversion effect;3.New materials to protect the safety of nuclear reactors and other new energy;4.Materials technology determines the cost of new energy sources.关键词:太阳能电池贮氢材料风电机叶片镍氢电池锂离子电池燃料电池1.太阳能电池及光伏材料我国地面接收的太阳能资源非常丰富,辐射总量为3340~8400(MJ/m2)/a,主要分布在我国的西北、华北以及云南中部和西部、广东东南部、福建东南部、海南岛东部和台湾西南部等地区。
新能源材料的发展前景分析论文
新能源材料的发展前景分析论文在当今社会,随着环境污染和能源危机的日益加剧,新能源材料的研究和应用变得日益重要。
新能源材料作为替代传统能源的重要组成部分,被广泛研究和应用于各个领域。
本文将从新能源材料的定义、分类、应用前景以及发展趋势等方面进行深入分析。
首先,新能源材料是指那些可以转化各种可再生能源为电能或其他形式能量的材料。
根据能源来源的不同,新能源材料可分为太阳能材料、风能材料、水能材料等。
这些材料能够有效利用特定能源并转化为可供人类使用的能量,对于解决能源危机和减缓环境污染具有重要意义。
其次,新能源材料在各个行业中都有广泛的应用前景。
在能源领域,新能源材料可以用于太阳能发电、风力发电、水力发电等,取代传统的化石能源,减少碳排放并保护环境。
在交通运输领域,新能源材料可以用于制造电动汽车、氢燃料电池车等,降低对传统石油资源的依赖,减少空气污染。
在建筑领域,新能源材料可以用于建设智能高效的绿色建筑,减少能耗,提高能源利用效率。
未来,新能源材料的发展趋势将主要集中在以下几个方面。
首先,新能源材料将不断提高能源转换效率和储能性能,以满足不同领域对能源密度和稳定性的需求。
其次,新能源材料将不断降低成本,提高生产工艺的可持续性,从而推动其大规模应用和市场普及。
此外,新能源材料也将不断创新,拓展应用领域,以适应社会经济的发展和需求变化。
综上所述,新能源材料作为未来替代传统能源的重要选择,具有广阔的应用前景和发展空间。
随着技术的不断进步和创新,我们有理由相信新能源材料将为人类社会的可持续发展提供重要支持,推动能源革命的到来。
相信在不久的将来,新能源材料将成为能源领域的主流,成为人类社会迈向更加绿色、清洁与可持续的重要力量。
新能源材料论文
新能源材料论文新能源材料是近年来发展迅速的研究领域之一。
新能源材料是指利用先进材料技术研制出来的能够转换和存储能量的材料,包括太阳能电池、燃料电池、锂离子电池等。
本文将对新能源材料进行探讨,并介绍其在能源领域的应用。
太阳能电池是一种将太阳能转化为电能的装置。
通过将太阳光照射在太阳能电池上,太阳能会被光敏材料吸收并转化为电能。
新能源材料在太阳能电池领域的应用主要包括有机太阳能电池和钙钛矿太阳能电池。
有机太阳能电池采用有机材料作为光敏材料,具有轻巧、柔性和可塑性等特点,可以广泛应用于建筑物的外墙等场所。
而钙钛矿太阳能电池具有高效转换效率和低成本的优势,被认为是下一代太阳能电池的发展方向。
燃料电池是一种将燃料直接转化为电能的装置。
燃料电池利用材料的化学能直接转化为电能,并且不会产生有害气体排放。
新能源材料在燃料电池领域的应用主要包括质子交换膜燃料电池和固体氧化物燃料电池。
质子交换膜燃料电池采用质子交换膜作为电解质,具有高效率、快速启动和长寿命的特点,被广泛应用于汽车和家庭能源系统等领域。
固体氧化物燃料电池则具有高温操作和高效能的特点,主要用于工业领域的应用。
锂离子电池是一种以锂离子嵌入和脱嵌的方式进行充放电的装置。
锂离子电池具有高能量密度和长循环寿命的特点,被广泛应用于移动通信设备、电动汽车等领域。
新能源材料在锂离子电池领域的应用主要包括锂离子导电材料、电解质材料和电极材料等。
例如,锂离子导电材料采用导电性能较高的材料替代传统的锂离子电池中使用的材料,能够提高锂离子电池的充放电性能和循环寿命。
总之,新能源材料是推动能源转型和可持续发展的关键技术之一。
通过不断研究和开发新能源材料,可以提高能源转换效率、降低能源消耗和污染,并促进经济的可持续发展。
新能源论文[5篇材料]
新能源论文[5篇材料]第一篇:新能源论文新能源助力传统交运企业转型摘要:目前环境污染与能源枯竭问题,已经制约了我国的可持续发展,推进新能源汽车市场的发展已经成为解决此问题的有效手段。
通过研究我国新能源车辆发展现状,针对当前我国新能源车辆在推广问题上碰到的重点与难点问题,从企业发展的角度提出了新能源汽车在交通运输行业推广的对策与建议,为行业管理部门进一步指导新能源汽车的应用与推广实现新能源汽车应用的标准化和规范化提供决策支持关键词:新能源,发展背景,政策,变革,转型。
●新能源客车的主要类型:(1)混合动力客车——约占我国新能源客车市场90%以上份额,是无可争议的主导车型。
对于我国客车行业来说,混合动力主要是柴油—电混合,优点是可以降低30%以上的燃油消耗,排放标准可以达到国Ⅳ水平,缺点是蓄电池容量和寿命问题没有得到彻底解决,混合动力客车属于发展期产品,允许进行批量生产,但只能在批准的区域、范围、期限和条件下销售、使用,并至少对20%销售产品的运行状态进行实时监控,造成单车价格下不来。
(2)纯电动客车——由蓄电池作为动力源。
以电机代替燃油机,噪声低、无污染,使用单一的电能源。
