第四节制动力计算

合集下载

制动力计算公式

制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重) ×9.8] 当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重) ×9.8] 二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重) ×9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和×9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和×9.8
整车制动率>=60% 为合格。

制动力算法

制动力算法
因为P_MAX2= 55.6 < 60所以
示例:P_GCC12=100*(63 - 50) / (222 * 0.98) = 5.98
后轴
如果制动和≥60
过程差率=左右轮最大过程差差值/左右轮最大制动力最大值
P_GCC2=100*ABS(F_GCC_L2- F_GCC_R2) / Max(F_MAX_L2, F_MAX_R1)
如果制动和<60
过程差率=左右轮最大过程差差值/轴重
P_GCC12=100*ABS(F_GCC_L2- F_GCC_R2) / M2
假如测试数据如下:
轴重
(kg)
最大制动力(10×N)
最大过程差(10×N)
制动和率(%)
过程差率(%)




1轴
111
33
44
30
43
70.8
29.5
2轴
222
55
66
50
63
55.6
5.98
项目
算法
制动和率
制动和=左右轮最大制动力和/轴重
P_MAX1 =100*(F_MAX_L1 + F_MAX _R1) / M1
根据GB21861-2008,制动算法如下:
轴重
最大制动力
最大过程差
制动和率(%)
过程差率(%)




1轴
M1
F_MAX_L1
F_MAX _R1
F_GCC_L1
F_GCC_R1
P_MAX1
P_GCC1
2轴
M2
F_MAX _R2
F_ቤተ መጻሕፍቲ ባይዱAX _R2
F_GCC_L2

制动力计算公式范文

制动力计算公式范文

制动力计算公式范文制动力是指对物体运动以及旋转运动产生减速或停止作用的力。

它的计算公式可以根据物体质量、加速度、摩擦系数等因素来确定。

首先,我们来看物体在匀加速运动过程中的制动力计算。

在匀加速运动中,物体的减速度a是已知的,通过牛顿第二定律可以得到物体的制动力F:F=m*a其中,F表示制动力,m表示物体的质量,a表示物体的减速度。

接下来,我们来看物体在旋转运动中的制动力计算。

在旋转运动中,物体的制动力产生于摩擦力。

摩擦力的大小可以通过以下公式计算:F(friction) = μ * N其中,F(friction)表示摩擦力,μ表示摩擦系数,N表示物体受到的支持力。

在旋转运动中,支持力N的大小可以通过以下公式计算:N=m*g其中,m表示物体的质量,g表示重力加速度。

将上述两个公式结合,可以得到物体旋转运动中的制动力计算公式:F=μ*m*g总结一下,制动力的计算公式根据物体的运动状态可以分为匀加速运动和旋转运动两种情况。

匀加速运动中的制动力公式为F=m*a,而旋转运动中的制动力公式为F=μ*m*g。

在实际应用中,我们需要根据具体问题的条件来选择适当的公式进行计算。

需要注意的是,以上公式均为理想情况下的计算公式,实际情况中会受到一些不能忽略的因素的影响,如空气阻力、摩擦力的变化等。

因此,在实际应用中可能需要考虑更多的因素,以得到更精确的制动力计算结果。

总之,制动力是对物体运动以及旋转运动产生减速或停止作用的力,其计算公式根据物体的运动状态可以选择匀加速运动或旋转运动的公式。

在实际应用中,需要根据具体情况选择适当的公式,并考虑其他因素以得到更精确的计算结果。

制动力计算方法

制动力计算方法

《机动车运行安全技术条件》(GB7258-2004)有关制动方面的:1.1 台试检验制动性能1.1.1 行车制动性能检验1.1.1.1 汽车、汽车列车在制动检验台上测出的制动力应符合表 6 的要求。

对空载检验制动力有质疑时,可用表 6 规定的满载检验制动力要求进行检验。

摩托车及轻便摩托车的前、后轴制动力应符合表 6 的要求,测试时只允许乘坐一名驾驶员。

检验时制动踏板力或制动气压按7.13.1.3 的规定。

表 6 台试检验制动力要求1.1.1.2 制动力平衡要求(两轮、边三轮摩托车和轻便摩托车除外)在制动力增长全过程中同时测得的左右轮制动力差的最大值,与全过程中测得的该轴左右轮最大制动力中大者之比,对前轴不应大于20% ,对后轴(及其它轴)在轴制动力不小于该轴轴荷的60% 时不应大于24%;当后轴(及其它轴)制动力小于该轴轴荷的60% 时,在制动力增长全过程中同时测得的左右轮制动力差的最大值不应大于该轴轴荷的8% 。

