1.3纳米微粒的物理特性

合集下载

纳米微粒的物理特性

纳米微粒的物理特性


(2)原因

颗粒小; 表面能高、比表面原子数多; 表面原子近邻配位不全,活性大; 体积远小于大块材料; 纳米粒子熔化时所需增加的内能小得 多,纳米微粒熔点急剧下降。
2、开始烧结温度降低


(1)烧结温度:所谓烧结温度是指在低于熔点的温度 下使粉末互相结合成块,密度接近常规材料的最低加 热温度。 (2)原因:纳米微粒尺寸小,表面能高,压制成块材 后的界面具有高能量,在烧结中高的界面能成为原子 运动的驱动力,有利于界面中的孔洞收缩,空位团的 湮没,因此,在较低的温度下烧结就能达到致密化的 目的,即烧结温度降低。

2.蓝移现象 与大块材料相比,纳米微粒的吸收带普遍存在 “蓝移”现象,即吸收带移向短波方向。 例: 纳米SiC颗粒:峰值红外吸收频率是814cm-1 大块SiC固体:峰值红外吸收频率是794cm-l。 纳米氮化硅颗粒:峰值红外吸收频率是 949cm-l 大块Si3N4固体:峰值红外吸收频率是935cm-l


激子:在光跃迁过程中,被激发到导带中的电子和在 价带中的空穴由于库仑相互作用,将形成一个束缚 态,称为激子。 分类:通常可分为万尼尔(Wannier)激子和弗伦 克尔(Frenkel)激子。 万尼尔激子:电子和空穴分布在较大的空间范围,库 仑束缚较弱,电子“感受”到的是平均晶格势与空穴的 库仑静电势,这种激子主要是在半导体中; 弗伦克尔激子:电子和空穴束缚在体元胞范围内,库 仑作用较强,这种激子主要是在绝缘体中。



隐身:就是把自己隐蔽起来,让别人看不见、测不到。 隐型飞机就是让雷达探测不到,它是在机身表面涂 上红外与微波吸收纳米材料来实现的,因为雷达是通 过发射电磁波再接收由飞机反射回来的电磁波来探测 飞机的。 例:1991年海湾战争中,美国F117A型飞机的隐身 材料就是含有多种纳米粒子对不同的电磁波有强烈的 吸收能力。在42天战斗中,执行任务的的飞机1270架 次,摧毁了伊拉克95%的军事设施而美国战机无一受 损。 科索沃战争中B2隐形轰炸机轰炸我南联盟大使馆

纳米材料物理热学性质

纳米材料物理热学性质

纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。

由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。

纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。

可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

一热容1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。

1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。

2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。

结合能的确比相应块体材料的结合能要低。

通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。

1.3纳米微粒的物理特性

1.3纳米微粒的物理特性
•太阳能热水器的真空集热管 吸热镀膜涂层,该 涂层应具有较高的太阳吸收比和较低的红外发 射比,镀膜层太薄影响吸收热量;太厚则红外 发射率增高,保温效果差。而目前生产工艺上 采用的干涉膜和渐变膜并无优劣之分,只是工 艺不同而己,用户很难区别。
隐身:就是把自己隐蔽起来,让别人看不见、测不到。
隐型飞机就是让雷达探测不到,它是在机身表面涂上 红外与微波吸收纳米材料来实现的,因为雷达是通过 发射电磁波再接收由飞机反射回来的电磁波来探测飞 机的。
3、原因
(1)粒子的表面能和表面张力随粒径的减小而 增加
(2)纳米微粒的比表面积大 (3)由于表面原子的最近邻数低于体内而导致
非键电子对的排斥力降低
必然引起颗粒内部特别是表面层晶格的畸变。
例:有人用EXAFS技术研究Cu、Ni原子团发 现,随粒径减小,原子间距减小。Staduik等 人用X射线分析表明,5nm的Ni微粒点阵收缩 约为2.4%。
四、 纳米微粒的光学性质
背景:纳米粒子的一个最重要的标志是尺寸与物 理的特征量相差不多。当纳米粒子的粒径与超 导相干波长、玻尔半径以及电子的德布罗意波 长相当时,小颗粒的量子尺寸效应十分显著。 与此同时,大的比表面使处于表面态的原子、 电子与处于小颗粒内部的原子、电子的行为有 很大的差别,这种表面效应和量子尺寸效应对 纳米微粒的光学特性有很大的影响,甚至使纳 米微粒具有同样材质的宏观大块物体不具备的 新的光学特性。主要表现为以下几方面。
2.蓝移现象
与大块材料相比,纳米微粒的吸收带普遍存在 “蓝移”现象,即吸收带移向短波方向。
例:纳米SiC颗粒和大块SiC固体的峰值红外吸 收频率分别是814cm-1和794cm-l。纳米颗粒 的红外吸收频率较大块固体蓝移了20cm-1。纳 米氮化硅颗粒和大块Si3N4固体的峰值红外吸收 频率分别为949cm-l和935cm-l,纳米氮化硅 颗粒的红外吸收频率比大块固体蓝移了14cm-1。

