导数的几何意义和物理应用.doc
高等数学-导数的概念-教案(完整资料).doc

t∆很小时,其平均速度就可以近似地看作时刻的瞬时速度.且
x
x x x x ∆-∆+=→∆sin )sin(lim
0x
x x x x ∆∆⎪
⎭⎫ ⎝⎛
∆+=→∆2sin 2cos 2lim 0 x x x x x x cos 2
2sin 2cos lim 0=∆∆⎪⎭⎫ ⎝
⎛∆+=→∆, 即: x.cos (sin x)'=
类似可得:sin x. - x)'(cos = 定义 如果x x f x x f x ∆∆∆)
()(lim 000-+-
→存在,则称此极限值为f (x ) 在点 x 0 处的左导数,记作 f’(x 0);同样,如果x x f x x f x ∆∆∆)()(lim 000-++
→存在,则称此极限值为 f (x ) 在点 x 0 处的右导数,记作 f’
+(x 0) .
显然,f (x ) 在 x 0 处可导的充要条件是 f’ -(x 0) 及 f ‘ +(x 0) 存在且相等 . 定义 如果函数 f (x ) 在区间 I 上每一点可导,则称 f (x ) 在区间 I 上可导. 如果 I 是闭区间[a , b ],则端点处可导是指 f’+(a )、 f’-(b ) 存在 .
六、可导与连续的关系
定理 如果函数 y = f (x ) 在点 x 0 处可导, 则 f (x ) 在点 x 0 处连续,其逆不真.。
D.课堂小结
一、导数的定义
二、导数的几何意义 三、可导与连续的关系。
导数(非常典型非常全)

知识要点1. 导数的定义:一般地,函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,我们称它为函数)(x f y =在0x x =处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.2. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点),(00y x 处的切线的斜率,也就是说,曲线)(x f y =在点),(00y x P 处的切线的斜率是)(0'x f ,切线方程为).)((00'0x x x f y y -=-导数的物理意义:位移的导数是速度,速度的导数是加速度。
导数的几何意义:导数就是切线斜率。
3.基本初等函数的导数公式:0'=C (C 为常数) x x cos )(sin '= 1')(-=n n nx x (R n ∈) x x sin )(cos '-= )0(ln )('>=a a a a x x x x e e =')()1,0(ln 1)(log '≠>=a a ax x a x x 1)(ln '=4.导数运算法则:[])()()()('''x g x f x g x f ±=±[])()()()()()('''x g x f x g x f x g x f +=∙[])0)(()()()()()()()(2'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f 注:)()(x g x f 、必须是可导函数.5.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
导数的概念课件

03
通过求解能量和功率函数的导数,可以得到物体的能量守恒关
系。
05
导数的实际应用案例 分析
导数在经济学中的应用案例分析
边际分析和最优化问题
导数可以用来分析经济函数的边际变化,帮助决策者找到经 济活动的最优解。例如,在生产函数中,通过求导可以找到 生产要素的最佳组合。
弹性分析
复合函数的导数
复合函数的导数是内外函数导数的乘积
$(f(g(x)))' = f'(g(x)) \times g'(x)$
举例
$(sin(x^2))' = cos(x^2) \times 2x$
03
导数在几何中的应用
导数在曲线切线中的应用
切线的斜率
导数可以用来表示曲线在某一点 的切线斜率,斜率越大,曲线在
THANKS
感谢观看
该点的变化率越大。
切线的方向
导数还可以用来确定曲线在某一 点的切线方向,即函数值增加或
减少最快的方向。
极值点与拐点
导数的符号可以用来判断函数在 某一点的极值点与拐点,当一阶 导数大于0时,函数在该点单调 递增;当一阶导数小于0时,函
数在该点单调递减。
导数在曲线长度中的应用
曲线长度的计算
通过利用导数求出曲线的斜率, 可以计算出曲线的长度,即曲线 与x轴围成的面积。
导数可以用来计算需求的弹性,即需求量对价格变动的敏感 程度。这可以帮助企业了解产品价格的变动对市场需求的影 响,从而制定更合理的定价策略。
导数在物理学中的应用案例分析
速度和加速度
在物理学中,导数被用来表示物体的 速度和加速度。例如,一个物体的位 移对时间的导数就是它的速度,速度 对时间的导数就是它的加速度。
导数

导数导数导数------------------------------------------------------------- 1 导数定义 --------------------------------------------------- 3 导数的起源 ------------------------------------------------ 4 导数的几何意义 ------------------------------------------ 4 微积分 ------------------------------------------------------ 5 求导数的方法 --------------------------------------------- 6 导数公式及证明 ------------------------------------------ 7 单调性 ---------------------------------------------------- 10 函数的极值 ---------------------------------------------- 10 求极值 ---------------------------------------------------- 10 函数的最值 ---------------------------------------------- 10 导数应用 ------------------------------------------------- 11 高阶导数 ------------------------------------------------- 11创建公式 ------------------------------------------------- 12导数(Derivative)是微积分中的重要基础概念。
《应用高等数学》导数的意义