依据国标要求,对前轴以外的制动力平衡计算分两种情况:1、当该轴制动制动率 >= 60%时,过程差最大差值点的两个力分别为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/f1 * 100 ;如果f1 < f2不平衡率 = (f2 –f1)/f2 * 1002、当该轴制动制动率 < 60%时,过程差最大差值点的两个力分别为f1和f2,如果f1 >= f2 不平衡率 = (f1 –f2)/轴重 * 100 ;如果f1 < f2不平衡率 = (f2 –f1)/轴重 * 100注意:以上为简约的计算,较为准确的计算要注意单位之间的换算:轴重是kg,制动力的单位是10N例如:轴重最大左最大右差值左差值右制动率不平衡率2074 543 508 543 508 50.7 1.7二轴不平衡率( 543-508)*10/(2074*9.8)*100= 1.722%有关制动台仪表制动台仪表的不平衡率算法说明书没有给出,不清楚其算法,对于前轴有可能是对的,对于后轴等仪表算法可定是错误的,制动台本身不能得到车辆的轴重,也就不能判断制动率是否 >=60,也就不能得出不平衡率。

制动力计算公式

制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重)x9.8]
当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和X9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和X9.8
整车制动率>=60% 为合格。

动车组制动力的计算

动车组制动力的计算

动车组制动力的计算3.1 作用在动车组上的合力在动车组运行中,作用在动车组上的总合力C 是动车牵引力F y (F y =F y ⋅λ,牵引力使用系数)、列车总全阻力平和列车总制动力B 的代数和。

即式3-1:B W FyC --= (KN) (3-1)平均到列车每千牛重力上的合力,称为单位合力c ,其单位是N/kN ,表达 如3-2或3-3所示。

3310)()()(10⨯+--=+⨯=gG P B W Fy g G P C c (3-2)或 b w fy c --= ( N/kN) (3-3) 式中P 、G 分别为动车组计算重量和牵引重量,fy 、w 、b 分别为动车组 位牵引力、单位全阻力、单位制动力,单位均为N/kN 。

三个力并非同时作用在列车上,单位合力的组成按动车组的工况有六种情况(l)牵引运行 j i w fy w fy c --=-=0 (N/kN) 式中: 0w —列车单位基本阻力,N/kN ;j i —制动地段的加算坡道千分数。

(2)隋力运行 )(0j i w w c +-=-= (N/kN)(3)动力制动 )(0j d d d d i b w b w c ++-=--=λλ (N/kN) 式中: d λ—动力制动力使用系数,取0.9;d b —列车单位动力制动力,N/kN 。

(4)空气紧急制动 )(0j i b w b w c ++-=--= (N/kN) (5)空气常用制动 )(0j c c i b w b w c ++-=--=ββ (N/kN) 式中: c β—常用制动系数,可根据减压量查表得。

(6)动力制动加空气常用制动)(0j d d d d i b w b w c ++-=--=λλ (N/kN)3.2 空气制动力的计算动车组制动力是由制动装置产生的、与动车组运行方向相反、阻碍动车组运行的、司机可以根据需要调节的外力。