纳米材料物理化学性质

纳米材料物理化学性质

第四章纳米材料的物理化学性能纳米微粒的物理性能第一节热学性能※1.1. 纳米颗粒的熔点下降由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。

金的熔点:1064o C;2nm的金粒子的熔点为327o C。

银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。

铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。

铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。

※1.2. 开始烧结温度下降所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。

纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。

※1.3. NPs 晶化温度降低非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。

※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。

第二节电学性能2.1 纳米金属与合金的电阻特性1. 与常规材料相比,Pd纳米相固体的比电阻增大;2. 比电阻随粒径的减小而逐渐增加;3. 比电阻随温度的升高而上升4. 随粒子尺寸的减小,电阻温度系数逐渐下降。

电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。

随着尺寸的不断减小,温度依赖关系发生根本性变化。

当粒径为11nm时,电阻随温度的升高而下降。

5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似).电子在晶体中传播由于散射使其运动受阻,而产生电阻。

※纳米材料的电阻来源可以分为两部分:颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射•纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。

纳米材料的基本概念与性质

纳米材料的基本概念与性质
虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及 超导电性与宏观特性有着显著的不同。
对介于原子、分子与大块固体之间的纳米晶体,大块材料 中连续的能带将分裂为分立的能级;能级间的间距随颗粒 尺寸减小而增大。
如导电的金属在纳米颗粒时可以变成绝缘体;当温度为1K, Ag纳米粒子直径小于14nm,Ag纳米粒子变为绝缘体。
合成了一维氮化硅纳米 线体。
氮化硅纳米丝
31
1.2 纳米微粒的基本性质
1.电子能级的不连续性 - kubo理论 2. 量子尺寸效应 3. 小尺寸效应 4. 表面效应 5. 宏观量子隧道效应
1.2.1电子能级的不连续性 - kubo理论
久保(Kubo)理论是关于金属粒子电子性质的理 论.它是由久保及其合作者提出的,以后久保和其他 研究者进一步发展了这个理论.1986年Halperin对这一 理论进行了较全面归纳,用这一理论对金属超微粒子 的量子尺寸效应进行了深入分析。
碳纳米管的发现
❖ 饭岛澄男(Iilijima Sumio)分别在1991 和1993年发表论文
❖ “Helical microtubules of graphitic carbon. Nature 354, 56 - 58 (07 November 1991) ”
❖ “Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 - 605 (17 June 1993) ”。
制备C60常用的方法:
采用两个石墨碳棒在惰性气体(He,Ar)中进行直流 电弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥 发物中除了有C60外,还含有C70,C20等其它碳团簇。可 以采用酸溶去其它团簇,但往往还混有C70。

简述纳米微粒的独特的物理化学性能。

简述纳米微粒的独特的物理化学性能。

简述纳米微粒的独特的物理化学性能。

纳米微粒一般为球形或类球形,除了球形外,纳米微粒还具有各种其他形状,这些形状的出现与制备方法密切相关。

1.热学性能:纳米微粒同常规物体相比,熔点、开始烧结温度和
晶化温度均低得多。

2.光学性能:a蓝移和红移现象b宽频带强吸收(量子尺寸效应,表面效应)c量子限域效应d纳米微粒的发光
3.纳米微粒悬浮液和动力学性质: a布朗运动(布朗运动是由于介质分子热运动造成的。

胶体粒子(纳米粒子)形成溶胶时会产生规则的布朗运动。

)b 扩散(扩散现象是在有浓度差时,由于微粒热运动(布朗运动)而引起的物质迁移现象。

微粒愈大,热运动速度愈小。

一般以扩散系数来量度扩散速度。


4.表面活性及敏感特性:纳米微粒具有大的比表面积,高的表面活性,及与气体相互作用强等原因,纳米微粒对周围环境十分敏感,如光、温、气氛、湿度等,因此可用作各种传感器,如温度、气体、光、湿度等传感器
5.光催化性能:半导体的光催化活性主要取决导带与价带的氧化还原电位,价带的氧化-还原电位越正,导带的氧化-还原电位越负,则光生电子和空穴的氧化及还原能力就越强,从而使光催化降解有机物的效率大大提高。

纳米材料与技术-纳米微粒的基本特性

纳米材料与技术-纳米微粒的基本特性

第三章纳米微粒的基本特性一、纳米微粒的结构二、纳米微粒的基本特性热学、磁学、光学、动力学、表面活性、光催化性能一、纳米微粒的结构纳米态:物质的第?态!区别于固、液、气态,也区别于“等离子体态”(物质第四态)、地球内部的超高温、超高压态(物质第五态),与“超导态”、“超流态”也不同。