《应用高等数学》导数的意义导数是高等数学中一个重要的概念,它在数学、物理、工程和经济等领域中都有广泛的应用。
导数的意义包括数学意义、几何意义和物理意义等方面。
首先是导数的数学意义。
导数可以看作函数在特定点上的变化率。
具体地说,对于函数f(x),如果x的微小变化量Δx引起f(x)的变化量Δy,那么Δy/Δx就是函数在x点上的变化率。
而导数则定义了这一变化率的极限。
换句话说,导数就是函数在其中一点的瞬时变化率,表示随着自变量的微小变化,函数值的变化量。
其次是导数的几何意义。
导数可以用来描述曲线上其中一点的切线斜率。
具体而言,如果函数f(x)在点x=a处有导数f'(a),那么曲线在点(x,f(x))处的切线的斜率就是导数f'(a)。
切线斜率的大小和正负决定了曲线是上升还是下降。
通过导数,我们可以研究曲线的变化趋势、最值点、转折点等等几何特征。
导数的物理意义则体现在速度和加速度的描述中。
在物理中,物体的运动状态可以由其位置函数表示。
如果我们知道位置函数关于时间的导数,即速度函数,那么我们就能够了解物体在不同时刻的速度信息。
同样地,如果我们知道速度函数关于时间的导数,即加速度函数,那么我们就能够了解物体在不同时刻的加速度信息。
导数在经济学中也有重要的应用。
在经济学中,我们经常需要分析经济指标的变化率。
例如,对于其中一种商品的需求函数而言,需求量的变化率对于制定价格、预测市场变化等都具有重要的参考价值。
同样地,成本函数、利润函数等在经济学中也需要用到导数的概念。
导数可以帮助我们分析经济现象中的微小变化和灵敏性。
导数的意义不仅仅局限于以上几个方面,它还有很多其他的应用。
例如,导数在微分方程中被广泛应用,可以用来描述物理、生物等现象中的变化规律。
导数也在最优化问题中有着重要作用,用于求解最大值、最小值以及优化问题。
此外,导数作为微分的基础,还可以在数值求解、数学建模等领域中发挥重要作用。
总之,导数在数学和其他学科中都有着重要的意义。
《高数导数公式》课件

导数可以用来描述振动和波动问题中的物理量,例如振幅、频率等 。
导数的扩展知识
05
高阶导数
高阶导数的定义
高阶导数是函数导数的连续求导过程,表示 函数在某点的变化率随阶数的增加而增加。
高阶导数的计算
高阶导数的计算需要使用到前一阶的导数,通过连 续求导来得到。
高阶导数的应用
高阶导数在数学、物理和工程等领域中有广 泛的应用,例如在研究函数的极值、拐点、 曲线的弯曲程度等方面。
描述物体运动的方向。
03
导数与切线斜率、运动方向的关系
导数可以表示曲线在某一点的切线斜率,进而可以判断物体的运动方向
。
导数在物理问题中的应用
瞬时速度
导数可以用来计算瞬时速度,例如在匀变速直线运动中,物体的瞬 时速度等于其位移的导数。
极值问题
导数可以用来求解函数的极值问题,例如在物理学中,最小作用量 原理就是利用导数求解极值问题的典型例子。
《高数导数公式》ppt 课件
目录
• 导数的定义与几何意义 • 导数的计算 • 导数的应用 • 导数的物理意义 • 导数的扩展知识
01
导数的定义与几何
意义
导数的定义
导数的定义
导数是函数在某一点的变化率,表示函数在该 点附近的小范围内变化的情况。
导数的计算方法
通过极限来计算函数在某一点的导数,即求函 数在该点的切线斜率。
THANKS.
利用导数研究曲线的凹凸性
总结词
通过求二阶导数判断函数的凹凸性,有 助于了解函数图像的弯曲趋势和变化规 律。
VS
详细描述
二阶导数大于零表示函数图像向下凸出, 二阶导数小于零表示函数图像向上凸出。 通过分析二阶导数的符号变化,可以确定 函数的凹凸区间和弯曲趋势。
导数的几何意义和物理意义

导数的几何意义和物理意义导数是微积分中一项重要的概念。
它可以描述函数在某一点上的变化率,以及函数在该点上的切线斜率。
导数不仅在数学领域中有着广泛的应用,同时也在几何学和物理学中具有重要的意义。
本文将探讨导数的几何意义和物理意义,并解释它们在现实世界中的具体应用。
一、导数的几何意义在几何学中,导数可以解释为函数图像在某一点的切线斜率。
当我们研究函数图像的形状和特征时,导数可以帮助我们理解函数在不同点上的变化趋势和曲线的曲率。
1. 切线斜率:对于函数f(x),它在某一点x=a处的导数f'(a)代表了函数图像在该点上的切线斜率。
切线斜率可以告诉我们函数在该点上是递增还是递减,并且可以用来寻找曲线上的最高点或最低点。
通过计算导数,我们可以获得函数在某一点上的局部变化率信息。
2. 切线和曲率:导数还可以描述函数在某一点上的曲线特征,如弯曲和曲率半径。
具体而言,导数的正负性可以告诉我们函数图像在该点上是凸还是凹,以及变化的速度和方向。
这有助于我们更好地理解函数的形状和变化趋势。
二、导数的物理意义导数在物理学中也有着广泛的应用。
它可以描述物理量之间的关系及其变化率,从而帮助我们理解和解释各种物理现象。
1. 速度和加速度:导数可以解释物体在运动过程中的速度和加速度。
对于物体的位移函数,它的导函数就是速度函数,而速度函数的导函数则是加速度函数。
通过计算导数,我们可以获得物体运动的速度和加速度的具体数值。
这在运动学中有着广泛的应用。
2. 斜率和变化率:导数还可以解释函数关系中的斜率和变化率。
在物理学中,我们经常遇到各种变化率的概念,如功率、流量和速率等。
通过计算导数,我们可以获得这些物理量的具体数值,并了解它们的变化规律。
3. 最优化问题:导数在物理学中还可以用来解决最优化问题。
例如,在力学中,我们希望找到一条曲线,使得物体的作用量或路径在满足一定条件下达到最小值或最大值。
通过计算导数,我们可以找到该曲线上的极值点,从而解决这类问题。
导数的几何意义和物理意义

