2016年泸州市中考数学试题及标准答案(解析版)
四川省泸州市2016年中考数学试卷及答案解析word版
2016年四川省泸州市中考数学试卷36312分,小题共分:本大题共小题,每一、选择题16 )(相反数.为的 6 CDA6 B....﹣﹣22 23aa)算果是﹣(的结.计22233a2aCA4aDB....3)是(不是轴对称图形的.下列图形中DA B C ....55700004)正确的是(.将用科学记数法表示8567 5.575.571010A5.5710B5.5710DC ××××....5)的是(视列立体图形中,主图是三角形.下DA B C....346486)众数和平均数分别.数据是,,(,,的55 DA54 B85 C64,.,,...,7何球,它们除颜色外任没有白.在一个布口袋里装有、红、黑三种颜色的小462随眼睛闭球搅匀其中白球,只,红球只,黑球上只,将袋中的区别,1)率是(机从袋中取出取只球,则出黑球的概DBA C ....CD=6AC8ABCDBDOAC+BD=16?则,,线且、,相交于.如图,点的对角ABO△)长是(的周2210 BA14 C20 D....22kxxk+21x+k1=09值的一元的取(﹣数)根,则.若关于﹣有实二次方程)是(范围1k1 Dk1 CAk1 Bk≤≥...><.110作、正方形、正边三边心距为六边形的角内以.半径为的圆的接正三形)(角形的面积是该角三形,则三 D BAC....BC11ABAB=2AD=3ABCDEF,,,,中为的点上在边边,矩.如图形的长MMNDBDENAFBF=2FC)(为长则,点交相与别,且分、于,的第1页(共22页)DA B C....20212y=axabx≠﹣点(第四象﹣限(,且过)的图象的顶数.已知二次函点在﹣aba10b)的值为(,),当﹣为整数时, 1 CDA1 B或.或.或.或.1243分,题共共分小题,每小二、填空题:本大题13=0.的根是程.分式方﹣2 142a+4a+2=..分解因式:20Bx4x1xAx15y=2x0两﹣图的象与,轴数次函交于﹣、((,)).若二21+.点,则的值为1+aCBA16101a0,(﹣(),,),(,点角.如图,在平面直坐标系中,已知1a00PD44足终满动,且始为半径的)(>圆),点以在上(运,圆)为心,aBPC=90°∠.最大值是,则的1863分共题,分三、本大题共小题,每小0212sin6017+ °×﹣(.﹣(﹣算.计:))C18ABD=BEECD=BECD∠∠∥.的中点,:证,.求.如图,是线段19a+1?.﹣)简.化:(1427分共共.四本大题,小题每小题分,20节电视类、娱画体闻新、育、动、乐戏曲五对学年区某了.为解地七级生查分取机区该,情喜目的爱况从地随抽部七卷问用,本样作生学年级为采调第2页(共22页)的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查)成作完、图都没制和扇形图来表示(表得到的数据用下面的表27b90a36人:题下问,解决以表、图提供的信息据根1ab ;值表中的(、)计算出2 ”“;度数的圆心角部分所对应(的)求扇形统计图中表示扇动画形347500“新喜爱级学生中估计该地区七若该地区七年级学生共有年人,(试)”?少人生有多类电视节目的闻学A108050A30B2160商,购买品共用商店购买了件件商品和件元商.某B88020.用了件元商品共品和BA1?多少元的单价分(别)、是两种商品422BA如少,件数的件件商品的数比购买倍商(品)已知该商店购买的BAAB32两、商店购买件数不少于的件,且果需要购买该、总两种商品的296?方案几种购买,元那么该商店有哪种商品的总费用不超过1628分题分,题共共小题,每小五.本大D6022ACC点米的距离楼底点处楼.如图,为了测量出房(的高度,从DBDCi=1进坡度为前:的斜上同一水平面)出发,沿斜面底与楼坡在ACA5330BB°参(楼房楼得顶度的仰角为的高,米到达点,在点求处测tan53sin530.8cos530.6°≈°≈°≈近取表号示,不,考数据:计算,结果用,根.值)似y=kx+bk0y=A23B、相交于例函数的一图,次函数图(象<)与反比.如yCA41 )知点(象与交轴相于点,,已数,两点一次函的图1 ;式的数解析()求反比例函2OBOBOC3△,求该一次函数的解析积,点标接()连(是坐原)若的面为.式第3页(共22页)24212分,,每小题共六.本大题共分小题ACHOBDAC24ABCOBD⊙△⊙,于与,点为相交的直径.如图,,于内接EBCBEA=∠∠.,且与过点线的直相交于点的延长线O1BE⊙;是切线(的)求证:BA=48BGFGEBCGBDBACG2?∥,,、、分别(已)知相交于,且点与若DF=2BFAHFG=.,求的,值2+nxy=mxOl25线点,直线与抛坐在平面直角标系中,点物为坐标原如.图,40A13B.,点相交于((),,)两1;物线的解析式(抛)求出ABABD2D△角边的直,使得角三是以线段斜为(是)在坐标轴上否存在点D;由明理坐标;若不存在,说?形若存在,求出点的OAPPMPB3PABA∥,作,过是线段点上一动,(点点不与点(重合)、)点NMMMCxCAB⊥,点轴于作点于,交线内第交一象限的抛物于点,过点SSPMNBCNS=2S△△,求出若的、满的面积、足值,NPMNNBCPMNBC△△△△M.的时此出并求点标坐第4页(共22页)第5页(共22页)2016年四川省泸州市中考数学试卷析解试题考答案与参36123分题共分题共,小题,每小一、选择题:本大16 )反数为.(的相DA6 B6 C.﹣.﹣...】相反数【考点.出答案数的定义分析得析【分】直接利用相反66.::﹣的相反数为【解答】解A.选:故22 3aa2)(的结.计算果是﹣2223 4aA2aB3aDC.....类项考点】合并同【.答案解即可求得用接利合并同类项的知识求【分析】直222 3a=2aa.﹣【解答】解:C.故选3)形的是(列图形中不是轴对称图.下 D AB C.....形【考点】轴对称图.的对称图形概念求解【分析】根据轴CDAB是,不对称称图形的概念可知:图,形,轴是对解【答】解:根据轴,图形轴对称C.:故选45570000)是(将数用科学记法表示正确的.8756 10A5.57DB5.57105.57C5.571010××××....—.数学记数法表示较大的点【考】科n10an101|a|≤×确示记数法的表形式为<中,的形式,其】.为整数【分析科学nn=7557000071=6.于有以位,所以可确定﹣点定值的是易错,由6 105570000=5.57×.:【解答】解B.选:故5)形图中形,主视是三角的是(图立下.列体 C ABD ....第6页(共22页).图的三视简单几何体【考点】.图主视可得图形的主看得到的图形是视图,【分析】根据从正面A ;意合题三角形,:符、圆锥的主视图是【解答】解B ;意合题是圆,不符、球的主视图C ;意合题形,不符是、圆柱的主视图矩D .意合题形,不符方体的主视图是正方、正A .选:故648463 )(数分别,是的众.数据数,和,平,均A54 B85 C65 D45 ,,,...,..均数;算术平【考点】众数【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式.即可平均数求出42 ∵,最多的次现了数次,【解答】解:出现出4 ∴众;是数4+8+4+6+35=5 ÷;()的平均数是:这组数据D .:故选7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何264只,将袋中的球搅匀球,只,黑球闭上眼睛区别,其中白球随只,红1 )(球的概率取出是只球,则取出黑机从袋中 B C DA .....式率公【考点】概①;目况:数符合条件的情法】根据随机事件概率大小的求,找准两点【分析②.小发生的概率的大是全部情况的总数.二者的比值就其6122,只,红球球只意可得:口袋里共有中只球,其白解【解答】:根据题4,球只黑P==,黑球的概率:(黑球)球故从袋中取出一个是C.:故选CD=6AC+BD=16O8ABCDACBD?则,且于点.如图,,的对角线,、交相ABO△)的周长是(2214 C20 DA10 B.....性质形【考点】平行四边的DC=AB=6AO=COBO=DO再,,质得出,性四利析【分】直接用平行边形的AO+BO.答案出出用利已知求,的长进而得ABCD∵四,形平是行四边:】解【答解边形DC=AB=6BO=DOAO=CO∴,,,第7页(共22页)AC+BD=16 ∵,AO+BO=8 ∴,ABO14 ∴△.:周长是的B .故选:221=0kk19xxx+k+2的取根方程,则﹣值(有﹣实)数.若关于的一元二次)是(范围Ak1 Bk1 Ck1 Dk1 ≤≥...><..式判别考点】根的【k .围值出范的取析根的判别式进而分得【分析】直接利用221=0x+k x1+2kx∵关,数﹣(﹣根:【解答】解)于有的一元二次方程实2221=8k+84k=b04ac=4k1 ≥∴△,)﹣﹣(﹣﹣()﹣k1 ≤.得:解D .:故选101的圆的内接正三角形、正方形、正六边形的边心距为三.以半径为边作)(形角的面积是三角形,则该三 B C DA .....圆形和【考点】正多边构可,内角的多边形特方接正三角形、正形、正六边形是殊内析【分】由于角角直形是逆股定理定理可得该三勾的出形直造角三角分别求边心距长,由.积进形,而可得其面三角1,图解:如】【解答OC=1∵,sin30OD=1=°×∴;2,如图OB=1∵,第8页(共22页)=OE=1sin45°∴×;3,如图OA=1∵,cos30=OD=1°∴×,:为边分、、,别则该三角形的三222 +=∵(,)(())∴该以是、三角形为为直角边,斜边的直角三角形,=××∴该,是角形的面积三D.:故选BC11ABCDAD=3FEABAB=2,,上,在,边为点的图.如,矩形中的边长NDEDBMMNBF=2FCAF)(,,则且,的分别与、长相交于点为C DBA .....;角【考点】相似三形的判定与性质矩形的性质FH=AB=2FFHOADHED⊥股勾得是作到根于,,交据于,过【分析】于=2AF==到分线段成比例定得理定理得到线根,据平行AF=AM=AE=OH===,得到质得求,的角似,由相三形性AN===AF=.到结论到质的角似据根相三形性得得,求得,即可FH=AB=2EDOHADFHF⊥则解,交过:作,于于】答解【BF=2FCBC=AD=3∵,,FC=HD=1BF=AH=2∴,,第9页(共22页)==2AF=∴,OHAE∥∵,==∴,AE=OH=∴,OH=2OF=FH= ∴﹣,﹣FOAE∥∵,FMOAME∽∴△,==∴,AF=AM=∴,BFAD∥∵,FNBAND∽△∴△,==∴,AF=AN= ∴,AM=MN=AN= ∴﹣﹣,B.选故20bxa2y=ax12≠﹣﹣((限象)的图的顶点在次.已知二函数第﹣四象,且过点01abab)(数时,为的,当),值﹣为整 1 CD1 BA或.或.或或...【的性质次考点】二函数aab根,确后题首【分析】先根据意确定、符的号,然进一步定取的值范围abab.定而,的值从确答案定据﹣数为整确、00a2=0a+b,,﹣知题解:依意>,>】解【答22b=aaab=20ba=2a,(﹣﹣)﹣且>故,﹣,﹣a02,<是于<22a22∴﹣,<﹣<第10页(共22页)ba,整﹣数为又1102a2=∴,,﹣﹣,a=1,,故, 1 b=,,,1ab=∴,或A.选故1243分,小题共:二、填空题本大题共分小题,每x=113=0..分式方程﹣﹣的根是.方程的解【考点】分式3xx)(求出整式方程的解,再代入﹣方【分析】把分式方程转化成整式程,.验即可进行检x3=0xx34x,﹣﹣﹣()得:】【解答解:方程两边都乘以最简公分母()x=1,﹣解得:x=1,﹣解是原:分式方程的经检验x=1.﹣案为:故答22 +4a+2=2a2a+114.)(.分解因式:.用合运公式法的综因【考点】提公式法与2.即可式方公分析【分】原式提取解,再利用完全平2 +2a+1a=2)式(【解答】解:原2 a+1=2,)(2 2a+1.(为故答案:)200Bxy=2x15A4x1xx两)、,(轴交函.若二次数于(﹣)﹣的图象与,21+.﹣,则的值为点x .点的线与交轴点【考】抛物y=0AB的横坐标,分别是点利和点解分【析】设应,则对一元二次方程的+ .出值的的关系即可求根用与系数:解答】【解24x1=02x y=0,﹣则﹣设,ABxx ∴一,,即的横坐标,别程元二次方的解分是点和点21x+x==2xx= ?∴,﹣,,﹣2112==+∵,﹣第11页(共22页)==∴原,式﹣.:﹣故答案为1+aa0C16A10B1,,,已知点((,﹣),)(,在.如图,平面直角坐标系中1D440a0P足终满上运动,且)为圆心,始为)(半>径),点的在以圆(,a6BPC=90°∠.最大值是,则的.接圆与外心【考点】三角形的外DAB=AC=aPA=AB=AC=a⊙点出上证明,根据条件可知到,求【分析】首先A.题解决问的最大距离即可1+a0a0A10B1a0C∵,,(>,)),(解:((﹣,)),】【解答1=a=aCA=a+1AB=11a∴,,()﹣﹣﹣AB=AC∴,BPC=90°∵∠,PA=AB=AC=a∴,PAPADD′′⊙,大长如图延最交,此于时44A10D∵,,,(),()AD=5∴,=5+1=6AP′∴,6a∴.为值的最大6.为故答案1836分共,小题,每小题共分、三本大题02 1 +217sin60°×﹣﹣.计算:).)(﹣(.值角函数特运实数的算;零指数幂;殊角的三】【考点根及指数幂的性质以二次零以角殊接分【析】直利用特角的三函数值及结合.答求出案进分式的性质别化简而0212sin60+ °×﹣﹣)(解答(﹣)【解】:+42=1×﹣第12页(共22页)=13+4 ﹣=2 .18CABCD=BECDBED=E ∠∠∥.