纳米态的物质一般是球形的。

物质在球形的时候,在等体积的条件下,它的界面最小、能量最低、自组织性最强、对称性也最高,有着很好的强关联性。

超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2nm)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体、十面体、二十面体等),它既不同于一般固体,又不同于液体,是一种准固体。

在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态。

尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。

纳米微粒一般为球形或类球形,可能还具有其他各种形状(与制备方法有关)。

纳米微粒的结构一般与大颗粒的相同,内部的原子排列比较整齐,但有时也会出现很大的差别:高表面能引起表层(甚至内部)晶格畸变。

二、纳米微粒的基本特性1. 纳米微粒的热学性质固态物质在其形态为大尺寸时,其熔点是固定的;超细微化后发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。

➢大块Pb的熔点为600K,而20nm的的球形Pb微粒熔点降低288K。

➢ Ag的熔点:常规粗晶粒为960︒C;纳米Ag粉为100︒C ➢ Cu的熔点:粗晶粒为1053︒C;粒度40nm时为750︒C纳米微粒的熔点降低:由于颗粒小,纳米微粒的表面能高、比表面原子数多,这些表面原子近邻配位不全、活性大,因此纳米粒子熔化时所需增加的内能比块体材料小得多,使纳米微粒的熔点急剧下降。

✍应用:降低烧结温度。

纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮没,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。

纳米微粒的物理特性公开课一等奖优质课大赛微课获奖课件

纳米微粒的物理特性公开课一等奖优质课大赛微课获奖课件
1073K, 1273K 1423K。
10/10/
1,8 nm; 2,15 nm;3,35 nm 10
第10页
4.2磁学性能
纳米微粒小尺寸效应,量子尺 寸效应,表面效应等使它含有常规 晶粒材料所不含有磁特性,归纳一 下有:
10/10/
11
第11页
⑴超顺磁性
顺磁体:指磁化率是数值较小正数 物体,它随温度T成正比关系。
10/10/
发生蓝移
发生红移
38
第38页
这是由于光吸取带位置是由影响峰位蓝 移原因和红移原因共同作用结果。
假如蓝移影响不小于红移影响,吸取带 蓝移。
反之红移。
10/10/
39
第39页
❖ 伴随粒径减小,量子尺寸效应会造成吸 取带蓝移 但是粒径减小同时,颗粒内部内应力会 增长。 内应力 p = 2γ/r
纳米SiC颗粒红外吸取频率较大块固体蓝移了 20cm-1。
纳米Si3N4颗粒红外吸取频率峰值为:949cm-1 大块Si3N4固体为:935cm-1
相对移动了14cm-1。
10/10/
33
第33页
②可见光光区吸取蓝移
❖ 不同粒径CdS纳米微粒吸取光谱
由图能够看出: 伴随微粒尺寸变小吸 取边向短波方向移动 (即蓝移)。
10/10/
35
第35页
对纳米微粒吸取带“蓝移”解释有几种说法, 归纳起来有两个方面:
⑴ 量子尺寸效应:由于颗粒尺寸下降能隙变宽, 这就造成光吸取带移向短波方向。
Ball等对这种蓝移现象给出了普适性解释:已被 电子占据分子轨道能级与未被占据分子轨道能级 之间宽度(能隙)随颗粒直径减小而增大,这是 产生蓝移主线原因。
10/10/

纳米颗粒的物理特性介绍

纳米颗粒的物理特性介绍
第三章 纳米微粒的 物理特性
1
纳米微粒一般为球形或类球形,除了球形 外,纳米微粒还具有各种其他形状,这些 形状的出现与制备方法密切相关。
例如: • 由气相蒸发法合成的铬微粒,当铬粒子尺寸 小于 20nm时,非球形,并形成链条状连结在— 起。-Cr粒子的二维形态为正方形或矩形 ; • 镁的纳米微粒呈六角条状或六角等轴形。 • Kimoto 和Nishida观察到银的纳米微粒具有五 边形10面体形状。
28
表面活性及敏感特性
随纳米微粒粒径减小,比表面积增大,表面原子 数增多及表面原子配位不饱和性,导致大量的悬键 和不饱和键等,这就使得纳米微粒具有高的表面活 性。用金属纳米微粒作催化剂时要求它具有高的表 面活性,同时还要求提高反应的选择性。金属纳米 微粒粒径小于5nm时,使催化活性和反应的选择性 呈特异性行为。
22
光学性能
决定了材料的吸收系数,粒径越小, |U(0)|2越大, f微晶 /V也越大,则激子带的吸 收系数随粒径下降而增加,即出现激子增 强吸收并蓝移,这就称作量子限域效应。 纳米半导体微粒增强的量子限域效应使它 的光学性能不同于常规半导体。
23
光学性能
纳米微粒的发光
当纳米微粒的尺寸小到一定值时,可在一定波 长的光激发下发光。但对于发光原因的解释不尽统 一,且依据不同物质有所不同。如: • 硅纳米微粒发光,Tabagi 认为是载流子的量子限 域效应引起的;Brus则认为是硅粒径小到某一程度 时,结构的平移对称性消失,导致发光。 • 掺Cd SexS1-x纳米微粒玻璃在530nm波长光的激发 下会发射荧光,是因为半导体具有窄的直接跃迁的 带隙,在光激发下电子容易跃迁引起发光。
• 纳米微粒颗粒小;
• 表面能高、比表面原子数多; • 表面原子近邻配不全,活性大; • 体积远小于大块材料; • 纳米粒子熔化时所需增加的内能 小。