导数的几何意义和物理意义导数是微积分学中的重要概念,它具有丰富的几何意义和物理意义。
本文将分别从几何和物理两个角度,详细探讨导数的几何意义和物理意义。
一、导数的几何意义导数在几何中有着重要的意义。
在几何上,导数表示了函数曲线在某一点上的切线斜率。
具体来说,对于函数f(x),如果在点x=a处存在导数,那么导数f'(a)就是函数曲线在该点上的切线的斜率。
切线斜率的意义在于它反映了函数曲线的变化速率。
当函数的导数为正时,表示函数在该点上递增;当函数的导数为负时,表示函数在该点上递减;而导数等于零时,表示函数在该点上取得极值。
利用导数,我们可以精确地描述函数曲线的变化趋势。
此外,导数还可以用来计算函数曲线在某一点的局部变化率。
例如,当我们求解速度函数的导数时,得到的导数表示了物体在该时刻的瞬时加速度。
这就引出了导数在物理意义方面的应用。
二、导数的物理意义导数在物理学中有着广泛的应用,其中最为常见的是它对位移、速度和加速度的描述。
1. 位移:对于一维运动而言,物体在某一时刻的位移可以表示为位移函数的导数。
例如,当我们求解位移函数的导数时,得到的导数就表示了物体在该时刻的瞬时速度。
2. 速度:速度是指物体在单位时间内所改变的位移,它是位移关于时间的导数。
具体而言,速度函数的导数表示了物体在某一时刻的瞬时加速度。
3. 加速度:加速度是指物体在单位时间内所改变的速度,它是速度关于时间的导数。
当我们求解速度函数的导数时,得到的导数表示了物体在该时刻的瞬时加速度。
通过上述例子可以看出,导数在物理学中的应用十分广泛。
它不仅可以描述物体的运动状态,还可以帮助我们分析运动规律,解决各种与运动相关的问题。
结论综上所述,导数具有重要的几何意义和物理意义。
从几何上看,导数表示了函数曲线在某一点上的切线斜率,反映了函数曲线的变化速率;从物理上看,导数用于描述位移、速度和加速度等与运动相关的概念。
通过对导数的研究和应用,我们可以深入理解函数的特性和物体的运动规律,为实际问题的解决提供了有力的工具和方法。
导数基本概念