而且,纯电动车的蓄电池可在夜间利用电网的廉价“谷电”进行充电,可以平抑电网的峰谷差。
我国纯电动车主要用于机场、社区、球场等地方。
纯电动客车作为起步进行示范运行,并对全部产品进行实时监控。
(3)燃料电池客车——主要是氢燃料电池客车,被认为是最有前途的产品,能够真正解决能源短缺问题,并且真正实现了零排放。
但也是属于起步期产品。
(4)CNG客车——CNG(压缩天然气)作为一种气体燃料,与空气混合更均匀,燃烧更加充分,排放的CO、HC等有害物质更少;天然气燃烧后没有积炭,可减少发动机磨损,维护保养费用低;天然气发动机改装简单,特别是用汽油机改装的双燃料发动机,因性价比极高,使用广泛;此外更重要的一点是,行驶同样公里数,天然气客车的燃料费用要远低于柴油或者汽油机,经济效益非常高。
以新能源为主题的论文:新能源:引领可持续发展的绿色浪潮
标题:新能源:引领可持续发展的绿色浪潮摘要:本文深入探讨了新能源在当今世界的重要性与发展前景。
通过分析传统能源面临的困境,阐述了新能源的种类、特点及优势。
结合实际案例,展示了新能源在不同领域的广泛应用。
同时,剖析了新能源发展过程中面临的挑战,并提出了相应的解决策略。
最后,展望了新能源未来的发展趋势,强调其在推动全球可持续发展中的关键作用。
一、引言随着全球经济的快速发展和人口的持续增长,能源需求不断攀升。
传统能源如煤炭、石油和天然气等的大量使用,不仅带来了资源枯竭的危机,还引发了严重的环境问题,如气候变化、大气污染和生态破坏等。
在这种背景下,新能源的开发和利用成为了全球关注的焦点。
新能源以其清洁、可再生、可持续等特点,为解决能源危机和环境问题提供了新的途径和希望。
二、传统能源面临的困境(一)资源有限性传统能源是不可再生资源,其储量有限。
随着人类对能源需求的不断增加,传统能源的开采速度越来越快,资源枯竭的问题日益凸显。
例如,石油和天然气的储量预计在未来几十年内将逐渐减少,煤炭的储量也在不断下降。
(二)环境污染严重传统能源的使用会产生大量的污染物,如二氧化碳、二氧化硫、氮氧化物等。
这些污染物的排放导致了全球气候变暖、大气污染加剧、酸雨等环境问题。
例如,煤炭燃烧产生的大量二氧化碳是导致全球气候变暖的主要原因之一。
(三)能源安全问题传统能源的供应主要集中在少数几个国家和地区,这使得全球能源安全面临着很大的风险。
一旦这些国家和地区的能源供应出现问题,将会对全球经济和社会稳定造成严重影响。
例如,中东地区的政治动荡和战争经常会导致全球石油价格的波动,影响全球能源市场的稳定。
三、新能源的种类、特点及优势(一)太阳能1.特点2.太阳能是一种取之不尽、用之不竭的清洁能源。
它通过太阳能电池板将太阳能转化为电能,或者通过太阳能热水器将太阳能转化为热能。
太阳能的分布广泛,不受地域限制,而且使用过程中不会产生任何污染物。
3.优势o可再生性:太阳能是一种可再生能源,其资源丰富,不会枯竭。
新能源材料之超导材料综述论文
新能源材料课程论文题目:超导材料发展综述学院:材料学院班级:复材0901学号:姓名:目录摘要 (2)超导材料的定义 (2)超导材料发展历程 (3)特性及基本参量............................................................4-6 几类重要的超导材料......................................................6-7 超导材料的制备............................................................7-10 超导材料的应用............................................................10-12 展望与建议 (13)参考文献 (13)超导材料发展综述摘要:随着人类工业社会的不断发展,对能源的需求量不断增加.然而一方面由于自然资源的不可再生性,另一方面由于能源的不合理利用造成了大量的能源损耗,导致自然资源日益紧缺并带来了巨大的经济损失..本文主要介绍了一种新型节能减排材料:超导材料----它的特性,制备工艺,应用以及对未来的展望..关键词:超导材料,发展史,特性,制备工艺,实际应用Abstact : With the continuous development of the human industrial society ,the demand for energy has been increasing .However ,the non-renewable characteristic of the natural energy as well as a good deal of the energy loss caused by the irrational use of the energy has lead to a growing energy shortage and has brought about a uncountable economic loss. This passage mainly presents a new energy saving and material : Superconducting Material—it’s characteristic ,it’s preparation process and its vision for the future .一.引言超导材料最独特的性能是电能在输送过程中几乎不会损失。