纳米材料有哪四个特性

纳米材料有哪四个特性

纳米材料有哪四个特性纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1nm~100nm)或由他们作为基本单元构成的材料。

这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。

例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。

纳米材料的基本特性由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

纳米微粒尺寸小,表面能高,位于表面原子占相当大的比例。

随着粒径减小,表面原子数迅速增加。

这是由于粒径小,表面积急剧变大所致。

由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。

例如:金属的纳米粒子在空气中会燃烧,无机的纳米粒空子暴露在空气中会吸附并与气体进行反应。

纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。

随着粒径变小,表面原子所占百分数将会显著增加。

当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。

由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。

2、小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。

例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变等由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。

《纳米材料与器件》课程教学大纲三号黑体

《纳米材料与器件》课程教学大纲三号黑体

《纳米材料与器件》课程教学大纲(三号黑体)一、课程基本信息(四号黑体)二、课程目标(四号黑体)(一)总体目标:(小四号黑体)本课程是为材料化学专业和全校非材料类专业学生开设的一门专业选修课程。

通过课程的开设,使学生在了解纳米技术在工程实践中最新发展趋势的基础上,全面学习纳米材料的基本概念与性质,重点掌握纳米材料的制备技术,熟悉纳米材料的性能表征手段,逐步建立起纳米材料的结构、性能、制备、表征、应用这一系统的知识体系,最终使学生具有能够根据实践需求完成对纳米材料设计的能力,为从事这方面的学习与工作奠定坚实的基础。

(二)课程目标:(小四号黑体)《纳米材料与器件》课程系统建立纳米材料的结构、性能、制备、表征、应用这一系统的知识体系。

本课程目标如下:课程目标1:纳米纳米材料的基本概念与性质,课程目标2:纳米材料的制备方法;课程目标3:纳米材料的表征方法;课程目标4:纳米材料工程实践中的应用。

课程目标L通过绪论2学时的学习,使学生了解材料发展的历史,全面掌握纳米材料的定义、纳米效应,加深了解材料尺寸对材料性能的影响,从构效关系的角度思考材料性能改善的特定路径。

课程目标2:在已有学习常规材料制备方法的基础上,深入理解纳米材料制备过程控制的核心问题,把握纳米材料的团聚的分类、成因、前提、解决方法,深入体会不同制备方法的原理,学会用过程分析的理念去认知材料的制备过程。

课程目标3:结构决定性能,借助仪器分析,表征纳米材料组成、尺寸、形貌、一致性、缺陷等特征结构,结合性能评估深入理解材料的构效关系。

课程目标4:《纳米材料与器件》是材料类工科选修课,理论学习的目标是工程实践。

因此,本课程作为教学的重要环节,重点突出纳米材料在能源、环保、日常生活中的重要应用,将纳米材料的制备、表征、应用贯穿于工程实践当中,学以致用,激发学生的工程实践探索兴趣。

(要求参照《普通高等学校本科专业类教学质量国家标准》,对应各类专业认证标准,注意对毕业要求支撑程度强弱的描述,与“课程目标对毕业要求的支撑关系表一致)(五号宋体)(三)课程目标与毕业要求、课程内容的对应关系(小四号黑体)(大类基础课程、专业教学课程及开放选修课程按照本科教学手册中各专业拟定的毕业要求填写“对应毕业要求”栏。