线段.的中点,求,证.如图,:是.性质形的判定与【考点】全等三角ABCACD=BCD=BECDBE∠∥∠,点的是线段,然后,【分析】由由中得,可证CBESASACD≌△△.论证可证得继而得结利用,即CAB∵,段点】证明:的中是线【解答AC=CB∴,CDBE∥∵,ACD=B∠∴∠,ACDCBE△△,在和中,SASACDCBE≌△∴△,()ED=∠∴∠.a+119?.﹣:().化简.的混合运算【考点】分式答简即可解据根分式的乘法进行化子】【分析先对括号内的式进行化简,再.题本a+1?)﹣(答】解:【解=== =2a4.﹣1472分共题分,共题,小题每小.四本大20节五类电视、画体对年某为了解地区七级学生新闻、育、动、娱乐戏曲.查用,样作学年分取机区该,情喜目的爱况从地随抽部七级生为本采问调卷第13页(共22页)的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查)成作完、图都没制表和扇形图来表示(表得到的数据用下面的27b90a36人:题下问,解决以据表、图提供的信息根1ab ;值表中的(、)计算出2 ”“;度数的圆心角应部分所对的(扇)求扇形统计图中表示形动画347500“新喜爱级学生中试估计该地区七)若该地区七年级学生共有年人,(”?少人学生有多类电视节目的闻.体估计总统计图;用样本点【考】扇形ba1;出值的值,进而可数求出抽取的总人,再求出得【分析】(的)先2a;出结论比总人数的(可)求出得的值与3.出结论比,进而可得求出喜爱新闻类人数的百(分)20%190∵喜,数的人,占)总欢体育的人数是人【解答】解:(==450∴总.人)数(人36%∵娱,乐人数占a=45036%=162×∴,)(人9027=135b=45016236∴;﹣)﹣(﹣人﹣2135∵喜,人数(是)人欢动画的360=108°°×∴;=3100%=8%×∵喜,)闻爱新类人数(的百分比8%=380047500×∴.人)(3800”“.目的学生有年级学生中喜爱人新闻视类电节地答:该区七A506021A30B1080商件元商品和,购件了商品共用店.某商购买买件88020B.用了品和元件共商品1AB?元多少品两种商的单价分()别、是A22B4件,如倍少商品的该商店购件买数的商比品的件数购买(知)已AB32AB两的、商店购买数的总件不少于该件,且购果需要买品、两种商296 ?案买方购商店有哪几种么用品种商的总费不超过元,那该.用组程的应方一二用的式不一一点【考】元次等组应;元次第14页(共22页)1AxBy元,根据单价为价为等元、量种商【分析】(品)设的种商品的单60A+30B=108050②①买,钱数购品的钱数元件关系:品购买商件的商A+20B=880 .可解即,联立数求元分别列件出商品的钱数方件程商品的钱2AmB2m4)件为(,﹣则购买品商(的)设购买件商品的件数为数件,AB32A②①、买件,的的总件数不据不等关系:少购买于、购两种商品根B296m的得出求解可不列出等式,联种商品的总费用不超过立元可分别两.即可各方案范围,进而讨论取值1AxBy元,由价为题种商品)设的种商品的单价为单元】【解答解:(、:意得,.解得16B4A.元商品的单种商品的单价为价元、为答:种4mB2m2A,)数为(件件,则购买﹣商品(的)设购买件商品的件数为:得由题意,1312m≤≤,解得:m∵,是整数13m=12∴,或:两种方案故有如下B12m=122m4=20 A1品商购为品的件数方案():买,件﹣,即购买则商20;为件的件数B2m4=22 A132m=13品买数为商件):,,则﹣购即购买商品的件方案(22.件的件数为1682分分,小题共五.本大题共小题,每DC22AC60点(米距高度,从离楼底的处楼如.图,为了测量出房点的DBi=1DC进坡面度为前:的斜坡底与楼上在同一水平面)出发,沿斜AC53B30BA°参的高房楼处测得顶度的仰角为(,求楼米到达点,在点tan530.8sin53cos530.6°≈°≈°≈近,果用根号表数考据:示不,取算,,计结.似值)--角坡度坡应形三直题角角应形三直】考【点解角角的用仰俯问;解角角的用.问题第15页(共22页)BNCDNBMACMRTBDN△⊥⊥中求出于【分析】如图作线,先于,在段BNRTABMAMCMBNCM=BN△即,得是矩再证明,在四边形中求出形,.问题可解决BNCDNBMACM ⊥⊥.于,于【解答】解:如图作ND=1BDNBD=30BNRT△,中,:在,:BN=15DN=15∴,,C=CMB=CNB=90°∠∠∵∠,CMBN∴四,矩边形形是=45CM=BM=15BM=CN=6015∴,,﹣tanABM==RTABM∠△,在中,AM=27∴,AC=AM+CM=15+27∴.BAy=y=kx+b23k0、于,一次函数象(相<例)与反比函数交的图如.图AyC41)轴相交于点已,数的图象与知点,(一两点,次函1;析式(例)求反比函数的解3OOBBOC2△析解的面积为,求该一次函(数)连接若(是坐标原点),的.式.点问题一与次函数的交点【考】反比例函数m1Ak出义,求即数】()由点结的坐标合反比例函数系可的几何意分【析;值的nB2,比函次数解析式代入反例函数解析式中(点)设标的坐为(),,将一bnk、来表示出可面出关与利用根系数的系可找三、的关系,由角形的积公式3knbA 式等系的关,联立个出可上图函一由系的关,再点在次数象,找、.方,程为方组解程出得结论可即组第16页(共22页)y=A411∵点,象上例)函数(的,图)在反答【解】解:(比m=41=4×∴,y=∴反.比例函数为解析式的2By=∵点,数函象(上)的图在反比例Bn∴设.),的坐标为点(y=kx+by=:,得将中代入2 kxkx+b=4=0+bx,﹣整理得:,4n=nk=1①∴.,即﹣﹣y=kx+bx=0y=b,令中则,C0b,为(,即点)的坐标bn=3S=∴,OCB△bn=6②∴.y=kx+bA41∵点,(象,上)在一次函数的图1=4k+b③∴.①②③,联立方成程组,即,:解得y=x+3∴该.解析式为﹣数一次函的24212分共分大六.本题共小小题,每题,ACACHOO24ABCBDBD⊙⊙△,于点与相为,的直,.如图径接内于交,BA=EEBC∠∠.点且,于过延的长线与点直的线相交O1BE⊙;线:()求证的是切BA=48CGEBCG2BDBGBAGF?∥,,若点交知()已别,且与、分相于、DF=2BFFG=AH.求,的值,第17页(共22页).判定线外心;切的题;三角形的外接圆与综【考点】圆的合EBD=90BEO1°⊙∠.明证明只是要证的切线【分析】(,)欲BCDBFCABCCBG=BC2∽△∽△△△得求出,(,)由得,再由2CG=AGCFBDBFCGBCGB=BF?证进而可通过计算发求出,现,以,,,再CH=CBAC.题决,求出问即可明解1CD,(接)证明:连【解答】BD∵,直径是BCD=90D+CBD=90°°∠∴∠∠,,即A=EBCA=D∠∵∠∠∠,,CBD+EBC=90°∠∴∠,BEBD⊥∴,BEO⊙∴.切是线EB2CG∥∵,(:)解EBCBCG=∠∴∠,BCGA=∠∴∠,ABC CBG=∠∵∠ABCCBG∽△∴△,2 =BG=BCBA=48?∴,即,BC=4∴,CGEB∥∵,CFBD⊥∴,BFCBCD∽△∴△,2 BCBD=BF?∴,DF=2BF∵,BF=4∴,RTBCFCF==4△,在,中CG=CF+FG=5∴,BG= =3RTBFG△,中在,BGBA=48?∵,AG=5∴,即CG=AG∴,BCGACG=A=CFH=CFB=90°∠∴∠∠∠∠,,第18页(共22页)CHF=CBF ∠∴∠,CH=CB=4∴,ABCCBG∽△∵△,=∴,AC= =∴,CH=AH=AC ∴﹣.2+nxl25Oy=mx线点线为坐标原点,直物与抛直.如图,在平面角坐标系中,B40A13.(两,(点,),相交于)1;式(求)出抛物线的解析ABDABD2△角三是以线段为斜边(轴)在坐标上是否存在点的,使得直角D;若不存在,说明理出形?若存在,求点由的坐标;OAB3PABPAPPM ∥,,过是线段一上动点,(点点不与点作、重合)()点NCABMMMCx⊥,作,交于轴点线于于,过点点点象交第一限内的抛物=2SPMNSSSBCN△△,的面积、满足值求,出若的、NBCNBCNPMPMN△△△△M.标时并求出此点坐的.题数综合考点】二次函【B1A;线物解析式由系、的两点坐标,利用待定数法可求得抛分【析】()DADxAyD2xDx⊥足轴作,在轴上时,过()分当在轴上和轴上,垂ADDy0Dd、别分表示出为即所求;当点在轴上时,设标点坐为(出,),可dBDd足可而求满得从值求,方关得理股用再,利勾定可到于的程可得的,D;条坐的件点标第19页(共22页)3PPFCMFRtADORtMFP△⊥△∽以(及)过三作角函数于点,可,利用用PFMFNFMNBC=aaCN,示用出,设表示出,和则,从而可表示出可分别表S=2SPFaPFCN,出表示值,用从而,可用可表示出用的再利PMNNBC△△aMa的可求得物线解析表示出式点的坐标,代入可求得的值;借助抛可M.坐求出标点的,值从而可:】解【解答2+nx3B40y=mx1A1∵,上,的)(在)抛物(线,图),(象∴,得,解2y=xx +4∴抛﹣线物解;析式为2:题意,理由如下(足)存在三个点满1DxAADxD⊥,在上轴时,如图点,过点轴作当点于3A1∵,,()1D0∴;坐标为(),22222+dBDAD3=1+=4ddDDy0且,,(﹣,),当点则在上轴时,设()222+3=36AB4=1,)(()﹣ABDAB∵△,斜为边的直角三角形是以222222AD+BD3=AB1+=36d+4d=+d∴,,即(得﹣,)解D00∴;)(标坐为,)或(,点010D0,标,其点坐为(,)或()或(,件足在知上综可存满条的;)F3PFP2CM⊥,作过图如(),于点第20页(共22页)OAPM∥∵,MFPADORtRt△∽△∴,==3∴,MF=3PF ∴,AD=3RtABDBD=3△,,,中在tanABD=∠∴,CN=ABD=60BC=aa °∴∠则,,,设BNC=30RtPFNPNF=°∠△∠,中在,PNF==tan∠∴,FN= PF∴,MN=MF+FN=4PF ∴,S=2S∵,NNPMBC△△224PFa=2×∴×,PFa=2∴,PFNC=a=2∴,==∴,MN=a NC=a=×∴,a+MC=MN+NC=∴,()aa4M +∴,))(﹣,(为点坐标24a=a4+4+a M,﹣())(﹣)(得入,线抛又点在物上代可﹣a=3a=0,)舍得解﹣或(去+1a=OC=4MC=2+,,﹣+2+1M∴点.(为)标坐的,第21页(共22页)120167日年月第22页(共22页)。
2016年泸州市中考数学真题(解析版)
2016年泸州市中考数学真题(解析版)一、选择题:本大题共12小题,每小题3分,共36分1.6的相反数为()A.﹣6 B.6 C.﹣D.【解答】解:6的相反数为:﹣6.故选:A.2.计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【解答】解:3a2﹣a2=2a2.故选C.3.下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.4.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×108【解答】解:5570000=5.57×106.故选:B.5.下列立体图形中,主视图是三角形的是()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.6.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【解答】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.8.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.9.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤1【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选:D.11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.12.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.二、填空题:本大题共4小题,每小题3分,共12分13.分式方程﹣=0的根是x=﹣1.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.14.分解因式:2a2+4a+2=2(a+1)2.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∵+==﹣,∴原式==﹣,故答案为:﹣.16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是6.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.三、本大题共3小题,每小题6分,共18分17.计算:(﹣1)0﹣×sin60°+(﹣2)2.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.【解答】解:(﹣1)0﹣×sin60°+(﹣2)2=1﹣2×+4=1﹣3+4=2.18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【考点】全等三角形的判定与性质.【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS 即可证得△ACD≌△CBE,继而证得结论.