新能源材料的研究报告进展及其应用论文
新能源材料的研究进展及其应用摘要:新能源材料是指支撑新能源开展的、具有能量储存和转换功能的功能材料或构造功能一体化材料。
新能源是降低碳排放、优化能源构造、实现可持续开展的重要途径,新能源材料是引导和支撑新能源开展的重要根底,对新能源的开展发挥了重要作用,一些新能源材料的创造催生了新能源系统的诞生。
在新能源系统中得到了大量应用。
主要介绍目前在新能源开展过程中发挥重要作用的锂离子电池关键材料、相变储热材料及储氢材料等新能源材料的现状应用及存在问题。
关键词:新能源;储热;储氢Progress in Research of Green EnergyMaterials Abstract: New energy materials refers to the functional material or structure function integrationmaterial supporting the development of new energy, with energy storage and conversion function.Utilizing green energy is one of the ways to decrease carbon em ission, optimize energy structure and realizesustainable development. New energy materials are important for guiding and supporting the development of new energyand are extensively used in the new energy systems. Current status and existing problems of some new energy materialsthatplay important roles in the developing process of new energy, such as relatedmaterials for batteries, and hydrogen energy and fuel cells, phase change thermal storage materials and hydrogen storage materialsare briefly introduced. Key words:new energy; thermal storage;hydrogen storage引言新能源和再生清洁能源技术是21世纪世界经济开展中最具有决定性影响的5个技术领域之一。
新能源材料与器件学科导论论文
学科导论论文一.从资源危机谈起,论新能源材料与器件学科前景1.世界自然资源的减少(从储采比角度浅析资源危机)现象:世界石油资源现状:世界石油资源总量逐步增加根据美国《油气杂志》2005年发表的世界石油储量年终统计,截至2006年1月,全球石油估算探明储量约为1 770.62亿吨,比上年增长1.1%。
观察近七年世界石油储量变化情况,除2003年有较大幅度的提高,增幅高达17.6%,而往后几年世界原油储量增幅明显趋缓,2006年仅为1.1%。
在全球石油估算探明储量中,欧佩克成员国所拥有的原油储量占有较大比例,2006年石油储量比上年增长了1.81%,和去年增幅基本持平,占到世界石油储量的近70%。
世界石油产量稳步上升,但储采比保持升势。
我们看一下从76年到去年为止的储量,达到了1750多亿吨的储量。
去年产量是35.6亿吨。
储采比到目前为止我们可以看到近50。
据英国石油公司(BP)最新一项报告分析,按现在全球石油消费水平,世界石油静态保障年限不足40年。
世界煤炭现状:从煤炭资源储量看,全世界的煤炭资源主要分布在北半球北纬30-70°之间,约占世界煤炭资源总量的70%。
2006年底,世界煤炭探明可采储量为9090.64亿t,其中无烟煤和烟煤的可采储量为4787.71亿t,占总储量的52.67%;褐煤和次烟煤的可采储量为4302.93亿t,占总储量的47.33%。
虽然世界煤炭资源分布很广,但其储量分布极不平衡,且从地区分布看,欧洲和欧亚大陆、亚洲太平洋地区、北美洲的煤炭储量较为集中,非洲、中南美洲、中东的储量很少(见表1)。
2006年底世界煤炭探明储量9090.64亿t,平均储采比由2002年的204a 减小到2003年的192a、2004年的164a、2005年的155a和2006年的147a。
储量位居前5位的国家依次是:美国2466.43亿t(占世界27.1%);俄罗斯1570.10亿t(占17.3%);中国1145.00亿t(占12.6%);印度924.45亿t(占10.2%);澳大利亚785.00亿t(占8.6%)。
新能源材料论文
新能源材料论文随着全球能源需求的不断增长和传统能源资源的日益枯竭,新能源材料的研究与应用变得愈发重要。
新能源材料的开发和利用对于推动清洁能源产业的发展,促进环境保护和可持续发展具有重要意义。
本文将从太阳能光伏材料、风能发电材料和储能材料三个方面进行论述,探讨新能源材料的研究现状、发展趋势以及未来的应用前景。
首先,太阳能光伏材料作为一种绿色清洁能源,具有广阔的应用前景。