第一节 导数的概念与运算一、 思维导图二、知识模块【知识点1】导数的定义 1. 导数的概念设函数()y f x =在0x x =附近有定义,如果0x ∆→时,y ∆与x ∆的比yx∆∆(也叫函数的平均变化率)有极限,即yx∆∆无限趋近于某个常数,我们把这个极限值叫做函数()y f x =在0x x =处的导数,记作0'()f x 或0'x x y =.即0'()f x =0000000()()()()lim lim lim x x x x f x x f x f x f x yx x x x ∆→∆→→+∆--∆===∆∆-.2. 导数的物理意义:瞬时速度设0t =时刻一车从某点出发,在t 时刻车走了一定的距离().S S t =在01~t t 时刻,车走了10()()S t S t -,这一段时间里车的平均速度为1010()()S t S t t t --,当1t 与0t 很接近时,该平均速度近似于0t 时刻的瞬时速度.若令10t t →,则可以认为101010()()lim t t S t S t t t →-=-,即0'()S t 就是0t 时刻的瞬时速度.3. 思路提示:利用导数的定义,经过合理的添项、拆项与调配系数,凑成导数的极限定义的等价形式.例1: 设0'()f x 存在,求下列各式极限.⑴()()0003limx f x x f x x∆→+∆-∆;⑵()()000lim h f x h f x h →--例2: 若()()0002lim13x f x x f x x∆→+∆-=∆,则0'()f x 等于()A.23 B.32C.3D. 2 例3: 设()f x 在0x 处可导,则()()0003limx f x x f x x x∆→+∆--∆∆等于( )A. 02'()f xB. 0'()f xC. 03'()f xD.04'()f x 例4: 若()y f x =既是周期函数,又是偶函数,则其导函数'()y f x =( ) A.既是周期函数,又是偶函数B.既是周期函数,又是奇函数C.不是周期函数,但是偶函数D.不是周期函数,但是奇函数例5: 已知函数2,0(),0x x y f x x x ⎧≥==⎨<⎩,那么0'x y =的值为()A.0B.1C.1或0D.不存在例6: 已知22lim 21x x ax b x →∞⎛⎫--=⎪+⎝⎭,其中,a b R ∈,则a b -的值为() A.6- B.2- C.2 D.6例7: 已知,,m N a b R *∈∈,若()01limmx x ab x→++=,则ab 等于()A. m -B. mC. 1-D. 1 例8:1x →等于()A.12 B.0 C.12- D.不存在 例9: 已知(3)4,'(3)1f f ==,则343()lim3x x f x x →-=-____ 例10: 已知定义在R 上的函数(),()f x g x ,若01()1(),lim (),2x f x xg x g x →=+=-则()f x 在0x =处的导数'(0)f =___例11: 如图157-,函数()f x 的图象是折线段ABC ,其中,,A B C 的坐标分别为()0,4,()2,0,()6,4,则()()0f f =___;()()011lim x f x f x∆→+∆-=∆___ 例12: 设等差数列{}n a 的前n 项和为n S ,若1312,a S ==则2lim nn S n →+∞=____例13: 211lim34x x x x →-=+-___例14: 已知函数23,0(),0x x f x a x +≠⎧=⎨=⎩,在点0x =处连续,则2221lim n an a n n →∞+=+_____ 例15: 设2,1(),1x x f x ax b x ⎧≤=⎨+>⎩,试求,a b 的值,使()f x 在1x =处可导.【知识点2】求函数的导数1. 导数的运算的法则(和、差、积、商)设()u u x =,()v v x =均可导,则⑴()'''u v u v ±=±;⑵()'''uv u v uv =+;⑶2''()'(0)uu v uv v v v-=≠ 2. 基本导数表⑴'0(C C =为常数);⑵1()'()nn x nx n Q -=∈;⑶()'ln x x a a a =;⑷()'x x e e =;⑸1(log )'ln a x x a =;⑹1(ln )'x x=;⑺(sin )'cos x x =;⑻(cos )'sin x x =-; 3. 思路提示:对于简单函数的求导,关键是合理转化函数关系式为可以直接应用公式的基本函数的形式,以免求导过程中出现指数或系数的失误.例1: 求下列函数的导数⑴5y x =;⑵41y x=;⑶y =10x y =;⑸2log y x =;⑹sin y x = 例2:()()sin ln cos ln y x x x =+⎡⎤⎣⎦,则'y 等于()A. ()2cos ln xB. 12cos ln x ⎛⎫⎪⎝⎭C. ()2sin ln xD. ()sin ln x例3:()2f L ='()f L 为() A.例4:设函数1()sin 2sin 2f x x x =+,导函数为'()f x ,则下列关于导函数'()f x 的说法正确的是()A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.非奇非偶函数例5: 记,22x x x xe e e e shx chx ---+==,则()'shx =() A. shx - B. shx C. chx D.chx -例6:二次函数2()f x ax bx c =++导函数为'()f x ,已知'(0)0f >,且对任意实数x ,有()0f x ≥,则(1)(0)f f 的最小值为___ 例7:已知函数()'()cos sin 4f x f x x π=+,则()4f π的值为_____【知识点3】复合函数求导 1. 复合函数的导数复合函数[()]y f g x =的导数与函数()y f u =,()y f u =的导数之间具有关系'''x u x y y u =⋅,该关系用语言表述就是“y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积”,也就是先把()g x 当做一个整体,把[()]y f g x =对()g x 求导,再把()g x 对x 求导,这二者的乘积就是复合函数[()]y f g x =对x 的导数 例1:求下列函数的导数. ⑴32x y e+=;⑵()2log 21y x =+;⑶sin 23y x π⎛⎫=+⎪⎝⎭;⑷11y x=-例2: 函数cos 2y x =+的导数为( )A.2sin 2x -2sin 2x +C.2sin 2x -2sin 2x例3:函数()()sin sin +cos cos y x x =的导数是( ) A. ()()'cos cos sin sin sin cos y x x x x =-B. ()()'cos cos sin sin sin cos y x x x x =+C. ()()'sin cos cos sin y x x =+D. 'cos 2y x =例4:函数()()sin ln cos ln y x x =+的导数为( ) A.cos ln sin ln x x x + B. cos ln sin ln x xx-C.cosln sin ln x x +D. cosln sin ln x x - 例5:求函数()sin cos xy x =的导数例6:求函数y =的导数【知识点4】导数的几何意义1. 导数的几何意义:函数在定点处的切线斜率函数()y f x =在0x 处的导数0'()f x ,表示曲线()y f x =在点()00,()P x f x 处的切线PT 的斜率,即0tan '()f x α=,如图3-1所示,过点P 的切线方程为000'()()y y f x x x -=-.同样可以定义曲线()y f x =在0x 的法线为过点()00,()P x f x 与曲线()y f x =在0x x =的切线垂直的直线.过点P 的法线方程为00001()('()0).'()y y x x f x f x -=--≠例1:设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线斜率为()A.15- B.0 C.15D.5 例2:下列各函数在点0x =处没有切线的是()A.3sin y x x =+B.2cos y x x =-C.1y =D.cos y x =例3:若0y =是曲线3y x bx c =++的一条切线,则3232b c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭()A.1-B.0C.1D.2例4:已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为() A.3 B.2 C.1 D.12例5:若在曲线sin (0)y x x π=<<上取一点M ,使过M点的切线与直线2y x =平行,则点M 坐标为()A.(,32πB.(,32π±±C.1(,)62πD.(,62π例6:如果一直线过原点且与曲线11y x =+相切于点P ,那么切点P 的坐标为() A.1(,2)2- B.12(,)23- C.(2,1)-- D.1(2,)3例7:已知函数3()f x x x =-.(I )求曲线()y f x =在点(,())M t f t 处的切线方程;(II )设0a >,如果过点(,)a b 可作曲线()y f x =的三条切线,证明:()a b f a -<<例8:曲线在点处的切线方程为__________. 例9:曲线在点处的切线方程_________. 例10:曲线在点处的切线的斜率为A. B. C. D. 例11:曲线在点处的切线斜率为____________.例12:已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是 A. B. C. D.例13:若曲线存在垂直于轴的切线,则实数的取值范围是_____________. 例14:设直线是曲线的一条切线,则实数的值为_____________.例15:已知曲线21y x =-在0x x =点处的切线与曲线31y x =-在0x x =点处的切线互相平行,则0x 的值为___________________. 例16:已知函数2()ln (0)f x x ax x a =-->(I )若曲线()y f x =在点(1,(1))f 处的切线斜率为2-,求a 的值以及切线方程; (II )若()f x 是单调函数,求a 的取值范围。
《导数的几何意义》课件