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.19.化简:(a+1﹣)•.【考点】分式的混合运算.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.四.本大题共2小题,每小题7分,共14分20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;(2)求出a的值与总人数的比可得出结论;(3)求出喜爱新闻类人数的百分比,进而可得出结论.【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.五.本大题共2小题,每小题8分,共16分22.如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM 中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=27,∴AC=AM+CM=15+27.23.如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△B OC=bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.六.本大题共2小题,每小题12分,共24分24.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【解答】(1)证明:连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)解:∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴=,即BC2=BG•BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF•BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==4,∴CG=CF+FG=5,在RT△BFG中,BG==3,∵BG•BA=48,∴即AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC﹣CH=.25.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A (1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△PM N满足S△B C N=2S△PM N,求出的值,并求出此时点M的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A (1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF ,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△BC N=2S△PM N,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a ,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).。
2016年四川省泸州市中考数学试卷
2016年四川省泸州市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.(3分)(2016•泸州)6的相反数为()A.﹣6 B.6 C.﹣D.2.(3分)(2016•泸州)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.33.(3分)(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.4.(3分)(2016•泸州)将5570000用科学记数法表示正确的是()A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×1085.(3分)(2016•泸州)下列立体图形中,主视图是三角形的是()A. B.C.D.6.(3分)(2016•泸州)数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,57.(3分)(2016•泸州)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.8.(3分)(2016•泸州)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.229.(3分)(2016•泸州)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k 的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤110.(3分)(2016•泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.11.(3分)(2016•泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.12.(3分)(2016•泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或二、填空题:本大题共4小题,每小题3分,共12分13.(3分)(2016•泸州)分式方程﹣=0的根是______.14.(3分)(2016•泸州)分解因式:2a2+4a+2=______.15.(3分)(2016•泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为______.16.(3分)(2016•泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C (1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.三、本大题共3小题,每小题6分,共18分17.(6分)(2016•泸州)计算:(﹣1)0﹣×sin60°+(﹣2)2.18.(6分)(2016•泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.19.(6分)(2016•泸州)化简:(a+1﹣)•.四.本大题共2小题,每小题7分,共14分20.(7分)(2016•泸州)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?21.(7分)(2016•泸州)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?五.本大题共2小题,每小题8分,共16分22.(8分)(2016•泸州)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).23.(8分)(2016•泸州)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.六.本大题共2小题,每小题12分,共24分24.(12分)(2016•泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.25.(12分)(2016•泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.2016年四川省泸州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.(3分)(2016•泸州)6的相反数为()A.﹣6 B.6 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:6的相反数为:﹣6.故选:A.2.(3分)(2016•泸州)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【分析】直接利用合并同类项的知识求解即可求得答案.【解答】解:3a2﹣a2=2a2.故选C.3.(3分)(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.4.(3分)(2016•泸州)将5570000用科学记数法表示正确的是()A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=6.【解答】解:5570000=5.57×106.故选:B.5.(3分)(2016•泸州)下列立体图形中,主视图是三角形的是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.6.(3分)(2016•泸州)数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【解答】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.7.(3分)(2016•泸州)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.8.(3分)(2016•泸州)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.9.(3分)(2016•泸州)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k 的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤1【分析】直接利用根的判别式进而分析得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.10.(3分)(2016•泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选:D.11.(3分)(2016•泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.12.(3分)(2016•泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.二、填空题:本大题共4小题,每小题3分,共12分13.(3分)(2016•泸州)分式方程﹣=0的根是x=﹣1.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x(x﹣3)进行检验即可.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.14.(3分)(2016•泸州)分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.15.(3分)(2016•泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4.【分析】设y=0,则对应一元二次方程的解分别是点A和点B的横坐标,利用根与系数的关系即可求出+的值.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.16.(3分)(2016•泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C (1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是6.【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.三、本大题共3小题,每小题6分,共18分17.(6分)(2016•泸州)计算:(﹣1)0﹣×sin60°+(﹣2)2.【分析】直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.【解答】解:(﹣1)0﹣×sin60°+(﹣2)2=1﹣2×+4=1﹣3+4=2.18.(6分)(2016•泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS 即可证得△ACD≌△CBE,继而证得结论.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.19.(6分)(2016•泸州)化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.四.本大题共2小题,每小题7分,共14分20.(7分)(2016•泸州)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【分析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;(2)求出a的值与总人数的比可得出结论;(3)求出喜爱新闻类人数的百分比,进而可得出结论.【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴b=450×36%=162(人),∴a=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.(7分)(2016•泸州)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.