第三章---纳米微粒的结构与物理特性

第三章---纳米微粒的结构与物理特性
纳米 Al2O3 8nm,15nm和35nm 粒径的Al2O3粒子快速长大的开始温度 分别为 1073K、1273K和1423K.
图9: 不同原始粒径(d0)的纳米Al2O3微粒的粒径随退火温 度的变化.图中.○:d0=8nm; △:d0=15nm; ⊙:d0=35nm
3.2.2 磁学性
人们发现鸽子,蝴蝶,蜜蜂等生物中存在超微磁性颗粒 大小为 人们发现鸽子,蝴蝶,蜜蜂等生物中存在超微磁性颗粒(大小为 20nm的磁性氧化物 ,这使得这些生物在地磁场中能辨别方向,具有 的磁性氧化物), 的磁性氧化物 这使得这些生物在地磁场中能辨别方向, 回归的本领。 回归的本领。
3.1.1纳米微粒的结构与形貌 纳米微粒的结构与形貌 二、其它各种形状
例:1、镁的纳米微粒呈六角形状或六角等轴形 、 2、银的纳米微粒具有五边形、10面体形状(P71) 、银的纳米微粒具有五边形、 面体形状 面体形状( ) 3、铬粒子 、
(a) (b) 例如;由气相蒸发法合 成的铬微粒,当铬粒子尺 寸小于20nm时,为球形并 形成链条状连接在一起.对 于尺寸较大的粒子, -Cr α 粒子的二维形态为正方形 正方形 或矩形(见图b、c),δ或矩形 Cr粒子的晶体习态多为24 图3 纳米铬粒子的电镜照片. 面体,当入射电子束平行 -Cr粒子;(b)尺寸为50nm的 α -Cr粒子 于〈111〉方向时,粒子的 (a)尺寸小于20nm的,α 六边形.见图3d 界面投影为六边形 六边形 所示.
例:
材料
烧结温度
常规 Al2O3 纳米 Al2O3 常规Si3N4 纳米Si3N4
2073-2173K 1423---1773K 2273K 673---773K
3.2.1热学性 热学性
纳米TiO2在773K加热呈现出明显的致密化,而晶粒仅有微小的增加, 加热呈现出明显的致密化, 纳米 加热呈现出明显的致密化 而晶粒仅有微小的增加, 致使纳米微粒TiO2在比大晶粒样品低 在比大晶粒样品低873K的温度下烧结就能达到类似的 致使纳米微粒 的温度下烧结就能达到类似的 硬度.见图 见图8. 硬度 见图

第二章-纳米微粒的物理化学性质-2012

第二章-纳米微粒的物理化学性质-2012

1990年,日本佳能研究中心的Tabagi发现,粒径小 于6nm的硅在室温下可以发射可见光.
(4)纳米微粒的发光
图示为室温下,紫外光激发引起的纳米硅的发光谱.可以看 出,随粒径减小,发射带强度增强并移向短波方向.当粒径 大于6nm时,这种光发射现象消失.
(4)纳米微粒的发光
Tabagi认为,硅纳米微粒 的发光是载流子的量子限 域效应引起的.

(5)纳米微粒分散物系的光学性质
(i)散射光强度(即乳光强度)与粒子的体积平方成正比.对低分子 真溶液分子体积很小,虽有乳光,但很微弱.悬浮体的粒子大 于可见光,故没有乳光,只有反射光,只有纳米胶体粒子形成 的溶胶才能产生丁达尔效应. (ii)乳光强度与入射光的波长的四次方成反比,故人射光的波长愈 短,散射愈强.例如照射在溶胶上的是白光,则其中蓝光与紫 光的散射较强.故白光照射溶胶时,侧面的散射光呈现淡蓝色, 而透射光呈现橙红色.
(iii)散相与分散介质的折射率相差愈大,粒子的散射光愈强.所以 对分散相和介质问没有亲和力或只有很弱亲和力的溶胶 (憎液 溶胶),由于分散相与分散介质间有明显界限,两者折射率相差 很大,乳光很强,丁达尔效应很明显.
(iV)乳光强度与单位体积内胶体粒子数N成正比。
2.2.3
纳米微粒的电学性能
1.纳米晶金属的电导
4
下图为金的熔点与金纳米粒子的尺度关系图。随金粒 子尺寸的减小,熔点降低。金的常规熔点为1064℃, 当颗粒尺寸减小到2nm时,熔点仅为500℃左右。
纳米材料基础与应用
5
表2-2
物质种类
几种材料在不同尺度大小下的熔点
颗粒尺寸:直径(nm)或 总原子数(个) 熔 点(K)
金(Au)
锡(Sn) 铅(Pb) 硫化镉 (CdS)

纳米材料导论

纳米材料导论

材料科学1、纳米材料导论(选修课)绪论0.1纳米科技的兴起1959年,美国著名物理学家(1965年诺贝尔物理学奖获得者)费因曼教授(R.P.Feynman)曾指出:“如果有一天人类能够按人的意志安排一个原子和分子,那将会产生什么奇迹?”今天,这个美好的愿望已经开始走向现实.目前,人类已经能够制备出包括有几十个到几万个原子的纳米颗粒,并把它们作为基本单元构造一维量子线、二维量子面和三维纳米固体,创造出相同物质传统材料完全不具备的奇特性能。