目前,硅基太阳能电池是主流产品,但其成本高、能效低、生产过程能耗大等问题亟待解决。
因此,研究人员正在积极探索新型太阳能光伏材料,如钙钛矿材料、有机-无机杂化材料等,以提高太阳能电池的能效和降低成本,推动太阳能产业的可持续发展。
其次,风能发电材料也是新能源领域的重要研究方向。
风能作为一种清洁、可再生的能源资源,具有巨大的开发潜力。
目前,风力发电机主要采用的是玻璃纤维增强塑料和碳纤维复合材料等,但这些材料存在质量轻、强度高、耐腐蚀等问题。
因此,研究人员正在探索新型的风能发电材料,如纳米复合材料、生物基复合材料等,以提高风力发电机的性能,降低生产成本,推动风能产业的发展。
最后,储能材料作为新能源领域的重要支撑,对于解决新能源波动性大、间歇性强的特点具有重要意义。
目前,锂离子电池是主流的储能设备,但其成本高、能量密度低、安全性差等问题亟待解决。
因此,研究人员正在积极探索新型储能材料,如钠离子电池、钠硫电池、超级电容器等,以提高储能设备的能量密度、循环寿命和安全性,推动储能产业的发展。
综上所述,新能源材料的研究与应用对于推动清洁能源产业的发展,促进环境保护和可持续发展具有重要意义。
未来,随着新能源材料技术的不断突破和创新,相信新能源产业将迎来更加美好的发展前景。
让我们共同努力,为新能源材料的研究与应用贡献自己的力量,推动清洁能源事业迈向新的高度。
新能源材料论文
新能源材料展观当今世界,随着人类对传统资源如煤矿等的过度开采和利用,引发了一些环境污染问题,也引起了社会各界人士的广泛关注,如今,能源问题已成为全球关注的重大问题。
各大国在经济竞争的同时,也在竞争着对新能源的开发及利用。
因而,为了使人类更加合理地利用自然资源,同时也为了国家的可持续发展,新能源材料的研发已经成为国家科技战略的基本内容。
新能源是指传统能源之外的各种能源形式,主要包括太阳能、地热能、风能、海洋能以及由可再生能源衍生出的生物燃料和氢所产生的能量。
新能源材料是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料。
新能源材料主要包括:太阳能电池材料、镍氢电池材料、锂离子电池材料、反应堆核能材料。
一、光伏材料太阳能光伏材料是目前我国正大力发展的新能源材料。
光伏材料是能将太阳能直接转换成电能的材料。
光伏材料又称太阳电池材料,只有半导体材料具有这种功能。
可做太阳电池材料的材料有单晶硅、非晶硅、多晶硅、GaAs、GaAlAs、InP、CdS、CdTe等。
其中单晶硅、多晶硅、非晶硅材料已实现批量生产。
我国财政部现已出台十大措施助力光伏产业发展,其中一条是"金太阳工程"。
该工程的重点内容将是以国家财政补贴的形式,支持国内光伏市场的启动,计划在近2-3年的时间内,在全国建立500兆瓦的光伏发电示范项目。
除此之外,光伏电站和光伏并网发电等项目,都将成为“金太阳”工程补贴的重点。
目前我国国内著名的太阳能公司有无锡尚德,江西赛维LDK,保定天威英利,晶澳太阳能,浙江昱辉。
然而太阳能光伏产业依然面临着挑战:如何进一步降低材料成本和提高转换效率,使太阳电池的电力价格与火力发电的电力价格竞争,从而为更广泛更大规模的应用创造条件。
二、反应堆核能材料反应堆核能材料以铀、氘、氚为代表。
其中铀是高能量的核燃料,1千克铀可供利用的能量相当于燃烧2050吨优质煤。
虽然陆地上铀的储藏量并不丰富,且分布不均匀,只有少数国家拥有,然而在海水中,却含有丰富的铀矿资源。
新能源材料论文 南京工业大学
聚合物太阳能电池光伏材料的研究进展班级:复材1002 学号:15 姓名:金奇杰摘要:聚合物太阳能电池中给体材料的能级水平、带隙、光吸收系数、溶解性、成膜性及载流子迁移率是决定器件性能的关键因素。
阐述了聚合物太阳能电池中给体材料的最新研究进展,着重介绍了含有苯并双噻吩的窄带隙D-A类型的共聚物,并对一些给体材料的能级水平优化结果做了简单的总结。
最后指出了未来聚合物太阳能电池给体材料今后的发展方向。
关键词:共轭聚合物;聚合物太阳能电池;窄带隙;苯并双噻吩中图分类号:O633 文献标志码:ARecent Progress of the Photovoltaic Materials in Polymer Solar CellsClass: CM1002 SN:15 Name: Jin QijieAbstract:The performance of devices is depend on the energy levels, bandgap, light absorption coefficient, solubility, film forming ability and carrier mobility of the donor materials in polymer solar cells. The recent progress of the in polymer solar cells is reviewed, and the containing benzo bisthien of D-A copolymers is introduced. The energy le photovoltaic materials vels optimization results of the photovoltaic materials are summarized. Furthermore, the future prospects of the photovoltaic materials in polymer solar cells are pointed out.Key words: conjugated polymer; polymer solar cells; narrow bandgap; benzo bisthien1.引言随着人类对能源需求的增加,能源问题成为当今社会面临的重要问题之一。