热量与温度
在热传导问题中,导数的几何意义可以帮助 理解热量在物体中的传递和分布。温度是热 量的度量,而物体中的温度梯度(即温度随
位置的变化率)可以用导数来表示。
经济问题
要点一
供需关系
在经济学中,导数可以用来分析供需关系的变化。需求函 数或供给函数的导数可以描述价格与需求量或供给量之间 的变化率,帮助理解市场的均衡状态和价格调整机制。
隐函数求导
方法
通过对方程两边求导来求解隐函数的导数。
注意事项
在求导过程中,需要保持方程两边的等价关 系,并注意复合函数的求导法则。
04
导数在实际问题中的应用
物理问题
速度与加速度
在物理学中,导数被广泛应用于描述物体的 运动状态。速度是位置函数的导数,表示物 体在单位时间内通过的距离;而加速度是速 度函数的导数,表示物体速度变化的快慢。
02 导数可以用来求解微分方程,通过对方程进行求 导和积分,可以得到微分方程的解。
03 微分方程是描述物理现象的重要工具,通过求解 微分方程,可以了解物理现象的变化规律。
THANKS
感谢观看
信号处理
在信号处理和图像处理中,导数起着关键作用。信号的强度随时间的变化率可以用导数 来描述,而图像的边缘和轮廓可以通过求导来检测。此外,导数还可以用于图像的锐化
和模糊处理等操作。
05
导数的扩展知识
高阶导数
01
定义
高阶导数是函数导数的连续函数 ,表示函数在某一点的n阶导数 。
02
03
应用
计算方法
导数的性质
总结词
导数具有一些基本的性质,如可加性、可乘性、链式法则等。
详细描述
导数具有可加性、可乘性和链式法则等基本性质。这些性质是导数运算的基础,有助于理解和计算复杂的导数表 达式。
导数的概念及几何意义

(1)求物体在时间区间[t0 , t0 t] 上所经过的路程 :
S S(t0 t) S(t0 ) ,
(2)求物体在时间区间[t0 , t0 t] 上的平均速度:
v S S(t0 t) S(t0 ) ,
t
t
(3)求 t0
时刻 的速度: v(t0 )
lim v
t 0
lim
t 0
S(t0
x0 点的导数,记作
f ( x0 ) ,或 y xx0
,
或 dy dx
x x0
,即
f ( x0 )
lim y x0 x
lim
x0
f (x0
x) x
f ( x0 )
lim f ( x) f ( x0 )
x x0
x x0
7
1.1 导数的概念与导数的几何意义
若极限 lim y 不存在,则称函数 f x0 x
f( x0 )
lim
x0
y x
lim x0
f ( x0 x) x
f ( x0 )
lim f ( x) f ( x0 ) ;
x x0
x x0
9
1.1 导数的概念与导数的几何意义
若极限 lim y 存在,则称此极限为 f ( x) 在 x0 x
点 x0 处的右导数,记为 f( x0 ) ,即
f (t) f ( x0 ) 。 t x0
(2)由导数定义可得, v(t0 ) s(t0 ) (导数的物理意义);
k f ( x0 ) (导数的几何意义);
8
1.1 导数的概念与导数的几何意义
(2)单侧导数
定义 2 若极限 lim y 存在,则称此极限为 f ( x) x0 x
导数概念性质几何意义公式应用