这就是面向21世纪的纳米科学技术。

0.2纳米材料的研究历史人类对物质的认识分为宏观和微观两个层次。

宏观是指研究的对象尺寸很大,并且下限有限,上限无限(肉眼可见的是最小宏观,而上限是天体、星系)。

到目前为止,人类对宏观物质结构及运动规律已经有相当的了解,一些学科领域都已建立,如力学、地球物理学、天体物理学、空间科学等。

微观指原子、分子,以及原子内部的原子核和电子,微观有上限而无法定义下限。

19世纪末到20世纪初,人类对微观世界的认识已延伸到一定层次,时间上达到纳秒、皮秒和飞秒数量级。

建立了相应的理论,例如原子核物理、粒子物理、量子力学等。

相对而言,在原子、分子与宏观物质的中间领域,人类的认识还相当肤浅,被誉为有待开拓的“处女地".近20年以来,人类已经发现,在微观到宏观的中间物质出现了许多既不同于宏观物质,也不同于微观体系的奇异现象。

下面对纳米材料的研究历史作简要介绍。

1 000年以前。

当时,中国人利用燃烧的蜡烛形成的烟雾制成碳黑,作为墨的原料或着色染料,科学家们将其誉为最早的纳米材料。

中国古代的铜镜表面防锈层是由Sn02颗粒构成的薄膜,遗憾的是当时人们并不知道这些材料是由肉眼根本无法看到的纳米尺度小颗粒构成.1861年,随着胶体化学(colloidchemistry)的建立,科学家们开始对1—lOOnm的粒子系统进行研究。

但限于当时的科学技术水平,化学家们并没有意识到在这样一个尺寸范围是人类认识世界的一个崭新层次,而仅仅是从化学角度作为宏观体系的中间环节进行研究。

纳米材料导论第一章纳米材料的基本概念与性质

纳米材料导论第一章纳米材料的基本概念与性质
17
1.1.5 纳米复合材料
❖ 0-0复合:不同成分、不同相或者不同种类的纳米粒子 复合而成的纳米固体;
❖ 0-3复合:把纳米粒子分散到常规的三维固体中;
❖ 0-2复合:把纳米粒子分散到二维的薄膜材料中.
均匀弥散:纳米粒子在薄膜中均匀分布; 非均匀弥散:纳米粒子随机地、混乱地分散在薄膜基体中。
18
高韧性陶瓷材料、
人体修复材料和抗癌制剂等。
12
1.1.3纳米粒子薄膜与纳米粒子层系
定义:含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的 薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或 多层膜 具有特殊的物理性质和化学性质
13
纳米级第二相粒子沉积镀层举例
(Ni-P)-纳米Si3N4复合层 用具有很好悬浮性能的纳米Si3N4固体微粒作为镀液的第二相 粒子,通过搅拌使其悬浮在镀液中,用电刷镀的方法使Ni-P合金与 纳米Si3N4微粒共沉积于基体表面.它具有沉积速度快、镀层硬 度高和耐磨性好等优异的性能.
27
1.2.1电子能级的不连续性 - kubo理论
久保(Kubo)理论是关于金属粒子电子性质的理 论.它是由久保及其合作者提出的,以后久保和其他 研究者进一步发展了这个理论.1986年Halperin对这 一理论进行了较全面归纳,用这一理论对金属超微粒 子的量子尺寸效应进行了深人的分析。
久保理论是针对金属超微颗粒费米面附近电子能 级状态分布而提出来的,它与通常处理大块材料费米 面附近电子态能级分布的传统理论不同,有新的特点, 这是因为当颗粒尺寸进入到纳米级时由于量子尺寸效 应原大块金属的准连续能级产生离散现象.
采用两个石墨碳棒在惰性气体(He,Ar)中进行直流电 弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥发 物中除了有C60外,还含有C70,C20等其它碳团簇。可以 采用酸溶去其它团簇,但往往还混有C70。

第一章 纳米材料的基本概念和性质

第一章 纳米材料的基本概念和性质

河南理工大学材料学院
纳米材料导论-第一章
表面效应
纳米微粒尺寸小,表面能高,位于表面的原子占相 当大的比例。
表1.3 纳米微粒尺寸与表面原子数的关系
纳米微粒尺寸/nm
包含总原子数 3×104 4×103 2.5×102 30
表面原子所占比例/% 20 40 80 99
10 4 2 1
随着纳米微粒粒径的减小,微粒中总原子数减小,而 表面原子占总原子的比例却显著增加
而λ=h/mv=h/p称为德布罗意波长公式。这种波也叫物质波, 它即不是机械波也不是电磁波而是一种"概率波"。
河南理工大学材料学院
纳米材料导论-第一章
小尺寸效应
纳米粒子的这些小尺寸效应为实用技术开拓了新 领域:
纳米尺度的强磁性颗粒(Fe-Co合金,氧化铁等),当颗粒尺寸为单磁畴 临界尺寸时,具有甚高的矫顽力。可制成磁性信用卡、磁性钥匙、磁 性车票,还可以制成磁性液体,广泛地用于电声器件、阻尼器件和旋 转密封、润滑、选矿等领域。 纳米微粒的熔点可远低于块状金属,例如2nm的金颗粒熔点为600K, 随粒径增加,熔点迅速上升,块状金为1337K;纳米银粉熔点可降低 到373K,此特性为粉末冶金工业提供了新工艺。
作业
1.试列举纳米颗粒的基本性质有 哪些?
2.试用纳米粒子的表面效应解释, 为什么纳米粒子易于团聚?有哪些 方法可以消除这种团聚?
河南理工大学材料学院 纳米材料导论-第二章
3.纳米微粒的物理特性
河南理工大学材料学院
纳米材料导论-第一章
3.1 纳米微粒的结构与形貌
通常情况下,纳米微粒为球形。但随着制备方法 和条件的不同,粒子的形貌并非都呈球形,而是 类球形。 有人曾用高倍超真空电子显微镜观察纳米粒子, 结果在其表面发现了原子台阶。