能源材料的论文范文
能源材料的论文范文关于能源材料的论文新能源是降低碳排放、优化能源构造、实现可持续开展的重要途径, 新能源材料是引导和支撑新能源开展的重要根底, 新能源系统中得到了大量应用。
概要介绍了目前在新能源开展过程中发挥重要作用的核用锆合金、镍氢动力电池关键材料及氢质高容量储氢材料等新能源材料的现状及存在问题。
新能源; 氢能; 新能源材料新能源材料是指支撑新能源开展的、具有能量储存和转换功能的功能材料或构造功能一体化材料。
新能源材料对新能源的开展发挥了重要作用, 一些新能源材料的创造催生了新能源系统的诞生, 一些新能源材料的应用提高了新能源系统的效率, 新能源材料的使用直接影响着新能源系统的投资与运行本钱。
本文主要介绍核用锆合金、锂离子电池关键材料、镍氢动力电池关键材料及氢能燃料电池关键材料等新能源材料的现状及存在问题。
目前得到实际应用的储氢材料主要有AB5型稀土系储氢合金、钛系AB型合金和AB2 型Laves相合金, 但这些储氢材料的储氢质量分数低于212%。
近期美国能源部将xx年储氢系统的储氢质量分数的目标调整为515% , 目前尚无一种储氢方式能够满足这一要求, 因此必须大力开展新型高容量储氢材料。
目前的研究热点主要集中在高容量金属氢化物储氢材料、配位氢化物储氢材料、氨基化合物储氢材料和MOFs等方面的研究。
在金属氢化物储氢材料方面, 北京有色金属研究总院近期研制出Ti32 Cr46 V22 Ce014合金, 其室温最大储氢质量分数可达3165% , 在70 ℃和011 MPa条件下有效放氢质量分数到达215%[ 35 ] 。
目前研究报道的钛钒系固溶体储氢合金, 大多以纯V 为原料, 合金本钱偏高, 大规模应用受到限制, 因此, 高性能低钒固溶体合金和以钒铁为原料的钛钒铁系固溶体储氢合金的研究日益受到重视。
1997年, Bogdanovic等人发现当以Ti(OBun) 4 为催化剂时, NaAlH4 在中温条件( 100~200 ℃)下可实现可逆吸放氢, 其理论储氢质量分数可达516% , 从而掀起了配位氢化物储氢材料的研究热潮。
新能源材料与器件结课论文
新能源材料与器件结课论文第一篇:新能源材料与器件结课论文新能源汽车的发展及应用--------燃料电池电动汽车随着煤、石油、天然气等传统化石能源的开采和利用,全球可供使用的资源越来越少;另外,在传统能源的使用过程中,能源的过度使用也引起了温室效应等一系列问题。
面临着这些问题,开发新型的、可持续发展的能源技术迫在眉睫,因此,新能源材料技术应运而生。
新能源材料的出现带动了工业的进一步发展,比如新能源汽车就是在这一背景下诞生。
新能源汽车是指采用非常规的车用燃料作为动力来源或者使用常规的车用燃料、采用新型车载动力装置,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。
包括增程式电动汽车、混合动力汽车、氢发动机汽车、燃料电池电动汽车、纯电动汽车、其他新能源汽车等。
一、工作原理普通汽车的工作原理是由发动机将热能转变为机械能的过程,是经过进气、压缩、作功和排气四个连续的过程来实现的,每进行一次这样的过程就叫一个工作循环。
而新能源汽车按照动力的不同,其工作原理也各不相同。
以燃料电池电动汽车为例,其利用氢气和空气中的氧在催化剂的作用下.在燃料电池中经电化学反应产生的电能作为主要动力源驱动的汽车。
燃料电池电动汽车实质上是纯电动汽车的一种,主要区别在于动力电池的工作原理不同。
一般来说,燃料电池是通过电化学反应将化学能转化为电能,电化学反应所需的还原剂一般采用氢气,氧化剂则采用氧气,因此最早开发的燃料电池电动汽车多是直接采用氢燃料,氢气的储存可采用液化氢、压缩氢气或金属氢化物储氢等形式。
二、燃料电池车的结构燃料电池城市客车动力系统主要有燃料电池发动机、动力蓄电DC/DC变换器、能量控制单元、电机及其控制系统组成。
其控制系统为线传操控系统。
燃料电池电动汽车的布置形式大概分为五种:单一的FC驱动结构(由燃料电池DC/DC、控制器、电动机组成)、FC+B系统结构(DC LINK)、FC+UC系统结构(超级电容器)、FC+B+UC(动力电池)、FC+B+FW(超高速飞轮)等几种情况。
新能源材料论文
新能源材料论文新能源材料是指在能源产业中广泛应用的材料,如太阳能电池材料、燃料电池材料、锂离子电池材料等。
随着世界能源危机的日益严重以及对环境污染的担忧,新能源材料的研究和开发变得尤为重要。
本文将介绍太阳能电池材料、燃料电池材料和锂离子电池材料的研究现状和发展趋势。
太阳能电池材料是利用光电效应将太阳能转化为电能的材料。
目前常用的太阳能电池材料包括单晶硅、多晶硅、铁蓝石等。
其中,单晶硅具有高转换效率和稳定性,但成本较高。
多晶硅成本较低,但效率稍低。
铁蓝石是一种新型太阳能电池材料,具有高效率和较低成本的优势,但目前还存在一些挑战,如稳定性和制备工艺等。
未来,太阳能电池材料的研究方向主要集中在提高转换效率、降低成本和提高稳定性方面。