如前所述,制动力产生的方法有:摩擦制动,动力制动以及电磁制动等。

制动器选择计算公式

制动器选择计算公式

制动器选择计算公式在车辆制动系统中,制动器是至关重要的组成部分。

它们负责将车辆的动能转化为热能,从而减速或停止车辆。

因此,选择适当的制动器对于车辆的性能和安全性至关重要。

在选择制动器时,需要考虑诸多因素,包括车辆的重量、速度、使用环境等。

本文将介绍制动器选择的计算公式,帮助工程师们更好地选择适合的制动器。

首先,我们需要了解一些基本的概念。

制动器的性能通常由制动力和制动力矩来描述。

制动力是指制动器施加在车轮上的力,而制动力矩则是制动器施加在车轮上的力乘以制动器半径。

制动器的选择计算公式将涉及到这些参数。

1. 制动力计算公式。

制动力的计算公式可以表示为:F = μ m g。

其中,F为制动力,μ为摩擦系数,m为车辆的质量,g为重力加速度。

摩擦系数是指制动器和车轮之间的摩擦系数,它取决于制动器和车轮的材料。

一般来说,摩擦系数越大,制动力越大。

2. 制动力矩计算公式。

制动力矩的计算公式可以表示为:T = F r。

其中,T为制动力矩,F为制动力,r为制动器半径。

制动力矩是制动器施加在车轮上的力乘以制动器半径,它反映了制动器对车轮的制动能力。

3. 动能计算公式。

在选择制动器时,还需要考虑车辆的动能。

动能的计算公式可以表示为:E = 0.5 m v^2。

其中,E为动能,m为车辆的质量,v为车辆的速度。

动能是车辆的速度和质量的函数,它反映了车辆在运动过程中所具有的能量。

综合考虑以上几个公式,我们可以得出制动器选择的计算公式:T = μ m g r。

根据这个计算公式,我们可以计算出所需的制动力矩,从而选择适合的制动器。

需要注意的是,实际的制动器选择还需要考虑到制动器的类型、材料、散热能力等因素,这些因素将对制动器的性能产生重要影响。

除了上述的计算公式外,还有一些其他因素需要考虑。

例如,制动器的热容量、制动器的响应时间、制动器的耐久性等。

这些因素将对制动器的选择产生重要影响,工程师们在选择制动器时需要综合考虑这些因素。

制动力计算公式

制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重)x9.8]
当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和X9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和X9.8
整车制动率>=60% 为合格。

制动计算公式范文

制动计算公式范文

制动计算公式范文一、制动距离的计算公式:制动距离=制动初速度²/(2x制动加速度)其中制动初速度是指车辆开始制动时的速度,以米/秒为单位;制动加速度是指制动时车辆减速的大小,以米/秒²为单位。

二、质量和速度的关系:制动初速度²=初始速度²-2x制动加速度x制动距离其中初始速度是指车辆开始制动前的速度,以米/秒为单位。

三、制动加速度的计算公式:制动加速度=制动力/车辆质量其中制动力是指车辆制动产生的力量,以牛顿为单位;车辆质量是指车辆的质量,以千克为单位。

四、制动力的计算公式:制动力=钳子力x制动系数其中钳子力是指制动钳对制动盘产生的力量,以牛顿为单位;制动系数是指制动钳与制动盘之间的摩擦系数。

五、钳子力的计算公式:钳子力=踏板力x主缸比例x钳子比例其中踏板力是指驾驶员在踏板上施加的力量,以牛顿为单位;主缸比例是指主缸的工作面积与踏板工作面积的比值;钳子比例是指制动钳活塞工作面积与主缸工作面积的比值。

根据上述公式,可以进行制动距离的计算。

首先,需要根据车辆质量、踏板力、主缸比例、钳子比例以及制动系数等参数来计算制动力。

然后,根据制动力和车辆质量的关系来计算制动加速度。

最后,根据车辆的初始速度、制动加速度和制动距离来计算制动距离。

需要注意的是,以上公式中的参数需要根据具体车辆和实际情况进行确定。

不同类型的车辆、不同制动系统和不同驾驶员的参数可能存在差异。

因此,在进行制动计算时,需要准确获取车辆和制动系统的相关参数,并结合实际情况进行计算。

最后,制动计算公式是理论模型,实际制动距离还可能受到多种因素的影响,例如路面情况、制动盘和制动片的磨损状况以及制动系统的响应时间等。

因此,在实际驾驶中,驾驶员需要根据具体情况进行制动操作,以确保行车安全。

制动器制动力矩的计算

制动器制动力矩的计算

制动器制动力矩的计算制动扭矩:领蹄:111=K r F M δ从蹄:222=K r F M α求出1??K 、2??K 、1F 、βθ2F 就可以根据μ计算出制动器的制动扭矩。