五.本大题共2小题,每小题8分,共16分22.(8分)(2016•泸州)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.23.(8分)(2016•泸州)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC=bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.六.本大题共2小题,每小题12分,共24分24.(12分)(2016•泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【分析】(1)欲证明BE是⊙O的切线,只要证明∠EBD=90°.(2)由△ABC∽△CBG,得=求出BC,再由△BFC∽△BCD,得BC2=BF•BD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题.【解答】(1)证明:连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)解:∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴=,即BC2=BG•BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF•BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==4,∴CG=CF+FG=5,在RT△BFG中,BG==3,∵BG•BA=48,∴即AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC﹣CH=.25.(12分)(2016•泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△BCN=2S△PMN,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).参与本试卷答题和审题的老师有:gbl210;zcx;sdwdmahongye;HJJ;三界无我;王学峰;张其铎;sks;wd1899;弯弯的小河;zgm666;ZJX;HLing;曹先生;522286788(排名不分先后)菁优网2016年9月21日2016年贵州省黔东南州中考数学试卷一、选择题(每个小题4分,10个小题共40分)1.(4分)(2016•黔东南州)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)(2016•黔东南州)如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于()A.85°B.95°C.105°D.115°3.(4分)(2016•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n 的值为()A.﹣2 B.﹣1 C.1 D.24.(4分)(2016•黔东南州)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2 B.3 C.D.25.(4分)(2016•黔东南州)小明在某商店购买商品A、B共两次,这两次购买商品A、BA.64元 B.65元 C.66元 D.67元6.(4分)(2016•黔东南州)已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A.B.C.D.7.(4分)(2016•黔东南州)不等式组的整数解有三个,则a的取值范围是()A.﹣1≤a<0 B.﹣1<a≤0 C.﹣1≤a≤0 D.﹣1<a<08.(4分)(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1699.(4分)(2016•黔东南州)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2 B.+1 C.D.110.(4分)(2016•黔东南州)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.B.C.2 D.二、填空题(每个小题4分,6个小题共24分)11.(4分)(2016•黔东南州)tan60°=______.12.(4分)(2016•黔东南州)分解因式:x3﹣x2﹣20x=______.13.(4分)(2016•黔东南州)在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是______.14.(4分)(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______.15.(4分)(2016•黔东南州)如图,点A是反比例函数y1=(x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2=(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为______.16.(4分)(2016•黔东南州)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC 分别在x轴和y轴上,OC=3,OA=2,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为______.三、解答题(8个小题,共86分)17.(8分)(2016•黔东南州)计算:()﹣2+(π﹣3.14)0﹣||﹣2cos30°.18.(10分)(2016•黔东南州)先化简:•(x),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.19.(8分)(2016•黔东南州)解方程:+=1.20.(12分)(2016•黔东南州)黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.21.(10分)(2016•黔东南州)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).(结果精确到1m,参考数据:≈1.4,≈1.7)22.(12分)(2016•黔东南州)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,PA=6,求⊙O的半径.23.(12分)(2016•黔东南州)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24.(14分)(2016•黔东南州)如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2016年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(每个小题4分,10个小题共40分)1.(4分)(2016•黔东南州)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(4分)(2016•黔东南州)如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于()A.85°B.95°C.105°D.115°【分析】根据平行线的性质得出∠4=∠3,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∴∠4=∠3,∵∠1+∠2=∠4,∴∠3=∠1+∠2=95°.故选B.3.(4分)(2016•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n 的值为()A.﹣2 B.﹣1 C.1 D.2【分析】根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.故选D.4.(4分)(2016•黔东南州)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2 B.3 C.D.2【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D.5.(4分)(2016•黔东南州)小明在某商店购买商品A、B共两次,这两次购买商品A、BA.64元 B.65元 C.66元 D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选C6.(4分)(2016•黔东南州)已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴左侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,c>0,∴二次函数y3=ax2+bx+c开口向下,与y轴交点在x轴上方;∵反比例函数y2=的图象在第二、四象限,∴b<0,∴﹣<0,∴二次函数y3=ax2+bx+c对称轴在y轴左侧.满足上述条件的函数图象只有B选项.故选B.7.(4分)(2016•黔东南州)不等式组的整数解有三个,则a的取值范围是()A.﹣1≤a<0 B.﹣1<a≤0 C.﹣1≤a≤0 D.﹣1<a<0【分析】根据不等式组的整数解有三个,确定出a的范围即可.【解答】解:不等式组的解集为a<x<3,由不等式组的整数解有三个,即x=0,1,2,得到﹣1≤a<0,故选A8.(4分)(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C9.(4分)(2016•黔东南州)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2 B.+1 C.D.1【分析】先求得正方体的一个面的上的对角线的长度,然后可求得正方体视图面积的最大值.【解答】解:正方体正视图为正方形或矩形.∵正方体的棱长为1,∴边长为1.∴每个面的对角线的长为=.∴正方体的正视图(矩形)的长的最大值为.∵始终保持正方体的一个面落在桌面上,∴正视图(矩形)的宽为1.∴最大值面积=1×=.故选:C.10.(4分)(2016•黔东南州)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.B.C.2 D.【分析】连接OC构建全等三角形,证明△ODC≌△OEB,得DC=BE;把CD+CE转化到同一条线段上,即求BC的长;通过等腰直角△ABC中斜边AB的长就可以求出BC=,则。
四川泸州中考数学真题
【考点】概率公式. 【 分 析 】 根 据 随 机 事 件 概 率 大 小 的 求 法 , 找 准 两 点:① 符 合 条 件 的 情 况 数 目; ②全 部 情 况 的 总 数 . 二 者 的 比 值 就 是 其 发 生 的 概 率 的 大 小 . 【 解 答 】 解:根 据 题 意 可 得:口 袋 里 共 有 12 只 球 , 其 中 白 球 2 只 , 红 球 6 只 , 黑球 4 只, 故 从 袋 中 取 出 一 个 球 是 黑 球 的 概 率 : P( 黑 球 ) = = ,
祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!
【 解 答 】 解 : 6 的 相 反 数 为 : ﹣6. 故 选 : A. 2 . (2016·四川泸州)计 算 3a 2 ﹣ a 2 的 结 果 是 ( ) A . 4a 2 B . 3a 2 C . 2a 2 D . 3 【考点】合并同类项. 【分析】直接利用合并同类项的知识求解即可求得答案. 【 解 答 】 解 : 3a 2 ﹣ a 2 =2a 2 . 故 选 C.
故 选 : C. 8 . (2016·四川泸州)如 图 , ▱ ABCD 的 对 角 线 AC 、 BD 相 交 于 点 O , 且 AC+BD=16 , CD=6 , 则 △ ABO 的 周 长 是 ( )
2
A . 10 B . 14 C . 20 D . 22 【考点】平行四边形的性质. 【 分 析 】 直 接 利 用 平 行 四 边 形 的 性 质 得 出 AO=CO , BO=DO , DC=AB=6 , 再 利 用 已 知 求 出 AO+BO 的 长 , 进 而 得 出 答 案 . 【 解 答 】 解 : ∵ 四 边 形 ABCD 是 平 行 四 边 形 , ∴ AO=CO , BO=DO , DC=AB=6 , ∵ AC+BD=16 , ∴ AO+BO=8 , ∴△ ABO 的 周 长 是 : 14 . 故 选 : B. 9 . (2016·四川泸州)若 关 于 x 的 一 元 二 次 方 程 x 2 +2 ( k ﹣ 1 ) x+k 2 ﹣ 1=0 有 实 数 根 , 则 k 的取值范围是( ) A. k≥1 B. k> 1 C. k< 1 D. k≤1 【考点】根的判别式. 【分析】直接利用根的判别式进而分析得出 k 的取值范围. 【 解 答 】 解 : ∵ 关 于 x 的 一 元 二 次 方 程 x 2 +2 ( k ﹣ 1 ) x+k 2 ﹣ 1=0 有 实 数 根 , ∴△ =b 2 ﹣ 4ac=4 ( k ﹣ 1 ) 2 ﹣ 4 ( k 2 ﹣ 1 ) = ﹣ 8k+8 ≥ 0 , 解 得 : k≤1. 故 选 : D. 10 . (2016·四川泸州)以 半 径 为 1 的 圆 的 内 接 正 三 角 形 、 正 方 形 、 正 六 边 形 的 边 心距为三边作三角形,则该三角形的面积是( ) A. B. C. D.