燃料电池材料是指用化学反应将化学能转化为电能的材料。
燃料电池能直接将氢与氧气反应产生电能,且排放物为水,具有环保和高效的特点。
燃料电池材料主要包括氢氧化钴、负载型贵金属催化剂等。
目前,燃料电池材料研究的主要问题是提高催化剂的活性和稳定性,降低贵金属的使用量和成本。
未来,燃料电池材料的发展方向主要集中在研究非贵金属催化剂、提高催化剂的稳定性和活性等方面。
锂离子电池材料是指用锂离子在正负极之间进行电荷和放电的材料,广泛应用于移动电子设备和电动车等领域。
锂离子电池材料主要包括正极材料、负极材料和电解质材料。
目前,常用的锂离子电池材料有锂铁磷酸盐、锰酸锂、氧化钴等。
锂离子电池材料的研究重点主要集中在提高能量密度、延长循环寿命和降低成本等方面。
未来,锂离子电池材料的发展方向主要包括研究新型正负极材料、提高电解质的导电性和稳定性等。
总之,新能源材料的研究和开发对于解决能源危机和环境问题具有重要意义。
太阳能电池材料、燃料电池材料和锂离子电池材料作为新能源领域的重要组成部分,目前正面临着一些挑战和机遇。
未来的发展方向主要包括提高转换效率和稳定性、降低成本和寿命等。
希望通过持续的研究和创新,能够推动新能源材料的发展,实现可持续能源的利用和环境保护的目标。
新能源与材料范文
新能源与材料范文随着全球能源需求的不断增加和传统能源资源的枯竭,寻找替代能源已经成为现代社会的重要课题。
新能源技术的发展,源于对环境问题和能源危机的深刻意识,以及对可持续发展的追求。
而新能源的开发离不开材料科学与工程的支持。
新能源涉及的材料科学与工程包括但不限于:太阳能电池材料、电池材料、储能材料、光伏材料、燃料电池材料等。
这些材料的优劣将直接影响到新能源技术的效率、稳定性和成本等重要指标。
太阳能电池是一种直接将太阳光能转化为电能的技术。
太阳能电池材料的研究与开发是提高太阳能电池效率和降低成本的关键。
目前广泛应用的硅基太阳能电池材料具有稳定性好、寿命长等优点,但其制造成本较高,限制了其在大规模应用中的发展。
因此,研发新型太阳能电池材料成为当前的热点研究方向。
如硒化铜、锌锗硫化物等新型太阳能电池材料已经引起了广泛的关注。
储能材料是实现电能与化学能之间的转换的关键。
目前,储能材料主要包括超级电容器材料和碳纳米管材料。
超级电容器材料具有高能量密度、长循环寿命和快速充放电等特点,被广泛应用于电动汽车、可再生能源和电力系统等领域。
碳纳米管具有优异的电导性能、高比表面积和优秀的力学性能,被认为是一种理想的储能材料。
光伏材料是将光能转化为电能的关键材料。
常见的光伏材料包括硅、镓化合物、有机光伏材料等。
传统的硅光伏材料制造成本高,使用受限,不适合大规模应用。
因此,研究发展新型光伏材料成为提高光伏技术效率和降低成本的关键。
有机光伏材料由于其制备过程简单、成本低、可塑性好等优点,被认为是未来光伏技术的发展方向。
燃料电池是将燃料直接转化为电能的装置,被广泛应用于交通运输、电力供应和航空航天等领域。
燃料电池材料包括电极材料、电解质材料和催化剂材料等。
研发高效的电极材料、稳定的电解质材料和廉价的催化剂材料,可以提高燃料电池的转化效率和稳定性,推动燃料电池技术的发展。
综上所述,新能源与材料的研究与开发是实现可持续能源的关键。
化学专业毕业论文新材料在能源领域的应用与发展
化学专业毕业论文新材料在能源领域的应用与发展化学专业毕业论文新材料在能源领域的应用与发展摘要随着能源需求的增加和传统能源资源的枯竭,新能源的开发和应用已成为全球研究的热点。
新材料作为能源领域的重要一环,在提高能源转换效率、延长能源储存时间、减少环境污染等方面具有巨大潜力。
本论文主要探讨新材料在能源领域的应用与发展,重点介绍了太阳能电池、锂离子电池、燃料电池等能源技术中新材料的应用,以及各类新材料的特性和优势。
通过综合分析和对比研究,为新材料在能源领域的进一步发展提供了一定的参考。
一、引言能源是社会的发展和生活的基础,而能源危机和环境问题已经成为全球关注的焦点。
为了满足能源需求并保护环境,新能源的研究和开发迫在眉睫。
新材料作为新能源技术的关键组成部分,在能源转换、储存和利用方面具有巨大的潜力。
本文将重点分析新材料在太阳能电池、锂离子电池和燃料电池等能源技术中的应用与发展。
二、新材料在太阳能电池中的应用与发展太阳能电池作为一种可再生能源技术,对于减缓能源危机和环境污染具有重要意义。
新材料在提高太阳能电池转换效率和稳定性方面发挥着重要作用。
例如,硅基薄膜太阳能电池采用多晶硅薄膜材料,具有高效率、低成本和灵活性等优点,正在成为太阳能电池的主流技术。
此外,有机太阳能电池和钙钛矿太阳能电池等新型太阳能电池技术也得到了广泛关注。
三、新材料在锂离子电池中的应用与发展锂离子电池作为现代便携式电子设备的主要能源来源,对于提高能源密度和延长电池寿命具有重要意义。
新材料在锂离子电池的正极、负极和电解质等方面的应用得到了广泛研究。
例如,锂离子储能材料领域的新材料,如锂钴酸锂、锂铁磷酸锂和锂硅等,具有高能量密度、长循环寿命和高安全性等优势,正在逐渐取代传统的锂离子电池材料。
四、新材料在燃料电池中的应用与发展燃料电池作为一种高效、清洁的能源转换技术,可以利用氢气、甲烷等可再生资源进行能量转化,并且只产生水蒸气等环境友好物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文根据制作材料的种类和状态的不同将太阳能电池分为以下几种:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体太阳能电池、薄膜型太阳能电池、有机太阳能电池和染料敏化纳米晶太阳能电池,并对每种太阳能电池进行了简要的介绍。