一.制动器制动效能系数1??K 、2??K 的计算1.制动器蹄片主要参数:长度尺寸:A 、B 、C 、D 、r (制动鼓内径)、b (蹄片宽)如图1所示;角度尺寸:β、e (蹄片包角)、α(蹄片轴中心---毂中心连线的垂线和包角平分线的夹角,即最大单位压力线包角平分线的夹角,随磨擦片磨损而增大);μ为蹄片与制动鼓间磨擦系数。

2.求制动效能系数的几个要点1)制动时磨擦片与制动鼓全面接触,单位压力的大小呈正弦曲线分布,如图2,maxP 位于蹄片轴中心---毂中心连线的垂线方向,其它各点的单位压力σsinmax ?=P P ;2)通过微积分计算,将制动鼓与磨擦片之间的单位压力换算成一个等效压力,求出等效压力的方向σ 和力的作用点1Z 、2Z (1OZ 、2OZ ),等效力 P 所产生的摩擦力1XOZ (等于μ?P )即扭矩(需建立M 和蹄片平台受力F 之间的关系);实际计算必须找出M 与F 之间的关系式:=K r F M3)制动扭矩计算蹄片受力如图3: a. 三力平衡领蹄:111OE H M ?=从蹄:222OE H M ?=b. 通过对蹄片受力平衡分析(对L 点取力矩)()1111G L H b a F ?=+?()1111/G L b a F H +?=∴()11111/G L OE b a F M ?+?=111=K r F M∴ 1111G L OE r B A K ?+=同理: 2222G L OE r B A K ?+=c. 通过图解分析求出1OE 、2OE 、11G L 、22G L 与制动器参数之间的关系,就可以计算出1??K 、1??K 。

3.具体计算方法: 11-?=ργ?Kl K ; 1'2+?=ργ?Kl KrBA l +=; rC B K 22+=1) 在包角平分线上作辅助圆,求Z.圆心通过O 点,直径=ee e r sin 2sin4+?画出σ角线与辅助圆交点,即Z 点等效法向分力作用点。

制动力矩计算公式

制动力矩计算公式

制动力矩计算公式制动力矩计算公式是一种用来计算汽车在制动过程中产生的操作力矩的公式。

它可以帮助我们更好地了解汽车在制动时所需要的力和能量,从而使得汽车的行驶安全性更高。

它的计算公式为:制动力矩 = 重力× 加速度× 汽车质量× 轮子半径其中,重力是指汽车在行驶过程中所受的重力;加速度是指汽车在行驶过程中加速(减速)度数;汽车质量是指汽车的质量;轮子半径是指汽车轮子的半径。

例如,当汽车行驶过程中,重力为10N,加速度为2m/s2,汽车质量为1000kg,轮子半径为0.5m时,制动力矩就可以用公式计算出来:制动力矩= 10N×2m/s2×1000kg×0.5m = 10000N·m上文中的公式是计算汽车在行驶过程中所受的综合平均制动力矩,仅供参考,实际制动力矩还取决于汽车本身的特性,比如汽车质量、轮子尺寸等,需要根据实际情况进行修正。

另外,此计算公式不能反映汽车在行驶过程中所受的瞬间制动力矩,因此也无法准确表示汽车在制动过程中所需要的制动力矩。

在实际应用中,还应该考虑汽车在制动过程中的操作力矩、转动惯量、轮胎阻力等因素,以便更准确地计算出汽车在制动过程中所需要的力矩大小。

此外,汽车在行驶过程中还会受到各种外界因素的影响,比如路面状况、天气状况等,这些外界因素也会影响汽车在制动过程中所需要的力矩大小,因此在实际应用中,还应该考虑这些外界因素,以便更准确地计算出汽车在制动过程中所需要的力矩大小。

总之,制动力矩计算公式只能反映汽车在行驶过程中所受的综合平均制动力矩,并不能准确表示汽车在制动过程中所需要的力矩大小,因此在实际应用中,应该考虑汽车本身的特性、外界因素等因素,以便更准确地计算出汽车在制动过程中所需要的力矩大小。