2016年四川省泸州市中考数学试卷参考答案与试题解析
2016年四川省泸州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.6的相反数为()A.﹣6 B.6 C.﹣D.【考点】相反数.【解析】直接利用相反数的定义分析得出答案.【答案】解:6的相反数为:﹣6.故选:A.2.计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【考点】合并同类项.【解析】直接利用合并同类项的知识求解即可求得答案.【答案】解:3a2﹣a2=2a2.故选C.3.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【解析】根据轴对称图形的概念求解.【答案】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.4.将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×108【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=6.【答案】解:5570000=5.57×106.故选:B.5.下列立体图形中,主视图是三角形的是()A.B.C.D.【考点】简单几何体的三视图.【解析】根据从正面看得到的图形是主视图,可得图形的主视图.【答案】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.6.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【考点】众数;算术平均数.【解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【答案】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【考点】概率公式.【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【答案】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.8.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【考点】平行四边形的性质.【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【答案】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.9.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k 的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤1【考点】根的判别式.【解析】直接利用根的判别式进而分析得出k的取值范围.【答案】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【考点】正多边形和圆.【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【答案】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选:D.11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC 上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【考点】相似三角形的判定与性质;矩形的性质.【解析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【答案】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.12.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【考点】二次函数的性质.【解析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【答案】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.二、填空题:本大题共4小题,每小题3分,共12分13.分式方程﹣=0的根是x=﹣1 .【考点】分式方程的解.【解析】把分式方程转化成整式方程,求出整式方程的解,再代入x (x﹣3)进行检验即可.【答案】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.14.分解因式:2a2+4a+2= 2(a+1)2.【考点】提公因式法与公式法的综合运用.【解析】原式提取2,再利用完全平方公式分解即可.【答案】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣.【考点】抛物线与x轴的交点.【解析】设y=0,则对应一元二次方程的解分别是点A 和点B 的横坐标,利用根与系数的关系即可求出+的值.【答案】解:设y=0,则2x 2﹣4x ﹣1=0,∴一元二次方程的解分别是点A 和点B 的横坐标,即x 1,x 2,∴x 1+x 2=﹣=2,x 1,•x 2=﹣,∵+==﹣,∴原式==﹣,故答案为:﹣.16.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是 6 .【考点】三角形的外接圆与外心.【解析】首先证明AB=AC=a ,根据条件可知PA=AB=AC=a ,求出⊙D 上到点A 的最大距离即可解决问题.【答案】解:∵A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0), ∴AB=1﹣(1﹣a )=a ,CA=a+1﹣1=a ,∴AB=AC ,∵∠BPC=90°,∴PA=AB=AC=a ,如图延长AD 交⊙D 于P ′,此时AP ′最大,∵A (1,0),D (4,4),∴AD=5,∴AP ′=5+1=6,∴a 的最大值为6.故答案为6.三、本大题共3小题,每小题6分,共18分17.计算:(﹣1)0﹣×sin60°+(﹣2)2.【考点】实数的运算;零指数幂;特殊角的三角函数值.【解析】直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.【答案】解:(﹣1)0﹣×sin60°+(﹣2)2=1﹣2×+4=1﹣3+4=2.18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【考点】全等三角形的判定与性质.【解析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得△ACD≌△CBE,继而证得结论.【答案】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.19.化简:(a+1﹣)•.【考点】分式的混合运算.【解析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【答案】解:(a+1﹣)•====2a﹣4.四.本大题共2小题,每小题7分,共14分20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【考点】扇形统计图;用样本估计总体.【解析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;(2)求出a的值与总人数的比可得出结论;(3)求出喜爱新闻类人数的百分比,进而可得出结论.【答案】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【解析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【答案】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B 商品的件数为22件.五.本大题共2小题,每小题8分,共16分22.如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【解析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN 即可解决问题.【答案】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=27,∴AC=AM+CM=15+27.23.如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【解析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【答案】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S=bn=3,△B O C∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.六.本大题共2小题,每小题12分,共24分24.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【考点】圆的综合题;三角形的外接圆与外心;切线的判定.【解析】(1)欲证明BE是⊙O的切线,只要证明∠EBD=90°.(2)由△ABC∽△CBG,得=求出BC,再由△BFC∽△BCD,得BC2=BF•BD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题.【答案】(1)证明:连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)解:∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴=,即BC2=BG•BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF•BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==4,∴CG=CF+FG=5,在RT△BFG中,BG==3,∵BG•BA=48,∴即AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC﹣CH=.25.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N 、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.【考点】二次函数综合题.【解析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d 的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△B C N =2S△P M N,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.【答案】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△B C N =2S△P M N,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).2016年7月1日。
四川省泸州市中考数学试卷
2016年四川省泸州市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.(3分)6的相反数为()A.﹣6 B.6 C.﹣D.2.(3分)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.33.(3分)下列图形中不是轴对称图形的是()A.B.C.D.4.(3分)将5570000用科学记数法表示正确的是()A.×105B.×106C.×107D.×1085.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.6.(3分)数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,57.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.8.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.229.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤110.(3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.11.(3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.12.(3分)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或二、填空题:本大题共4小题,每小题3分,共12分13.(3分)分式方程﹣=0的根是.14.(3分)分解因式:2a2+4a+2= .15.(3分)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.16.(3分)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三、本大题共3小题,每小题6分,共18分17.(6分)计算:(﹣1)0﹣×sin60°+(﹣2)2.18.(6分)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.19.(6分)化简:(a+1﹣)•.四.本大题共2小题,每小题7分,共14分20.(7分)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数3690a b27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人21.(7分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A 商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案五.本大题共2小题,每小题8分,共16分22.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈,cos53°≈,tan53°≈,计算结果用根号表示,不取近似值).23.(8分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B 两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.六.本大题共2小题,每小题12分,共24分24.(12分)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.25.(12分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx 相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN 、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.2016年四川省泸州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.(3分)6的相反数为()A.﹣6 B.6 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:6的相反数为:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相反数的定义是解题关键.2.(3分)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【分析】直接利用合并同类项的知识求解即可求得答案.【解答】解:3a2﹣a2=2a2.故选C.【点评】此题考查了合并同类项的法则.注意合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.3.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)将5570000用科学记数法表示正确的是()A.×105B.×106C.×107D.×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=6.【解答】解:5570000=×106.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【解答】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.【点评】此题考查了众数和平均数,众数是一组数据中出现次数最多的数,注意众数不止一个.7.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.【点评】本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.【点评】此题主要考查了平行四边形的性质,正确得出AO+BO的值是解题关键.9.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤1【分析】直接利用根的判别式进而分析得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.【点评】此题主要考查了根的判别式,正确得出关于k的等式是解题关键.10.(3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选:D.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.11.(3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.12.(3分)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0,﹣>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又∵a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1.故选A.【点评】本题考查了二次函数的性质,解题的关键是能够根据图象经过的点确定a+b+c的值和a、b的符号,难度中等.二、填空题:本大题共4小题,每小题3分,共12分13.(3分)分式方程﹣=0的根是x=﹣1 .【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x(x﹣3)进行检验即可.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(3分)分解因式:2a2+4a+2= 2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4 .【分析】设y=0,则对应一元二次方程的解分别是点A和点B的横坐标,利用根与系数的关系即可求出+的值.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.【点评】本题考查了二次函数与一元二次方程的关系,掌握二次函数与x轴的交点的横坐标就是对应的一元二次方程的根是解题关键.16.(3分)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,0)则a的最大值是 6 .【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.【点评】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a,求出点P到点A的最大距离即可解决问题,属于中考常考题型.三、本大题共3小题,每小题6分,共18分17.(6分)计算:(﹣1)0﹣×sin60°+(﹣2)2.【分析】直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.【解答】解:(﹣1)0﹣×sin60°+(﹣2)2=1﹣2×+4=1﹣3+4=2.【点评】此题主要考查了实数运算,正确利用相关性质化简各数是解题关键.18.(6分)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得△ACD≌△CBE,继而证得结论.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.【点评】此题考查了全等三角形的判定与性质以及平行线的性质.注意证得△ACD ≌△CBE是关键.19.(6分)化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.四.本大题共2小题,每小题7分,共14分20.(7分)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数3690a b27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人【分析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;(2)求出a的值与总人数的比可得出结论;(3)求出喜爱新闻类人数的百分比,进而可得出结论.【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴b=450×36%=162(人),∴a=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.