三、 导函数
如果函数 y=f(x)在开区间内每一点都可导,就称函数 f(x)在区间内可导。 这时函数 y=f(x)对于区间内的每一个确定的 x 值,都对应着一个确定的导数, 这就构成一个新的函数,称这个函数为原来函数 y=f(x)的导函数,记作 y'、f'(x)、 dy/dx 或 df(x)/dx,简称导数。
如导数可以表示运动物体的瞬时速度和加速度就匀速直线加速度运动为例位移关于时间的一阶导数是瞬时速度二阶导数是加速度可以表示曲线在一点的斜率矢量速度的方向还可以表示经济学中的边际和弹性
导数概念性质几何意义公式应用
目录 一、 概述 ......................................................... 1 二、 定义 ......................................................... 2 三、 导函数 ....................................................... 2 四、 几何意义 ..................................................... 2 五、 公式 ......................................................... 2 六、 简单函数 ..................................................... 2 七、 复杂函数 ..................................................... 4 八、 导数的计算 ................................................... 4 九、 导数的求导法则 ............................................... 4 十、 高阶求导 ..................................................... 5 十一、口诀......................................................... 5 十二、导数与函数的性质............................................. 5 十三、导数种别..................................................... 6 十四、历史沿革..................................................... 7 十五、应用......................................................... 9
高考(理科)导数的定义,极限,几何意义应用以及导数的综合应用(以2011年高考题为例题讲解经典)

导数及其应用(理)(一)导数导数的基本知识点:(一).极限的基础知识:1.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 .(3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和).2. 函数的极限定理lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.3.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足:(1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.4.几个常用极限 (1)1lim0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →=.5.两个重要的极限(1)0sin lim1x x x →=; (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…). 6.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦; (2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦; (3)()()()0lim0x x f x ab g x b→=≠. 7.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±; (2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).基本方法和数学思想1.数列极限(1)掌握数列极限的直观描述性定义;(2)掌握数列极限的四则运算法则,注意其适用条件:一是数列{a n }{b n }的极限都存在;二是仅适用于有限个数列的和、差、积、商,对于无限个数列的和(或积),应先求和(或积),再求极限;(3)常用的几个数列极限:C C n =∞→lim (C 为常数);01lim=∞→nn ,0lim =∞→n n q (a <1,q为常数); (4)无穷递缩等比数列各项和公式qa S S nn -==∞→1lim 1(0<1<q )2.函数的极限:(1)当x 趋向于无穷大时,函数的极限为a a x f x f n n ==⇔-∞→+∞→)(lim )(lim(2)当0x x →时函数的极限为a a x f x f x x x x ==⇔+-→→)(lim )(lim 0: (3)掌握函数极限的四则运算法则;3..函数的连续性:(1)如果对函数f(x)在点x=x 0处及其附近有定义,而且还有)()(lim 00x f x f x x =→,就说函数f(x)在点x 0处连续;(2)若f(x)与g(x)都在点x 0处连续,则f(x)±g(x),f(x)g(x),)()(x g x f (g(x)≠0)也在点x 0处连续;(3)若u(x)在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处也连续;4..初等函数的连续性:①指数函数、对数函数、三角函数等都属于基初等函数,基本初等函数在定义域内每一点处都连续;②基本初等函数及常数函数经有限次四则运算和复合后所得到的函数,都是初等函数.初等函数在定义域内每一点处都连续;③连续函数的极限运算:如果函数在点x 0处有极限,那么)()(lim 00x f x f x x =→(二)导数的定义:1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = .2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a = )(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u = ])(['x Cf = )('uv = ,)('vu = )0(≠v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='.例题讲解:求极限的方法1.约去零因子求极限例1:求极限11lim 41--→x x x2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x例4、(1)1lim2n a n n a ∞++=+→,则a =例5、)已知函数f(x)= 23(0(0x x a x +≠⎧⎨=⎩当时)当时) ,点在x=0处连续,则2221lim x an a n n →∞+=+ .例6、(2007湖北理)已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→A .0B .1C .pqD .11p q --练习:极限及其运算1.(1)5lim(7)10n n →∞-= ;(2)1lim n n n →∞+= ;(3)2(1)lim (1)n n nn →∞-+= ;(4)1lim ()2x x +→∞= ;(5)21lim()2x x →= ;(6)2211lim 21x x x x →---= ;(7) 24lim()1n n n n →∞--+= ;(8)32lim 32n n n n n →∞+-=;(9)1x →= ;(10)lim )x x +→∞= ;(11)111lim[(1)(1)(1)]23n n n→∞--⋅⋅⋅-= .2.设函数1(0)()0(0)1(0)x x f x x x x +>⎧⎪==⎨⎪-<⎩,则0lim()x f x +→= ; 0lim ()x f x -→= ; 0lim ()x f x →= . 3.已知0a >,则1lim 1n n a →∞+= ;lim 1nnn a a →∞+= .4.下列说法正确的是 A,若()f x =,则lim ()0x f x →∞=; B若()f x 则1lim ()0x f x →=; C 若22()2x x f x x +=+,则2lim ()2x f x →-=-;D,若0)()1(0)x f x x x ≥=+<⎪⎩,则0lim ()0x f x →=.5.下列函数在1x =处没有极限的是A,32()1x x f x x -=- B,3()21g x x =+C,2(1)()0(1)x x h x x ≥⎧=⎨<⎩ D,1(1)()1(1)x x v x x x ->⎧=⎨-+<⎩导数的几何意义应用:一、知识点:1. 函数)(x f y =在点0x 处的导数的几何意义是________________________________.2. 若函数)(x f y =在点0x 处的导数存在,则它所对应的曲线上点))(,(00x f x 处的切线方程是___________________________.3.曲线423+-=x x y 在点(1,3)处的切线的倾斜角为_______.4.曲线12++=x xe y x 在点(0,1)处的切线方程是_______________________.5.曲线2-=x xy 在点1=x 处的切线方程是______________________________. 例题:1.已知函数ax x x f +=32)(与c bx x g +=2)(的图像都过点P(2,0),且在点P 处有相同的切线。
导数的物理意义与几何解释