对于不同材料的太阳能电池的优缺点进行了比较和分析,从而为以后改进与发展提供依据。
采用图表的方式,介绍了目前世界各国不同太阳能电池的实际生产量。
由于在材料、结构、工艺等方面的不断改进,现在太阳能电池的价格不到20世纪70年代的1%。
预期今后10年内太阳能电池能源在美国、日本和欧洲的发电成本将可与火力发电竞争。
提高转换效率和降低成本仍然是太阳能电池发展的大趋势。
概括介绍了几种新的技术探索方向,为今后的科学研究指明了方向。
关键词太阳能电池工作原理单晶硅多晶硅化合物有机物薄膜纳米晶引言当今世界,随着人类对传统资源如煤矿等的过度开采和利用,引发了一些环境污染问题,也引起了社会各界人士的广泛关注,如今,能源问题已成为全球关注的重大问题。
各大国在经济竞争的同时,也在竞争着对新能源的开发及利用。
因而,为了使人类更加合理地利用自然资源,同时也为了国家的可持续发展,新能源材料的研发已经成为国家科技战略的基本内容。
新能源是指传统能源之外的各种能源形式,主要包括太阳能、地热能、风能、海洋能以及由可再生能源衍生出的生物燃料和氢所产生的能量。
新能源材料是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料。
新能源材料主要包括:太阳能电池材料、镍氢电池材料、锂离子电池材料、反应堆核能材料。
一.材料介绍1、光伏材料太阳能光伏材料是目前我国正大力发展的新能源材料。
光伏材料是能将太阳能直接转换成电能的材料。
光伏材料又称太阳电池材料,只有半导体材料具有这种功能。
可做太阳电池材料的材料有单晶硅、非晶硅、多晶硅、GaAs、GaAlAs、InP、CdS、CdTe等。
其中单晶硅、多晶硅、非晶硅材料已实现批量生产。
我国财政部现已出台十大措施助力光伏产业发展,其中一条是"金太阳工程"。
该工程的重点内容将是以国家财政补贴的形式,支持国内光伏市场的启动,计划在近2-3年的时间内,在全国建立500兆瓦的光伏发电示范项目。
除此之外,光伏电站和光伏并网发电等项目,都将成为“金太阳”工程补贴的重点。
目前我国国内著名的太阳能公司有无锡尚德,江西赛维LDK,保定天威英利,晶澳太阳能,浙江昱辉。
然而太阳能光伏产业依然面临着挑战:如何进一步降低材料成本和提高转换效率,使太阳电池的电力价格与火力发电的电力价格竞争,从而为更广泛更大规模的应用创造条件。
2、反应堆核能材料反应堆核能材料以铀、氘、氚为代表。
其中铀是高能量的核燃料,1千克铀可供利用的能量相当于燃烧2050吨优质煤。
虽然陆地上铀的储藏量并不丰富,且分布不均匀,只有少数国家拥有,然而在海水中,却含有丰富的铀矿资源。
海水中溶解的铀有45亿吨,然而海水中含铀的浓度很低,1000吨海水只含有3克铀。
要从海水中提取铀,需要处理大量海水,技术工艺十分复杂。
其中海水提铀的主要方法是吸附法、共沉法、气泡分离法以及藻类生物浓缩法等。
氘和氚都是氢的同位素。
它们的原子核在一定的条件下,互相碰撞聚合成较重的原子核 --氦核,同时释放巨大的核能。
氘-氚反应时能放出1780万电子伏特的能量。
然而氘 -氚的核聚变反应,需要在上千万度乃至上亿度的高温条件下进行。
这样的反应,已经在氢弹上得以实现。
但是用于生产目的的受控热核聚变在技术上还有许多难题,需待科学家们去解决。
3、镍氢电池材料镍氢电池由氢氧化镍正极、储氢合金负极、电解液等组成。
储氢合金负极材料主要包括AB5型稀土镍系储氢合金、AB2型储氢合金、Laves 相合金。
镍氢电池是现代电子产品中使用最为广泛的绿色环保电池之一,具有单体容量大、放电特性平稳、通用性强、发热量小等优点。
缺点是体积大、自身重量大。
镍氢电池标称电压1.2V,在充足电的情况下可达1.35V,与普通AA类碱性电池电压相近,基本上可以通用,镍氢电池的放电特性非常好,放电曲线也非常平滑,到电力快要消耗完时,电压突然跌落,这一点接近于镍铬电池,但是瞬间放电电流不如镍铬电池。
另外,镍氢电池采用无汞设计,这对于环境保护具有重大意义。
同镍铬电池一样,镍氢电池也采用化学物质的可逆反应来实现充电与放电过程。
所以在充放电过程中,电池内部会产生大量气体,电池内部的压力相对较大,因此,镍氢电池都设计有排气用的排气孔,防止因内部压力过大发生爆炸。
目前我们所接触到的GP系列电池,之所以看不到排气孔,是因为电池顶部安装有一个圆形的塑料片,用来防止异物堵塞排气孔和防止正极帽同负极的外壳短路。
4、锂离子电池材料目前锂离子电池的负极材料以碳质材料为主,包括中间性炭微球和改性天然石墨等,锂离子电池正极材料主要为LiCo02,同时LiMn204,LiFePO4和锂镍钴锰氧化物等新型正极材料也在开发和应用过程中。
锂离子电池的优点有:工作电压高;比能量高;循环寿命长;自放电小;记忆效应小;对环境无污染。
我们平时所使用的手机电池、笔记本电池都是锂离子电池,锂离子电池产业在我国也发展得十分繁荣。
新能源材料的研发是全球科研的趋势,作为当代大学生,应当抓住这个机遇,积极投身新能源事业,通过提高新能源的技术工艺,克服生产难关,来达到绿色、环保、和谐的科技创新之路。