制动计算公式范文

制动计算公式范文

制动计算公式范文制动计算是在机械设计、交通运输等领域中非常重要的计算问题,它涉及到制动系统的设计和性能评估。

制动计算公式是指用来计算制动系统相关参数的数学公式,通常包括制动力、制动距离、制动时间等参数的计算方法。

下面将介绍一些常见的制动计算公式和其应用。

1.制动力计算公式在机械设计中,制动力是制动系统所能提供的制动力量,通常用来衡量制动系统的性能。

制动力的计算公式如下:F=μN其中,F为制动力(N),μ为摩擦系数(无量纲),N为受制动物体施加的正向力(N)。

摩擦系数μ是一个反映摩擦特性的物理量,它与接触材料的性质、表面粗糙度和接触状态等有关。

一般来说,摩擦系数越大,制动力就越大。

2.制动距离计算公式制动距离是车辆在制动过程中行驶的距离,用来评估车辆的制动性能。

制动距离的计算公式如下:d=V^2/(2μg)其中,d为制动距离(m),V为车辆的初始速度(m/s),μ为摩擦系数(无量纲),g为重力加速度(9.81m/s^2)。

通过这个公式可以看出,制动距离与初始速度的平方成正比,与摩擦系数和重力加速度成反比。

因此,在设计制动系统时,需要注意车辆的初始速度和摩擦系数的选择,以减小制动距离。

3.制动时间计算公式制动时间是车辆在进行急刹车时,从刹车踏板被踩下到车辆完全停止的时间。

制动时间的计算公式如下:t=V/a其中,t为制动时间(s),V为车辆的初始速度(m/s),a为减速度(m/s^2)。

减速度a是车辆在进行制动时的减速度,通常是制动系统所能提供的最大减速度。

制动时间与初始速度成正比,与减速度成反比。

因此,在设计制动系统时,需要选择适当的减速度,以保证车辆在合理的时间内完成制动。

4.制动功率计算公式制动功率是指制动系统所需消耗的功率,用来评估制动系统的能耗。

制动功率的计算公式如下:P=FV其中,P为制动功率(W),F为制动力(N),V为车辆的速度(m/s)。

制动功率与制动力和速度成正比。

在选择制动系统时,需要考虑制动功率的大小,以保证系统能够提供足够的制动力。

制动器选择计算公式

制动器选择计算公式

制动器选择计算公式制动器是车辆中非常重要的一个部件,它能够帮助车辆减速和停止,保证了行车的安全。

在选择制动器时,需要考虑车辆的重量、速度、使用环境等因素,以确保制动器的性能能够满足车辆的需求。

在选择制动器时,可以通过一些计算公式来帮助确定最合适的制动器类型和规格。

一、制动力计算公式。

制动力是制动器的一个重要性能指标,它表示制动器在工作时产生的制动力大小。

制动力的大小取决于制动器的摩擦系数、制动器半径、制动器数量等因素。

制动力的计算公式如下:F = μ N。

其中,F表示制动力,单位为牛顿(N);μ表示摩擦系数;N表示制动器所受的垂直载荷,单位为牛顿(N)。

根据这个公式,可以通过摩擦系数和制动器所受的垂直载荷来计算出制动力的大小。

在选择制动器时,需要根据车辆的重量和速度来确定所需的制动力大小,以确保制动器能够满足车辆的制动需求。

二、制动器热量计算公式。

制动器在工作时会产生大量的热量,如果热量无法及时散发,会导致制动器失效,影响行车安全。

因此,需要通过计算来确定制动器在工作时产生的热量大小,以选择合适的散热方式和散热器规格。

制动器热量的计算公式如下:Q = F r V。

其中,Q表示制动器产生的热量,单位为焦耳(J);F表示制动力;r表示制动器的半径,单位为米(m);V表示车辆速度,单位为米/秒(m/s)。

根据这个公式,可以通过制动力、制动器半径和车辆速度来计算出制动器产生的热量大小。

在选择制动器时,需要根据车辆的使用环境和工况来确定制动器所需的散热能力,以确保制动器能够有效散热,避免因热量过大而导致失效。

三、制动器尺寸计算公式。

制动器的尺寸也是选择制动器时需要考虑的一个重要因素。

制动器的尺寸大小会影响制动器的制动效果和散热效果,因此需要通过计算来确定最合适的制动器尺寸。

制动器尺寸的计算公式如下:D = 2 (F r) / (μ P)。