【点评】本题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.21.(7分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【点评】此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,难度一般,第二问需要分类讨论,注意不要遗漏.五.本大题共2小题,每小题8分,共16分22.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈,cos53°≈,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT △ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BN=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.【点评】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.23.(8分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B 两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),=bn=3,∴S△BOC∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数系数k的几何意义、三角形的面积公式以及根与系数的关系,解题的关键是:(1)利用反比例函数系数k的几何意义求出m的值;(2)根据各关系量找出关于k、b、n的三元一次方程组.本题属于中档题,难度不大,但考到的知识点较多,解决该题型题目时,综合根与系数的关系、三角形的面积公式以及一次函数上点的坐标特征得出方程组是关键.六.本大题共2小题,每小题12分,共24分24.(12分)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【分析】(1)欲证明BE是⊙O的切线,只要证明∠EBD=90°.(2)由△ABC∽△CBG,得=求出BC,再由△BFC∽△BCD,得BC2=BF•BD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题.【解答】(1)证明:连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)解:∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴=,即BC2=BG•BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF•BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==4,∴CG=CF+FG=5,在RT△BFG中,BG==3,∵BG•BA=48,∴即AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC﹣CH=.【点评】本题考查切线的判定、圆的有关知识、相似三角形的判定和性质、勾股定理.等腰三角形的判定和性质等知识,解题的关键是巧妙利用相似三角形的性质解决问题,属于中考压轴题.25.(12分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx 相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN 、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D 点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN =2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(补充方法:可用A,B点为直径作一个圆,圆与坐标轴的交点即为答案)(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△BCN =2S△PMN,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、勾股定理、相似三角形的判定和性质、点与函数图象的关系及分类讨论等.在(2)中注意分点D在x轴和y轴上两种情况,在(3)中分别利用PF表示出MF和NC是解题的关键,注意构造三角形相似.本题涉及知识点较多,计算量较大,综合性较强,特别是第(3)问,难度很大.。
泸州市二〇一六年高中阶段招生统一考试数学
泸州市二〇一六年高中阶段招生统一考试数学试题(考试时间:120分钟,试卷满分120分)一、选择题:本大题共12小题,每小题3分,共36分 1.6的相反数为A .6-B .6C .16-D .162.计算223a a -的结果是A .24aB .23aC .22aD .33.下列图形中不是轴对称图形的是A .B .C .D .4.将5570000用科学记数法表示正确的是A .5.57×105B .5.57×106C .5.57×107D .5.57×1085.下列立体图形中,主视图是三角形的是A .B .C .D .6.数据4,8,4,6,3的众数和平均数分别是A .5,4B .8,5C .6,5D .4,5 7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是A .12B .14C .13D .168.如图,ABCD W 的对角线AC 、BD 相交于点O ,且16AC BD +=,6CD =,则ABO△的周长是 A .10 B .14 C .20 D .22 9.若关于x 的一元二次方程222(1)10x k x k +-+-=有实数根,则k 的取值范围是 A .1k ≥ B .1k > C .1k < D .1k ≤ 10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是A .3 B .3C .2D .211.如图,矩形ABCD 的边长3AD =,2AB =,E 为AB 的中点,F 在边BC 上,且2BF FC =,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为A .2B .92C .22D .3212.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当a b -为整数时,ab 的值为 A .34或1 B .14或1 C .34或12D .14或34二、填空题:本大题共4小题,每小题3分,共12分 13.分式方程4103x x-=-的根是 . 14.分解因式:2242a a ++= .15.若二次函数2241y x x =--的图象与x 轴交于1(,0)A x 、2(,0)B x 两点,则1211x x +的值为 .16.如图,在平面直角坐标系中,已知点(1,0)A ,(1,0)B a -,(1,0)(0)C a a +>,点P 在以(4,4)D 为圆心,1为半径的圆上运动,且始终满足90BPC ∠=o ,则a 的最大值是 . 三、本大题共3小题,每小题6分,共18分 17.计算:02(21)12sin 60(2)--⨯+-o .18.如图,C 是线段AB 的中点,CD BE =,//CD BE .求证:D E ∠=∠.19.化简:322(1)12a a a a -+-⋅-+. 四.本大题共2小题,每小题7分,共14分20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型 新闻 体育 动画 娱乐 戏曲人数36 90 a b 27 根据表、图提供的信息,解决以下问题: (1)计算出表中a 、b 的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?21.某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?五.本大题共2小题,每小题8分,共16分22.如图,为了测量出楼房AC 的高度,从距离楼底C 处603米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i 1:3=的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin530.8≈o ,cos530.6≈o ,4tan533≈o ,计算结果用根号表示,不取近似值).23.如图,一次函数(0)y kx b k =+<与反比例函数my x=的图象相交于A 、B 两点,一次函数的图象与y 轴相交于点C ,已知点(4,1)A .(1)求反比例函数的解析式; (2)连接OB (O 是坐标原点),若BOC △的面积为3,求该一次函数的解析式.六.本大题共2小题,每小题12分,共24分24.如图,ABC △内接于⊙O ,BD 为⊙O 的直径,BD 与AC相交于点H ,AC 的延长线与过点B 的直线相交于点E ,且A EBC ∠=∠.(1)求证:BE 是⊙O 的切线;(2)已知//CG EB ,且CG 与BD 、BA 分别相交于点F 、G ,若48BG BA ⋅=,2FG =,2DE BF =,求AH 的值.25.如图,在平面直角坐标系中,点O 为坐标原点,直线l与抛物线2y mx nx =+相交于(1,33)A ,(4,0)B 两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得ABD △是以线段AB 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)点P 是线段AB 上一动点,(点P 不与点A 、B 重合),过点P 作//PM OA ,交第一象限内的抛物线于点M ,过点M 作MC ⊥x轴于点C ,交AB 于点N ,若BCN △、PMN △的面积BCN S △、PMN S △满足BCN PMN S S =△△,求出MNNC的值,并求出此时点M 的坐标.泸州市二〇一七年高中阶段招生统一考试数学参考试题答案一.选择题(本题共12小题,每小题3分,共36分): 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACCBADCBDDBA二.填空题(本题共4小题,每小题3分,共12分). 13.1x =-;14.22(1)a +;15.32-;16.6.三、本大题共3小题,每小题6分,共18分 17.解:02(21)12sin 60(2)--⨯+-o31234=-⨯+ 134=-+ =2.18.证明:∵C 是线段AB 的中点,∴AC =CB , ∵CD ∥BE , ∴∠ACD =∠B ,在ACD △和CBE △中,AC CB ACD B CD BE =⎧⎪∠=∠⎨⎪=⎩, ∴ACD △≌CBE △(SAS ), ∴D E ∠=∠.19.解:322(1)12a a a a -+-⋅-+ (1)(1)32(1)12a a a a a +---=⋅-+242(1)12a a a a --=⋅-+ (2)(2)2(1)12a a a a a +--=⋅-+24a =-.四.本大题共2小题,每小题7分,共14分20.解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数=9045020%=(人), ∵娱乐人数占36%, ∴45036%=162a =⨯,∴450162369027135b =----=(人);(2)∵喜欢动画的人数是135人,∴135360108450⨯=o o ; (3)∵喜爱新闻类人数的百分比36100%8%450=⨯=, ∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人. 21.解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得:603010805020880x y x y +=⎧⎨+=⎩, 解得164x y =⎧⎨=⎩.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(24)m -件,由题意得:24164(24)m m m m +-⎧⎨+-⎩≥32≤296, 解得:1213m ≤≤, ∵m 是整数, ∴12m =或13,故有如下两种方案: 方案(1):12m =,2420m -=即购买A 商品的件数为12件,则购买B 商品的件数为20件; 方案(2): 13m =,2422m -= 即购买A 商品的件数为13件,则购买B 商品的件数为22件.五.本大题共2小题,每小题8分,共16分 22.解:如图作BN ⊥CD 于N ,BM ⊥AC 于M .在BDN Rt △中,30BD =,:1:3BN BD =, ∴15BN =,153DN =,∵90C CMB CNB ∠=∠=∠=o ,∴四边形CMBN 是矩形,∴15CM BM ==,603153453BM CN ==-=,在ABM Rt △中,3tan 5AM ABM BM ∠==, ∴273AM =,∴15273AC AM CM =+=+.23.解:(1)∵点(4,1)A 在反比例函数my x=的图象上,∴414m =⨯=,∴反比例函数的解析式为4y x=; (2)∵点B 在反比例函数4y x=的图象上, ∴设点B 的坐标为4(,)n n.将(0)y kx b k =+<代入4y x=中,得: 4kx b x+=,整理得:240kx bx +-=, ∴44n k=-,即1nk =-, ①令(0)y kx b k =+<中0x =,则y b =, 即点C 的坐标为(0,)b ,∴132BOC S bn ==△,∴6bn =, ②∵点(4,1)A 在一次函数y kx b =+的图象上,∴14k b =+, ③联立①②③成方程组,即1614nk bn k b =-⎧⎪=⎨⎪=+⎩,解得:1232k b n ⎧=-⎪⎪=⎨⎪=⎪⎩,∴该一次函数的解析式为132y x =-+.六.本大题共2小题,每小题12分,共24分 24.(1)证明:连接CD ,∵BD 是直径, ∴∠BCD =90°,即∠D +∠CBD =90°, ∵∠A =∠D ,∠A =∠EBC , ∴∠CBD +∠EBC =90°, ∴BE ⊥BD ,∴BE 是⊙O 切线;(2)解:∵CG ∥EB ,∴∠BCG =∠EBC , ∴∠A =∠BCG , ∵∠CBG =∠ABC , ∴△ABC ∽△CBG ,∴BC ABBG BC=,即BC 2=BG •BA =48, ∴43BC =, ∵CG ∥EB , ∴CF ⊥BD ,∴△BFC ∽△BCD , ∴BC 2=BF •BD , ∵DF =2BF , ∴BF =4,在BCF Rt △中,2242CF BC FB =-=, ∴52CG CF FG =+=,在BFG Rt △中,2232BG BF FG =+=,∵BG •BA =48,∴82BA =即52AG =, ∴CG AG =,∴∠A =∠ACG =∠BCG ,∠CFH =∠CFB =90°, ∴∠CHF =∠CBF , ∴CH =CB =4, ∵ABC △∽CBG △, ∴AC BCCG BG=, ∴203CB CG AC CG ⋅==, ∴83AH AC CH =-=. 25.解:(1)∵(1,33)A ,(4,0)B 在抛物线2y mx nx =+的图象上,∴331640m n m n ⎧+=⎪⎨+=⎪⎩,解得343m n ⎧=-⎪⎨=⎪⎩, ∴抛物线解析式为2343y x x =-+;(2)存在三个点满足题意,理由如下:当点D 在x 轴上时,如图1,过点A 作AD ⊥x 轴于点D , ∵(1,33)A ,∴D 坐标为(1,0);当点D 在y 轴上时,设(0,)D d ,则221(33)AD d =+-,224BD d =+,且222(41)(33)36AB =-+=,∵ABD △是以AB 为斜边的直角三角形,∴222AD BD AB +=,即2221(33)436d d +-++=,解得3311d ±=,∴D 点坐标为3311(0,)+或3311(0,)-; 综上可知存在满足条件的D 点,其坐标为(1,0)或3311(0,)+或3311(0,)-; (3)如图2,过P 作PF ⊥CM 于点F , ∵//PM OA ,∴ADO Rt △∽MEP Rt △, ∴33MF ADPF OD ==, ∴33MF PF =,在ABD Rt △中,3BD =,33AD =,∴tan 3ABD ∠=,∴60ABD ∠=o ,设BC a =,则3CN a =, 在PFN Rt △中,30PNF BNC ∠=∠=o ,∴3tan PF PNF FN ∠==, ∴3FN PF =,∴43MN MF FN PF =+=, ∵2BCN PMN S =△△S , ∴22312432a PF =⨯⨯, ∴22a PF =,∴326NC a PF ==, ∴43226MN PFNC PF==, ∴2236MN NC a a ==⨯=, ∴(63)MC MN NC a =+=+∴M 点坐标为(4,(63))a a -+,又M 点在抛物线上,代入可得:23(4)43(4)(63)a a a --+-=+,解得32a =-或0a =(舍去), 421OC a =-=+,263MC =+, ∴点M 的坐标为(21,263)++.。
2016年泸州市中考数学试题及答案
泸州市2016年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.7-的绝对值为 A.7 B.17 C.17- D.7- 2.计算23()a 的结果为A.4aB.5aC.6aD. 9a3.如左下图所示的几何体的左视图是D C B A4.截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学计数法表示为A.51.1210⨯B.61.1210⨯C.71.1210⨯D. 81.1210⨯5. 如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°,则∠D 的度数为A . 90°B . 100°C . 110°D . 120° 6.菱形具有而平行四边形不具有的性质是A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D. 对角线互相垂直A. 15,15B. 15,14C.16,15D.14,158. 如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若∠C=65°,则∠P 的度数为A. 65°B. 130°C. 50°D. 100°9.若二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,则使函数值0y >成立的x 的取值范围是A.4x <-或2x >B.4-≤x ≤2C.x ≤4-或x ≥2D.42x -<<10.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是 第5题图B C第8题图DC B A11. 如图,在△ABC 中,AB=AC ,BC=24,tanC=2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为 A.13 B.152C.272D.12 12. 在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为A.2B.3C.4D.5第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效.二、填空题(每小题3分,共12分)13.分解因式:222m -= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .15.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .16.如图,在矩形ABCD 中,BC =,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:三、(每小题6分,共18分)17.计算:01sin 4520152O --+18.如图,AC=AE ,∠1=∠2,AB=AD . 求证:BC=DE .19.化简:221(1)211m m mm ÷-+++ 第16题图F第11题图四、(每小题7分,共14分)20.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。
2016年四川省泸州市中考数学试卷-答案
(a 2)(a 2) 2(a 1)
a 1
a2
2(a 2) .
【考点】分式的化简
20.【答案】(1)喜欢“娱乐”的学生人数 162 人,喜欢“动画”的学生人数为 135 人.
(2)“动画”部分所对应的扇形的圆心角度数为108 .
(3)估计该地区七年级学生中喜爱“新闻”的学生有 3800 人.
【考点】分解因式
15.【答案】 4
【解析】因为二次函数 y 2x2 4x 1的图像与 x 轴交于 A(x1,0) , B(x2,0) 两点,所以 x1 , x2 是一元二次方
程 2x2 4x 1 0 的两根,所以 x1 x2 2 , x1
x2
1 2
,所以
1 x1
1 x2
x1 x2 x1 x2
四川省泸州市 2016 年高中阶段学校招生考试
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】A
【解析】 6 的相反数为 6 ,故选 A.
【考点】相反数的概念
2.【答案】C
【解析】 3a2 a2 2a2 故选 C.
【考点】整式的加减——合并同类项
3.【答案】C
【解析】A,B,D 都是轴对称图形,C 不是轴对称图形,故选 C.
CD BE,
△ACD △CBE ,
D E .
【考点】全等三角形的判定和性质
19.【答案】 2(a 2) .