导数的物理意义与几何解释导数是微积分学中的重要概念,它不仅在数学领域中有着广泛的应用,也具有深刻的物理意义和几何解释。
在本文中,我们将探讨导数在物理学中的作用以及它在几何学中的解释。
一、导数的物理意义导数在物理学中常常用来描述物理量的变化率。
以位移和时间为例,我们可以通过导数来描述物体在某一时刻的瞬时速度。
在物理学中,速度的物理含义是单位时间内位移的变化量。
当我们求出某一时刻的位移对时间的导数,即速度的导数,可以得到该时刻的瞬时速度。
在实际应用中,导数还可以表示力的大小和方向,以及电流的增长速率等物理量。
除了速度之外,导数还与加速度密切相关。
加速度可以定义为速度对时间的导数,即在单位时间内速度的变化量。
加速度的物理含义是描述物体运动状态的指标,可以判断物体是匀速运动还是加速运动。
在力学中,牛顿第二定律的表达式F = ma中的加速度就是速度对时间的导数。
在热力学和流体力学中,温度的导数称为温度梯度,它描述了热量的传递速率和方向。
导数还在电磁学中有广泛的应用,例如电场的导数是电场强度,磁场的导数是磁通量的变化率。
二、导数的几何解释导数在几何学中也有重要的解释和应用。
几何学中的导数对应于曲线的切线斜率。
以一元函数为例,对于给定的函数曲线,导数就是曲线在某一点上的切线斜率。
通过求解导数,可以得到曲线在不同点上的切线斜率分布,从而了解曲线的形状和变化趋势。
在平面几何中,导数还有直观的解释。
当两点间的距离趋近于无穷小时,可以使用导数来代替平均速度,得到瞬时速度。
同样地,两点之间的斜率也可以通过导数来表示。
例如,直线的斜率等于导数的值。
更进一步地说,在微分几何中,导数的概念可以用来描述曲线在某一点上切线的性质,例如曲率和曲率半径。
曲率表示曲线弯曲程度的量度,曲率半径则是切线和曲线的交点到曲线上的某一点的距离。
综上所述,导数在物理学和几何学中具有重要的意义和解释。
在物理学中,导数用来描述物理量的变化率和力的大小方向;在几何学中,导数用来解释曲线的切线斜率和形状特征。
导数

导数的概念函数)(x f 在0x x =处的导数:函数)(x f y =在0x x =处的瞬时变化率称为)(x f y =在0x x =处的导数,记作)(0'x f 或0|'x x y =,即x x f x x f x yx f x x ∆-∆+=∆∆=→∆→∆)()()(0000'lim lim。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: ① 求函数的增量y ∆=f (x 0+x ∆)-f (x 0);② 求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; ③ 取极限,得导数f’(x 0)=xy x ∆∆→∆0lim 。
导数的几何意义函数)(x f 在0x x =处的导数就是曲线)(x f y =在点))(,(00x f x 处切线的斜率,即k xx f x x f x f x =∆-∆+=→∆)()()(0000'lim; 导数的物理意义若物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s '(t )。
若物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v ′(t )。
应用:1.求切线方程的步骤:(注:已知点),(00y x 在已知曲线上) ①求导函数)('x f ;②求切线的斜率)(0'x f ;③代入直线的点斜式方程:)(00x x k y y -=-,并整理。
2.求切点坐标的步骤:①设切点坐标),(00y x ; ②求导函数)('x f ;③求切线的斜率)(0'x f ;④由斜率间的关系列出关于0x 的方程,解方程求0x ; ⑤点),(00y x 在曲线)(x f 上,将),(00y x 代入求0y ,得切点坐标。
类型一:求函数的平均变化率例1、求221y x =+在0x 到0x x +∆之间的平均变化率,并求01x =,12x ∆=时平均变化率的值.【变式1】求函数y=5x 2+6在区间[2,2+x ∆]内的平均变化率。
导数的概念课件

导数的物理性质
速度与加速度
在物理中,导数可以表示速度和加速度。例如,物体运动的瞬时速度是位移函数 的导数;物体运动的瞬时加速度是速度函数的导数。
斜率与加速度
在工程学中,斜率可以表示物体的加速度。例如,在电路中,电流的变化率可以 表示为电压函数的导数;在机械系统中,速度的变化率可以表示为力函数的导数 。
利用导数研究函数的曲率
总结词
描述函数曲线的弯曲程度
详细描述
导数的二阶导数可以用来描述函数的曲率。二阶导数越大, 表示函数曲线在该点越弯曲;二阶导数越小,表示函数曲线 在该点越平坦。通过计算二阶导数,可以了解函数曲线的弯 曲程度。
04
导数在实际生活中的应用
导数在经济学中的应用
总结词
导数在经济学中有着广泛的应用,它可以帮助我们理解经济现象的变化率和优化经济决 策。
链式法则
商的导数公式
若$u(x)$和$v(x)$在某点可导,且 $v(x) neq 0$,则$frac{u'(x)}{v'(x)}$ 存在。
若$u(x)$在某点可导,$f$是常数,则 复合函数$f(u(x))$在同一点也可导, 且$(f circ u)' = f' times u'$。
导数的几何性质
导数在数学分析、函数研究、优化问题、经济学等领域中 有着广泛的应用,是解决许多问题的重要工具。
导数的发展趋势与未来展望
发展趋势
随着科学技术的发展,导数在各个领域的应 用越来越广泛,如物理学、工程学、经济学 等。同时,对导数本身的研究也在不断深入 ,如对高阶导数、复合导数、变分法等的研 究。
未来展望
导数的起源与早期发展
起源
导数起源于17世纪,最初是为了解决 物理学和几何学中的问题,如速度和 切线斜率等。
导数的应用课件