其中,D表示制动器的直径,单位为米(m);F表示制动力;r表示制动器的半径,单位为米(m);μ表示摩擦系数;P表示制动器所受的压力,单位为帕斯卡(Pa)。

制动力计算公式讲课稿

制动力计算公式讲课稿

制动力计算公式
一、一轴(前轴)制动力
一轴制动率=(左前轮制动力+右前轮制动力)/ [(左前轮荷重+右前轮荷重)x9.8]
当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力-右前轮过程差最大制动力)/ 两个前轮中最大制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率=(左后轮制动力+右后轮制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴制动率不做判定
当二轴制定率>=60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60%时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力-右后轮过程差最大制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴不平衡率<8%时为合格
三、手制动力(手刹)
手制动率=(左轮制动力+右轮制动力)/四个车轮荷重之和X9.8
手制动率>=20%为合格
四、整车制动
整车制动率=四个车轮制动力之和/四个车轮荷重之和X9.8
整车制动率>=60% 为合格。

制动力计算公式

制动力计算公式

制动力计算公式
一、一轴(前轴)制动力
一轴制动率= (左前轮制动力+右前轮制动力)/ [(左前轮荷重+ 右前轮荷重)x9.8]当一轴制动率>=60% 为合格
一轴不平衡率=(左前轮过程差最大制动力- 右前轮过程差最大制动力)/ 两个前轮中最大
制动力
当一轴不平衡率<=20% 为合格
二、二轴(后轴)制动力
二轴制动率= (左后轮制动力+ 右后轮制动力)/ [(左后轮荷重+右后轮荷重)x9.8]
二轴制动率不做判定
当二轴制定率>=60% 时,二轴不平衡率用下式计算;
二轴不平衡率=(左后轮过程差最大制动力
- 右后轮过程差最大制动力)/ 两个后轮中最大制动力
二轴不平衡率<=24% 为合格
当二轴制定率<60% 时,二轴不平衡率用下
式计算;
二轴不平衡率=(左后轮过程差最大制动力
- 右后轮过程差最大制动力)/ [(左后轮荷重+ 右后轮荷重)x9.8]
二轴不平衡率<8% 时为合格
三、手制动力(手刹)
手制动率= (左轮制动力+ 右轮制动力)/ 四个车轮荷重之和X9.8
手制动率>=20% 为合格
四、整车制动
整车制动率= 四个车轮制动力之和/四个车轮荷重之和X9.8
整车制动率>=60% 为合格。

制动力分布公式和计算

制动力分布公式和计算

制动力分布公式和计算制动力是指物体对其运动方向上的变化速率的阻力,其大小与物体的质量和运动方式相关。

在分析制动力时,可以使用分布力的概念,即将整个制动力分布在物体表面上的若干个小力元上,然后将这些小力元的作用合成为物体的总制动力。

本文将介绍制动力分布的计算方法,并给出制动力分布的公式。

假设物体在运动过程中受到的制动力分布在其表面上的小力元上。

那么根据牛顿第二定律,每个小力元的分布力可以表示为:dF = μ·N·ds其中,dF是物体表面上每个小力元的制动力,μ是运动物体与表面之间的摩擦因数,N是物体在该点的法向压力,ds是表面上每个小力元的面积。

这个公式的意义在于,每个小力元受到的制动力与其面积、摩擦因数以及法向压力有关。

为了计算物体的总制动力,需要将所有小力元的制动力相加。

假设物体的表面由一个平面区域和一个弯曲区域组成,在平面区域上有N个小力元,在弯曲区域上有M个小力元。

那么物体总的制动力可以表示为:F = ∑(μi·Ni·di)其中,F是物体的总制动力,μi是每个小力元所在位置的摩擦因数,Ni是每个小力元所在位置的法向压力,di是每个小力元的面积。