【解析】解: 原式 [(a 1)(a 1) 3 ] 2a 2 a 1 a 1 a 2
a2 1 3 2a 2 ( )
a 1 a 1 a 2 a2 4 2a 2 a 1 a 2
【解析】解:(1)从该地区抽取的部分七年级学生样本总数为 90 =450(人) . 20%
2016四川省泸州市中考数学试题
泸州市2016年高中阶段学校招生考试数学试卷第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(2016四川泸州,1,3分)6的相反数为 ( ) A.-6 B.6 C.16-D.16【答案】A2. (2016四川泸州,2,3分)计算3a 2-a 2的结果是A.4a 2B.3a 2 C .2a 2D.3 【答案】C3. (2016四川泸州,3,3分)下列图形中不是轴对称图形的是A. B. C. D. 【答案】C4. (2016四川泸州,4,3分)将5570000用科学记数法表示正确的是 A.55.5710⨯ B.65.5710⨯ C. 75.5710⨯ D.85.5710⨯ 【答案】B5. (2016四川泸州,5,3分)下列立体图形中,主视图是三角形的是A. B. C. D. 【答案】A6. (2016四川泸州,6,3分)数据4,8,4,6,3的众数和平均数分别是 A. 5,4 B.8,5 C.6,5 D. 4,5 【答案】D7. (2016四川泸州,7,3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只、红球6只、黑球4只.将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出 黑球的概率是 A.12 B.14 C. 13 D.16【答案】C 8. (2016四川泸州,8,3分)如图,□ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是 A.10 B.14 C.20 D.22【答案】B9. (2016四川泸州,9,3分)若关于x 的一元二次方程222(1)10x k x k +-+-=有实数根,则k 的取值范围是A. 1k ≥B.1k >C.1k <D.1k ≤ 【答案】D10. (2016四川泸州,10,3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是【答案】D11. (2016四川泸州,11,3分)如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M 、N ,则MN 的长为【答案】B12. (2016四川泸州,12,3分)已知二次函数22y ax bx =--(0a ≠)的图象的顶点在第四象限,且过点(-1,0),当a b -为整数时,ab 的值为 A.34或1 B.14或1 C. 34或12 D. 14或34【答案】A第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分) 13. (2016四川泸州,13,3分)分式方程4103x x-=-的根是 . 【答案】1-14. (2016四川泸州,14,3分)分解因式:2242a a ++= . 【答案】()221a +15. (2016四川泸州,15,3分)若二次函数2241y x x =--的图象与x 轴交于A (1x ,0)、B (2x ,0)两点,则1211x x +的值为 . 【答案】4- 16. (2016四川泸州,16,3分)如图,在平面直角坐标系中,已知点A (1,0),B (1a -,0),C (1a +,0)(0a >),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是 . 【答案】6 三、(每小题6分,共18分)17. (2016四川泸州,17,6分)计算:1)sin 60O【答案】解:原式142=-+134=-+2=18. (2016四川泸州,18,6分)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【答案】证明:∵CD∥BE,∴∠ACD=∠CBE,∵C是线段AB的中点∴AC =BC∴在△ACD和△CBE中,AC BCACD CBECD BE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△CBE∴∠D=∠E.19. (2016四川泸州,19,6分)化简:322(1)12aaa a-+-⋅-+【答案】解:原式()()11322112a a aa a a+-⎡⎤-=-⋅⎢⎥--+⎣⎦21322112a aa a a⎛⎫--=-⋅⎪--+⎝⎭242212a aa a--=⋅-+()()()222112a a aa a+--=⋅-+()22a=-四、(每小题7分,共14分)20. (2016四川泸州,20,7分)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并将调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成).根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;DB(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数; (3)若该地区七年级学生共有47500人,试估计该地区七年级学生 中喜爱“新闻”类电视节目的学生有多少人?【答案】解:(1)从该地区抽取的部分七年级学生样本总数为9045020%=(人), 喜爱“娱乐”的学生人数为45036%162b =⨯=(人),喜爱“动画的学生人数为450369016227135a =----=(人);(2)扇形统计图中表示“动画”部分所对应的扇形的圆心角度数为:135360108450⨯=; (3)因为抽取出的喜爱“新闻”的学生占抽取出的七年级学生总数的百分比为:368%450=,所以估计该地区七年级学生中喜爱“新闻”的学生有475008%3800⨯=(人).21. (2016四川泸州,21,7分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件品的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案? 【答案】解:(1)设A 、B 两种商品的单价分别是x 元、y 元,根据题意得:603010805020880x y x y +=⎧⎨+=⎩解这个方程组得:164x y =⎧⎨=⎩答:A 、B 两种商品的单价分别是16元、4元;(2)设需购买A 种商品m 件,则需购买B 种商品()24m -件,根据题意得:()()243216424296m m m m +-≥⎧⎪⎨+-≤⎪⎩, 解得:1213m ≤≤, 因为m 为正整数,所以当12m =时,2420m -=;当13m =时,2422m -=;答:该商店有两种购买方案:购买A 、B 商品各12件、20件;或13件、22件. 五、(每小题8分,共16分)22. (2016四川泸州,22,8分)如图,为了测量出楼房AC 的高度,从距离楼底C处D (点D 与楼底C在同一水平面上)出发,沿斜面坡度为i =DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin530.8O≈,cos530.6O≈,4tan 533O≈,计算结果用根号表示,不取近似值).【答案】解:过点B 作BE CD ⊥于点E ,BF AC ⊥于点F ,则四边形CEBF 是矩形, ∵斜坡的斜面DB坡度i = 即30BDE ∠=, 在Rt △AFB ,30BD =, ∴sin3015BE BD =⨯=, ∴cos3015ED BD =⨯=∴BF CE CD ED ==-=在Rt AFB ∆中,53ABF ∠=, ∵tan 53AFBF=,∴4tan 533AF BF =⋅== ∴15AC AF CF =+=(m ),答:楼房AC 的高度是()15m .23. (2016四川泸州,23,8分)如图,一次函数y kx b =+(0k <)与反比例函数my x=的图象相交于A 、B 两点,一次函数的图象与y 轴相交于点C ,已知点A (4,1).(1)求反比例函数的解析式; (2)连接OB (O是坐标原点),若△BOC 的面积为3,求该一次函数的解析式.22题图【答案】解:(1)∵点()4,1A 在反比例函数my x=图象上, ∴14m=,即4m =, ∴反比例函数的解析式为4y x=; (2)因为一次函数()0y kx b k =+<经过点()4,1A , 所以41k b +=,即14b k =-,联立414y xy kx k⎧=⎪⎨⎪=+-⎩得:()21440kx k x +--=,解得:4x =或1k -, 所以点1,4B k k ⎛⎫-- ⎪⎝⎭,又点()0,14C k -, 因为0k <,所以10k->,140k ->, BOC ∆的面积为:()111432k k ⎛⎫⨯-⨯-= ⎪⎝⎭,所以12k =-,∴143b k =-=, 所以该一次函数的解析式为132y x =-+.六、(每小题12分,共24分) 24. (2016四川泸州,24,12分)如图,△ABC 内接于⊙O ,BD 为⊙O 的直径,BD 与AC 相交于点H ,AC 的延长线与过点B 的直线交于点E ,且∠A=∠EBC . (1)求证:BE 是⊙O 的切线;第23题图(2)已知CG ∥EB ,且CG 与BD 、BA 分别相交于点F 、G ,若BG ⋅BA=48,DF=2BF ,求AH 的值.【答案】证明:(1)连接CD ,因为BD 为⊙O 的直径, 所以90BCD ∠=,即90D CBD ∠+∠=, 因为A D ∠=∠,A EBC ∠=∠ 所以90CBD EBC ∠+∠=,所以BE BD ⊥,所以BE 是⊙O 的切线; (2)因为CG ∥EB , 所以BCG EBC ∠=∠,所以A BCG ∠=∠,又CBG ABC ∠=∠. 所以ABC ∆∽CBG ∆, 所以BC AB BG BC=,即248BC BG BA =⋅=.所以BC =,因为//CG EB ,CF BD ⊥, 所以Rt △BFC ∽Rt △BCD 所以2BC BF BD =⋅, 又2DF BF =, 所以4BF =, 在Rt △BCF中,CF =,所以CG CF FG =+= 在Rt △BFG中,BG =因为48BG BA ⋅=,所以BA =AG =所以A ACG BCG ∠=∠=∠,90CFH CFB ∠=∠=所以CH CB ==因为ABC ∆∽CBG ∆, 所以=AC BCCG BG,D BE所以==BC CG AC BG ⋅所以AH AC CH =-=25. (2016四川泸州,25,12分)如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线2y mx nx =+相交于A(1,两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得△ABD 是以线段AB 为斜边的直角三角形.若存在,求出点P 的坐标;若不存在,说明理由;(3)点P 是线段AB 上一动点(点P 不与点A 、B 重合),过点P 作PM ∥OA 交第一象限内的抛物线于点M ,过点M 作MC ⊥x 轴于点C ,交AB 于点N ,若△BCN 、△PMN 的面积BCN S ∆、PMN S ∆满足【答案】解:(1)因为点A(1,在抛物线2y mx nx =+的图象上,所以1640m n m n ⎧+=⎪⎨+=⎪⎩,m n ⎧=⎪⎨=⎪⎩所以抛物线的解析式为2y =+;(2)存在三个点满足题意,理由如下:当点D 在x 轴上时,过点A 作AD x ⊥轴于点D,因为点(A , 所以点D 坐标为()1,0;当点D 在y 轴上时,设点()0,D d ,则:()221AD d =+,2224BD d =+,()(2224136AB =-+=因为△ABD 是以AB 为斜边的直角三角形, 所以222AD BD AB +=即()22221436dd +++=,解得:d =所以点D 坐标为0,2⎛+ ⎝⎭,0,2⎛ ⎝⎭综上知:存在三个点满足题意,其坐标分别为:()1,0、⎛ ⎝⎭、⎛ ⎝⎭; (3)过点P 作PF ⊥CM 于点F,因为PM ∥OA ,所以Rt △ADO ∽Rt △MFP ,所以MF ADPF OD==MF =,在Rt △ABD 中,BD=3,AD =,所以tan ABD ∠=,所以60ABD ∠=,设BC a =,CN =,在Rt △PFN 中,30PNF BNC ∠=∠=,因为tan PF PNF FN ∠==所以FN =所以MN MF FN =+=,因为△BCN 、△PMN 的面积满足2BCN PMN S S ∆∆=所以221222a =⨯⨯,所以a =,所以MN NC ==因为MC MN NC a =+=因为点()4,M a a -在抛物线2y =+上,所以))244a a a -+-=,所以3a =0a =(舍去),所以41OC a =-=,MC =,所以点M 的坐标为。
2016年泸州中考卷
泸州市2016年高中阶段学校招生考试数学试卷编辑:马溪中学 游书呵 第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.6的相反数为A.-6B.6C.16-D.162.计算3a 2-a 2的结果是A.4a 2B.3a 2 C .2a 2D.3 3.下列图形中不是轴对称图形的是A. B. C. D. 4.将5570000用科学记数法表示正确的是A.55.5710⨯ B.65.5710⨯ C. 75.5710⨯ D.85.5710⨯ 5.下列立体图形中,主视图是三角形的是A. B. C. D. 6.数据4,8,4,6,3的众数和平均数分别是A. 5,4B.8,5C.6,5D. 4,57.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球 2只、红球6只、黑球4只.将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出 黑球的概率是 A.12 B.14 C. 13 D.168.如图,□ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是 A.10 B.14 C.20 D.229.若关于x 的一元二次方程222(1)10x k x k +-+-=有实数根,则k 的取值范围是A. 1k ≥B.1k >C.1k <D.1k ≤10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是11.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M 、N ,则MN 的长为A.5B.2012.已知二次函数22y ax bx =--(0a ≠)的图象的顶点在第四象限,且过点(-1,0),当a b -为整数时,ab 的值为 A.34或1 B.14或1 C. 34或12 D. 14或34第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分)13.分式方程4103x x-=-的根是 . 14. 分解因式:2242a a ++= .15. 若二次函数2241y x x =--的图象与x 轴交于A (1x ,0)、B (2x ,0)两点,则1211x x +的值为 . 16. 如图,在平面直角坐标系中,已知点A (1,0),B (1a -,0),C (1a +,0)(0a >),点P 在以 D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是 .三、(每小题6分,共18分)17.计算:21)sin60(2)O O +-18. 如图,C 是线段AB 的中点,CD=BE , CD ∥BE.求证:∠D=∠E.19.化简:322(1)12a a a a -+-⋅-+ 四、(每小题7分,共14分)20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并将调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成).根据表、图提供的信息,解决以下问题: (1)计算出表中a 、b 的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生 中喜爱“新闻”类电视节目的学生有多少人?xDB21.某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元. (1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件品的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案? 五、(每小题8分,共16分)22.如图,为了测量出楼房AC 的高度,从距离楼底C处D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i =DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC的高度(参考数据:sin530.8O ≈,cos530.6O≈,4tan 533O≈,计算结果用根号表示,不取近似值).23.如图,一次函数y kx b =+(0k <)与反比例函数my x=的图象相交于A 、B 两点,一次函数的图象与y 轴相交于点C ,已知点A (4,1).(1)求反比例函数的解析式; (2)连接OB (O 是坐标原点),若△BOC 的面积为3,求该一次函数的解析式.六、(每小题12分,共24分)24.如图,△ABC 内接于⊙O ,BD 为⊙O 的直径,BD 与AC 相交于点H ,AC 的延长线与过点B 的直线交于点E ,且∠A=∠EBC .(1)求证:BE 是⊙O 的切线;(2)已知CG ∥EB ,且CG 与BD 、BA 分别相交于点F 、G ,若BG ⋅BA=48,DF=2BF ,求AH 的值.DD BE25.如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线2y mx nx =+相交于A(1,两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得△ABD 是以线段AB 为斜边的直角三角形.若存在,求出点P 的坐标;若不存在,说明理由;(3)点P 是线段AB 上一动点(点P 不与点A 、B 重合),过点P 作PM ∥OA 交第一象限内的抛物线于点M ,过点M 作MC ⊥x 轴于点C ,交AB 于点N ,若△BCN 、△PMN 的面积BCN S ∆、PMN S ∆满足。