02
导数在函数中的应用
Chapter
函数的单调性
总结词
导数可以用于判断函数的单调性 ,通过导数的正负来判断函数在 某区间内的增减性。
详细描述
如果函数在某区间内的导数大于0 ,则函数在此区间内单调递增; 如果导数小于0,则函数在此区间 内单调递减。
函数的极值
总结词
导数可以用于求函数的极值,当导数 由正变为负或由负变为正时,函数在 此点取得极值。
06
导数在其他领域的应用
Chapter
在化学反应速率中的应用
总结词
导数在化学反应速率中的应用主要表现在反 应速率的计算和反应机理的研究上。
详细描述
在化学反应中,反应速率是描述反应快慢的 重要参数。通过导数的计算,可以精确地描 述反应速率随温度、压力、浓度等条件的变 化情况,进而研究反应的动力学特征和机理 。导数分析有助于深入理解化学反应的本质 ,为优化反应条件和提高产率提供理论支持 。
速度与加速度
速度
瞬时速度是物体在某一时刻或经过某一位置时的速度,它由物体运动的距离和时间的比值定义。导数可以用来计 算瞬时速度,通过求位移函数的导数,得到瞬时速度的表达式。
加速度
加速度是速度的变化率,表示物体运动的快慢和方向。导数可以用来计算加速度,通过求速度函数的导数,得到 加速度的表达式。
斜抛运动
05
导数在经济学中的应用
Chapter
边际分析
01
边际成本
导数可以用来计算边际成本,即生产某一数量的产品所需增加或减少的
成本。通过导数分析,企业可以确定生产某一数量的产品时,成本增加
或减少的速度。
02
边际收益
导数还可以用来计算边际收益,即销售某一数量的产品所增加或减少的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节导数的几何意义和物理应用
与导数概念密切相关的两个问题是几何上求曲线的切线问题和物理学上已知运动规律求 速度问题。
下面我们以这两个问题对导数概念进一步说明。
一、 几何意义
设),= f(x)是一区间上的函数,))是曲线> =f ⑴上的两点
的连线称为曲线的割线,当B^A 时,割线应T 也发生变化,如4。
趋向于某一条直线/,则 称/为曲线在点A 的切线,当曲线是圆时,这个直线与圆只相交于一点.这与平面几何中的切 线的概念是一致的.
有直线的斜率可以知道,割线/切的斜率为tana =、顷二心)=也,这里及是/以割 t-x 心 线与X 轴正方向的夹角。
如果=f(x)可导,并记。
为切线与工轴正方向的夹角,那么切 线的斜率为tan 。
.
tan 0 = lim tan a = lim ~~-L —l = f\x).
Av —>0 lx l — x
所以/(%)是曲线y = /(x)在尤=x 0的切线的斜率.
同样可以定义曲线j = /(x)在x = x°的法线为过点(x 0,/(x 0))与曲线=/(%)在
X = x 0的切线垂直的直线.
例5.8求曲线y = 在x = 2的切线与法线.
解:y 在工=2的切线斜率为
y\x=2 - 2、I X
=2= 4, 所以切线方程为y — 22 =4(乂一2),即4'一),一4 = 0.
法线斜率为一1,所以法线方程为j-22
=--(x-2)f 即x + 4y-18 = 0.
4 4
二、 物理应用
在物理上,导数的应用也是很多的,先看一个简单的例子:
设Z=0时刻一车从某一点出发,在/时刻车走了一定的距离s = sQ),即距离是时间的 函数.在r 0时刻到Z,时刻,车走了 5(r,)-sQ°),这一段时间里车的平均速度为阻)二吨), 当4与,。
很接近时,这个平均速度近似于4时刻的瞬时速度.若令则可以认为
Hm __四,,即s'Q())就是,()时刻的瞬时速度.
2。
"。
类似地,(s'Q))'表示单位时间里速度的变化量,即加速度.
例5.9己知一物体从空中某点自由下落,下落的距离与时间的函数关系是s = ^gt 求其运行的速度与加速度.
解:运行速度:V = S = gt
加速度:CI-V - S - g .
习题5.2
1.求抛物线/(x) = X2-X +3上过点(2,5)的切线和法线方程。
2.求双曲线/(x)=-的切线中过点(2,5)的切线方程。
X
3.给定曲线/(x) = c
(1)求曲线上横坐标为X。
处的切线方程;
(2)在曲线上求点(x°,),o),使得该点处的切线被被坐标轴所截得的长度最短。
4.已知一物体从空中450米处自由下落。
(1)物体下落五分钟后的速度;
(2)当物体落到地面时的速度是多少?。