二.太阳能电池的种类及发展方向根据材料的种类和状态的不同,太阳能电池主要有以下几种:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体太阳能电池、薄膜型太阳能电池、有机太阳能电池和染料敏化纳米晶太阳能电池,下面分别予以个别简单介绍。
单晶硅太阳能电池单晶硅太阳能电池是开发得最早的一种太阳能电池。
硅的禁带宽度为1.leV,是间接迁移型半导体,本来不是制作太阳能电池的最合适材料。
但是由于硅蕴藏量非常丰富,已广泛应用于微电子工业,有很完善的技术基础,有利干太阳能电池的开发应用。
单晶硅太阳能电池具有比较高的转换效率,规模生产的电池组件的效率可以达到12—16%。
与其他种类的太阳能电池相比,单晶硅电池的转换效率为最高。
作为原料的高纯单晶硅片多是从电子工业半导体器件加工中退出的产品,以往在市场上可大量地以较便宜的价格得到。
最新的动向是向超薄、高效发展,不久可有100μm左右甚至更薄的单晶硅太阳能电池问世。
德国的研究已经证实40μm厚的单晶硅电池的效率达到20%。
单晶硅太阳能电池以半导体材料制成大面积P—N结进行工作,单晶硅太阳能电池一般采用同质P—N结的结构,即在面积约10cm2的P型硅片上用扩散法制出一层很薄的经过重掺杂的N型层。
在N型层上面制作金属栅线,形成正面接触电极;在背面制作金属膜,作为欧姆接触电极。
为减少光的反射损失,在整个表面覆盖一层膜,即减反射膜。
当阳光从电池表面入射到内部时,入射光分别被各区的价带电子吸收并激发到导带,产生电子一空穴对。
势垒的作用将电子扫人N区,而将孔穴扫入P区。
各区产生的光载流子在内建电场的作用下,反方向越过势垒,形成光生电流,实现光一电转换过程。
如图1所示为P—N结光电转换的原理图。
图1 P—N结光电转换的原理图单晶硅太阳能电池的实验室实现的转换效率达到24.7%,为澳大利亚新南威尔士大学创造并保持,是目前除了GaAs以外效率最高的太阳能电池产品。
与GaAs不同,高效单晶硅电池实现了规模化生产。
多晶硅太阳能电池单晶硅电池以其转换效率高、质量稳定等特点在国际市场上得到了广泛应用。
但单晶硅对原料的纯度要求高,生产成本居高不下,制约了单晶硅在普通领域的广泛推广和应用。
多晶硅太阳能电池以其转换效率较高(19.8%)、性能稳定和成本适中而得到越来越广泛的应用。
多晶硅太阳能电池对原料的纯度要求低,原料的来源渠道也较为广阔,使生产成本大大降低。
目前多晶硅太阳能电池已超越单晶硅的产量,占据市场的主导地位。
多晶硅太阳能电池使用的材料多半是含有大量单晶颗粒的集合体,或用废次单晶硅材料和冶金级硅材料熔化浇铸而成,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。
这种硅锭可铸成立方体,以便切片加工成方形太阳能电池片,可提高材料利用率和方便组装。
多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,电耗低,总的生产成本较低。
多晶硅太阳能电池与单晶硅太阳能电池的不同之处在于电池的表面存在多种界面,与单晶硅的(100)晶面相比,得到理想的绒面结构比较困难,因此要有多种形式的减反射处理。
非晶硅太阳能电池非晶硅是硅和氢(约10%)的一种合金,它对阳光的吸收系数高,其光谱响应的峰值与太阳光谱的峰值很接近。
1μm厚度就能充分吸收太阳光,厚度不足单晶硅的1/100。
活性层对硅材料的需求量大大减少,可明显节省昂贵的半导体材料。
同时沉积温度低(约200℃),减少能源消耗,并可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产。
另外,由于非晶硅材料光学带隙相对较宽,所以比单晶硅有更好的温度特性。
在同样的工作温度下,非晶硅太阳能电池的饱和电流远小于单晶硅太阳能电池,而短路电流的温度系数却高于单晶硅电池的1倍,这十分有利于在较高温下保持较高的开路电压和曲线因子。
在盛夏,太阳能电池表面温度经常达到60~70℃,具有良好的温度特性十分重要。
据报道,在空间应用时,由于辐照和高温的原因,初始稳定效率为9%的非晶硅太阳能电池,其性能优于初始效率为14%的单晶硅太阳能电池。
缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长波区域不敏感,限制了非晶硅电池的效率,且其效率会随着光照时间的延续而衰减(即光致衰退),使电池性能不稳定。
目前非晶硅电池仍处在发展之中。
与晶体硅太阳能电池不同,非晶硅薄膜太阳能电池在制备过程中可实现单体电池的内连接,即非晶硅电池可直接制成所需的电参数的组件形式。
非晶硅太阳能电池的转换效率和稳定性都不够好。
非晶硅及其合金的光暗电导率随着光照的时间加长而减少,经过170℃—200℃的退火处理,又可以恢复到光照之前的值。
这一现象首先由Staebler和Wronski发现,被称为S—K效应。
S—K 效应使非晶硅太阳能电池的转换效率由于光照时间加长而衰退,长期以来成为非晶硅太阳能电池应用的主要障碍。
非晶硅的制备多用硅烷作为原料,主要可通过化学气相沉积工艺。
目前生产非晶硅太阳能电池多采用等离子增强化学气相沉积,可用单室沉积,也可多室沉积。
掺杂气主要有硼烷和磷烷。
有机太阳能电池有机太阳能电池具有柔韧性和成本低廉的优势,是近年出现的新型太阳电池。
与结构工艺复杂、成本高昂、光电压受光强影响波动大的传统半导体固结太阳电池相比,有机太阳能电池制备工艺简单,可采用真空蒸镀或涂敷的方法制备成膜,且可以制备在可弯曲折香的衬底上形成柔性太阳能电池。