2016年四川省泸州市中考数学试卷
2016年四川省泸州市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.(3分)6的相反数为()A.﹣6 B.6 C.﹣ D.2.(3分)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.33.(3分)下列图形中不是轴对称图形的是()A.B.C.D.4.(3分)将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1085.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.6.(3分)数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,57.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.8.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.229.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤110.(3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距(圆心到边的距离)为三边作三角形,则该三角形的面积是()A.B.C.D.11.(3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC 上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.12.(3分)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或二、填空题:本大题共4小题,每小题3分,共12分13.(3分)分式方程﹣=0的根是.14.(3分)分解因式:2a2+4a+2=.15.(3分)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.16.(3分)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三、本大题共3小题,每小题6分,共18分17.(6分)计算:(﹣1)0﹣×sin60°+(﹣2)2.18.(6分)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.19.(6分)化简:(a+1﹣)•.四.本大题共2小题,每小题7分,共14分20.(7分)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?21.(7分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?五.本大题共2小题,每小题8分,共16分22.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D (点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).23.(8分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.六.本大题共2小题,每小题12分,共24分24.(12分)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.25.(12分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.2016年四川省泸州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.(3分)6的相反数为()A.﹣6 B.6 C.﹣ D.【解答】解:6的相反数为:﹣6.故选:A.2.(3分)计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.3【解答】解:3a2﹣a2=2a2.故选C.3.(3分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.4.(3分)将5570000用科学记数法表示正确的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×108【解答】解:5570000=5.57×106.故选:B.5.(3分)下列立体图形中,主视图是三角形的是()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选:A.6.(3分)数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,5【解答】解:∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选:D.7.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.8.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.9.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1 C.k<1 D.k≤1【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=b2﹣4ac=4(k﹣1)2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.故选:D.10.(3分)以半径为1的圆的内接正三角形、正方形、正六边形的边心距(圆心到边的距离)为三边作三角形,则该三角形的面积是()A.B.C.D.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:,,,∵()2+()2=()2,∴该三角形是直角三角形,∴该三角形的面积是××=,故选:D.11.(3分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC 上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.12.(3分)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【解答】解:依题意知a>0,﹣>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又∵a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1.故选A.二、填空题:本大题共4小题,每小题3分,共12分13.(3分)分式方程﹣=0的根是x=﹣1.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.14.(3分)分解因式:2a2+4a+2=2(a+1)2.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.15.(3分)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.16.(3分)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是6.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故答案为6.三、本大题共3小题,每小题6分,共18分17.(6分)计算:(﹣1)0﹣×sin60°+(﹣2)2.【解答】解:(﹣1)0﹣×sin60°+(﹣2)2=1﹣2×+4=1﹣3+4=2.18.(6分)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.19.(6分)化简:(a+1﹣)•.【解答】解:(a+1﹣)•====2a﹣4.四.本大题共2小题,每小题7分,共14分20.(7分)为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴b=450×36%=162(人),∴a=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.(7分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.五.本大题共2小题,每小题8分,共16分22.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BN=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.23.(8分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),=bn=3,∴S△BOC∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.六.本大题共2小题,每小题12分,共24分24.(12分)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【解答】(1)证明:连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线.(2)解:∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,∵∠CBG=∠ABC∴△ABC∽△CBG,∴=,即BC2=BG•BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF•BD,∵DF=2BF,∴BF=4,在RT△BCF中,CF==4,∴CG=CF+FG=5,在RT△BFG中,BG==3,∵BG•BA=48,∴即AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC﹣CH=.25.(12分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(补充方法:可用A,B点为直径作一个圆,圆与坐标轴的交点即为答案)(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S=2S△PMN,△BCN∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).。
(高清版)2016年四川省泸州市中考数学试卷
节目类型 新闻 体育 动画 娱乐 戏曲
人数
36
90
a
b
27
根据表、 图提供的信息,解决以下 问题:
(1)计算出表 中 a , b的值;
(2)求扇形统 计图中表示“动画”部分所对 应的扇形的圆 心角度数 ;
(3)若 该 地 区 七 年 级 学 生 共 有 47 500 人 ,试 估 计 该 地 区 七 年 级 学 生 中 喜
爱“新闻”类电视节 目的学生有多 少人?
()
A. 5.57 105
B. 5.57 106
无
C. 5.57 107
5.下 列 立 体 图 形 中 ,主 视 图 是 三 角 形 的 是
()
D D. 5.57 108
A
B
C
6.数 据 4 ,8,4,6,3 的 众 数 和 平 均 数 分 别 是
()
A.5 , 4
B.8 , 5
C.6 , 5
D D.4 ,5
的最大值是
.
三、解答题(本大题共 9 小题,共 72 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 6 分)
数学试卷 第 3页(共 20页)
计 算 : ( 2 1)0 12 sin 60 (2)2 .
18.(本小题满分 6 分)
如 图 , C 是 线 段 AB 的 中 点 , CD BE , CD∥BE . 求 证 : D E .
围是
()
A. k≥1 C. k<1
B. k>1 D. k≤1
10.以 半 径 为 1 的 圆 的 内 接 正 三 角 形 、正 方 形 、正 六 边 形 的 边 心 距 为 三 边 作
三角形 ,则该三角 形的面积是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年四川省泸州市中考数学试题及答案解析
整理人:泸州市,护国中学,龙易老师
一、选择题:本大题共12小题,每小题3分,共36分
1.6的相反数为( )
A.﹣6 B.6 C.﹣ D.
2.计算3a2﹣a2的结果是()
A.4a2B.3a2C.2a2D.3
3.下列图形中不是轴对称图形的是( )
A.B. C.D.
4.将5570000用科学记数法表示正确的是( )
A.5.57×105B.5.57×106C.5.57×107D.5.57×108
5.下列立体图形中,主视图是三角形的是()
A.B.C. D.
6.数据4,8,4,6,3的众数和平均数分别是( )
A.5,4 B.8,5C.6,5 D.4,5
7.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()
A.B. C.D.
8.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()
A.10 B.14C.20D.22
9.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()
A.k≥1 B.k>1C.k<1 D.k≤1
10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )
A.B. C.
11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()
A. B.C.D.
12.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()
A.或1 B.或1C.或D.或
二、填空题:本大题共4小题,每小题3分,共12分
13.分式方程﹣=0的根是.
14.分解因式:2a2+4a+2=.
15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.
16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.
三、本大题共3小题,每小题6分,共18分
17.计算:(﹣1)0﹣×sin60°+(﹣2)2.
18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.
19.化简:(a+1﹣).
四.本大题共2小题,每小题7分,共14分。