纳米微粒的结构与物理化学特性

纳米微粒的结构与物理化学特性
详细描述
纳米微粒由于其尺寸较小,对光的吸收、散射和荧光等性质产生显著影响。例如,纳米微粒可以增强 散射效果,提高散射光的强度;同时,某些纳米微粒还具有荧光性质,可以用于生物成像和传感等领 域。
03
纳米微粒的化学特性
化学反应活性
总结词
纳米微粒的化学反应活性与其尺寸和表面原子比例密切相关,表现出独特的反应速度和 选择性。
详细描述
当纳米微粒的尺寸减小到一定程度时,电子波函数开始重叠,导致能级间距增大 ,表现出与宏观物体不同的光学、电学等性质。例如,随着纳米微粒尺寸的减小 ,其吸收光谱发生红移现象。
表面效应
总结词
纳米微粒表面原子比例较高,导致表面原子排列不规整,产 生表面能,影响其稳定性。
详细描述
由于纳米微粒尺寸较小,表面原子比例较高,使得表面原子 排列不规整,产生较高的表面能。这种表面效应使得纳米微 粒具有较高的化学活性,容易与其他物质发生反应。
风险评估与管理
进行全面的纳米微粒风险 评估,制定相应的管理措 施,降低潜在的安全风险 。
THANKS
感谢观看
药物传递与控释
纳米微粒可以作为药物载体,实现药物的靶向传递和控释 ,提高药物的疗效和降低副作用。
要点二
生物成像与诊断
纳米微粒可以作为荧光标记物或磁共振成像剂,用于生物 成像和疾病诊断。
06
纳米微粒的安全与环境影响
纳米微粒的生物安全性
生物相容性
01
纳米微粒在体内应具有良好的生物相容性,不会引起严重的免
详细描述
随着尺寸的减小,纳米微粒的表面原子比例增加,这使得表面原子更加活化,提高了纳 米微粒的化学反应活性。这种活化作用使得纳米微粒在催化、合成和降解等化学反应中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、随粒度减小,烧结温度降低
(1)烧结温度:所谓烧结温度是指在低于熔点的温度 下使粉末互相结合成块,密度接近常规材料的最低加 热温度。
(2)原因:纳米微粒尺寸小,表面能高,压制成块材 后的界面具有高能量,在烧结中高的界面能成为原子 运动的驱动力,有利于界面中的孔洞收缩,空位团的 湮没,因此,在较低的温度下烧结就能达到致密化的 目的,即烧结温度降低。
3、原因
(1)粒子的表面能和表面张力随粒径的减小而 增加
(2)纳米微粒的比表面积大 (3)由于表面原子的最近邻数低于体内而导致
非键电子对的排斥力降低
必然引起颗粒内部特别是表面层晶格的畸变。
例:有人用EXAFS技术研究Cu、Ni原子团发 现,随粒径减小,原子间距减小。Staduik等 人用X射线分析表明,5nm的Ni微粒点阵收缩 约为2.4%。
1.超顺磁性 (1)定义:超顺磁性是指当纳米磁性粒子的粒
径小于某一临界尺寸后,在有外加磁场存在时, 表现出较强的磁性,但当外磁场撤消时,无剩 磁,不再表现出磁性
特点:这时磁化率χ不再服从居里-外斯定律, 矫 来顽 描力 述。Hc→0,磁化强度MP可以用朗之万公式
Mp≈μ2H/(3kBT),μ为粒子磁矩。
应用: 超细银粉制成的导电浆料可以进 行低温烧结,此时元件的基片不必采用 耐高温的陶瓷材料,甚至可用塑料。采 用超细银粉浆料,可使膜均匀,覆盖 面积大,既省料又具高质量。熔点下降 的性质对粉末冶金工业具有一定的吸引 力。
三、 纳米粒子的磁学性质
纳米微粒的小尺寸效应、量子尺寸效应、表面效 应等使得它具有常规粗晶材料不具备的磁特性。 纳米微粒的主要磁特性可以归纳如下。
子,当尺寸小于20nm时) (C)五边形十面体形状(银的纳米微粒)
2、结构(晶体结构)
基本规律:纳米微粒的结构一般与大颗粒的相 同,但有时会出现很大差别。
例:用气相蒸发法制备Cr的纳米微粒时,占主要 部分的α-Cr微粒与普通bcc结构的铬是一致的, 晶格参数α0=0.288nm。但同时还存在δ-Cr, 它的结构是一种完全不同于α-Cr的新结构,晶 体结构为A-15型,空间群Pm3n。即便纳米微 粒的结构与大颗粒相同,但还可能存在某种差 别。
(2)原因
由于颗粒小,纳米微粒的表面能高、比表面原 子数多,这些表面原子近邻配位不全,活性大 以及体积远小于大块材料,因此纳米粒子熔化 时所需增加的内能小得多,这就使得纳米微粒 熔点急剧下降。
Wronski计算出Au微粒的粒径与熔点的关系,结 果如图1.5。由图看出,当粒径小于l0nm时, 熔点急剧下降。
(3)举例: 常 规 Al2O3 在 2 0 7 3 ~ 2 1 7 3 K 烧 结 , 而 纳 米 可 在 1423~1773K烧结,致密度可达99.7%。常规 Si3N4烧结温度高于2273K,纳米Si3N4烧结温度降低 673~773K。
纳7米7T3iKO加2在热时呈 现出明显的致
密化,而晶粒
(A)一致转动磁化模式:
基本内容:当粒子尺寸小到某一尺寸时,每个 粒子就是一个单磁畴。
例:Fe和Fe3O4单磁畴的临界尺寸分别为l2nm和 40nm。
许多实验表明,纳米微粒的Hc测量值与一致转 动的理论值不相符合。
例:粒径为65nm 的Ni微粒具有大于其他粒径微 粒的矫顽力,Hcmax≈[25×104/4π]/A/m。 这远低于一致转动的理论值, Hc=4K1/3Ms≈[16×105/4π]/A/m。 都有为等人认为对纳米微粒Fe、Fe3O4和Ni等 的高矫顽力的来源应当用球链模型来表示。
式可中以,用C朗为之常万数公;式Tc来为描居述里。温度。磁化强度MP
例5如nm:、α-l6Fnem、和Fe230On4m和时α-变F成e顺2O磁3 粒体。径 分 别 为
(2)原因:在小尺寸下,当各向异性能减小到 与热运动能可相比拟时,磁化方向就不再固定 在一个易磁化方向,易磁化方向作无规律的变 化,结果导致超顺磁性的出现。
(B)球链模型:采用球链反转磁化模式来计算 纳米Ni微粒的矫顽力。 由于静磁力作用,球形纳米Ni微粒形成链状, 对于由n个球形粒子构成的链的情况,矫顽力
式中,n为球链中的颗粒数;μ为颗粒磁矩;d为颗 粒间距。设n=5,则Hcn≈[55×104/(4π)]A/m, 大于实验值。
二、 纳米微粒的热学性质
总体情况:纳米微粒的熔点、开始烧结温度和晶 化温度均比常规粉体低得多。
1、随粒度减小,熔点降低。 (1)举例 Cu: T熔由1053℃—40nm为750℃ Au: T熔由1064℃—10nm为1037℃,2nm为
20℃ Ag:超细粒子T熔=l00℃ CdS半导体原子簇2.4—7.6nm△T熔>1000℃
仅有微小的增
加,致使纳米 微 大粒 晶粒TiO样2品在低比 873K的温度下 烧结就能达到 类似的硬度(见 图1.6)。
3、非晶纳米微粒的晶化温度低于常规粉体
传晶统化非成晶αS-i相3N,4在纳1米79非3晶K S热i34Nh4全微部粒转在变16成7α3相K加, 纳米微粒开始长大,温 度随粒径的减小而降低。 图1.7表明8nm、 l5nm和35nm粒径的 A开l2始O温3粒度子分快别速约长为大的 1073K、1273 K和 1423K。
不同种类的纳米磁性微粒显现超顺磁的临界 尺寸是不相同的。
2.矫顽力
(1)定义:使单磁畴纳米微粒去掉磁性所需要 施加的反向磁场力。(必须使每个粒子整体的 磁矩反转,这需要很大的反向磁场)
纳米微粒尺寸高于超顺磁临界尺寸时通常呈现 高的矫顽力Hc。 (2)原因: 对于纳米微粒高矫顽力的起源两种解释:一致 转动模式和球链反转磁化模式。
1.3 纳米微粒的物理特性
一、 纳米微粒的结构与形貌
1、形貌 (1)一般形状 纳米微粒一般呈球形(在通常的电子显微镜下观察) 随着制备条件不同特别是当粒子的尺寸变化时(1~
l00nm之间),粒子的形貌并非都呈球形或类球形。 (2)其他形状 (A)球形粒子的表面上存在原子台阶。(用高倍超高
真空的电子显微镜观察纳米球形粒子) (B)正方形或矩形。(采用气相蒸发法合成的铬微粒
相关文档
最新文档