对于平面区域上的小力元,可以将其分解为x轴和y轴上的分量,然后对所有小力元的分量进行合成。

假设物体在x轴方向上的加速度为ax,在y轴方向上的加速度为ay,在合成过程中,只需要将每个小力元的制动力乘以其相应方向上的分量,然后相加即可。

对于弯曲区域上的小力元,由于其方向和大小的变化比较复杂,通常需要进行数值积分来计算总的制动力。

需要注意的是,制动力分布公式中的摩擦因数是一个重要的参数。

摩擦因数的大小取决于物体表面的粗糙程度、运动物体和表面之间的物质特性等因素。

不同的物体和不同的表面之间的摩擦因数差异很大,因此在实际计算中需要根据具体情况来确定。

总之,制动力分布公式可以通过将小力元的制动力分解为各个方向上的分量,并进行相应的合成来计算物体的总制动力。

制动力计算公式

制动力计算公式

制动力计算公式制动力计算公式,这可是个相当重要的知识点啊!咱们先来说说啥是制动力。

想象一下,你骑着自行车,猛捏刹车的时候,让车子减速甚至停下的那个力,就是制动力。

汽车也是一样的道理,司机踩刹车,车就慢慢减速或者很快停下来,这里面发挥作用的就是制动力。

那制动力咋算呢?一般来说,制动力等于制动摩擦力。

这就好比你在冰面上骑车和在干燥的水泥地上骑车,刹车时的感觉完全不同。

在冰面上,摩擦力小,制动力就小,车很难一下子停住;在水泥地上,摩擦力大,制动力也就大,车能比较快地停下。

制动力的计算公式通常是:制动力 = 摩擦系数 ×正压力。

这里面的摩擦系数,就跟接触面的材质、粗糙程度有关系。

比如说,橡胶轮胎和柏油马路的摩擦系数,就跟和冰面的摩擦系数差别很大。

我记得有一次,我在路上看到一起小小的交通事故。

一辆小轿车在路口急刹车,结果还是轻轻碰上了前面的车。

后来交警来了,就跟司机讨论这刹车的问题。

交警同志就提到了制动力,说这地面有点湿滑,摩擦系数变小了,所以制动力没有达到理想的效果。

司机在一旁不停点头,估计也是第一次这么清楚地了解到制动力的作用。

正压力呢,简单说就是车压在地面上的力。

车越重,正压力就越大,制动力也就有可能越大。

但这也不是绝对的,还得看摩擦系数的情况。

在实际的车辆设计和交通管理中,制动力的计算非常重要。

比如说,工程师在设计刹车系统的时候,就得根据车的重量、速度,还有预计的行驶路况,来计算需要多大的制动力,才能保证安全刹车。

对于咱们普通人来说,了解制动力计算公式虽然不一定能让咱自己去设计刹车,但能让咱更明白为啥要保持车距、为啥下雨天要更小心开车。

总之,制动力计算公式虽然看起来有点复杂,但搞清楚了其中的道理,对咱们理解交通安全可是很有帮助的。

希望大家以后在路上都能平平安安的!。

制动器制动力矩的计算

制动器制动力矩的计算

制动器制动力矩的计算制动器是汽车制动系统中的关键组成部分,它负责将车轮的动能转化为热能,并通过与摩擦盘接触产生的摩擦力来减慢汽车运动。

制动器制动力矩的计算是评估制动器性能的重要指标之一,本文将从制动器的工作原理、制动力矩的定义和计算公式等方面进行详细介绍。

一、制动器的工作原理制动器主要由刹车盘(或鼓)和制动钳组成。

当驾驶员踩下制动踏板时,制动液被压缩并传递到制动钳中,使制动钳内的活塞发生运动。

制动钳的活塞会通过制动片将摩擦力传递到刹车盘上,从而减慢车辆的运动。

制动器的制动力矩是指制动器对车轮的制动力矩。

在制动过程中,制动器产生的摩擦力会产生一个力矩,从而减慢车轮的转速。

制动力矩的大小决定了车轮的制动效果。

二、制动力矩计算公式制动力矩的计算公式如下:制动力矩=制动力×刹车半径。

1.制动力的计算制动力是指制动器产生的摩擦力,其大小取决于刹车系统的设计和制动器的性能。

制动力的计算通常基于以下几个因素:-车辆的质量:车辆的质量越大,所需的制动力就越大。

-刹车系统的设计:刹车系统的设计决定了制动力的输出方式和传递效率。

-刹车片材料和状态:刹车片的摩擦系数与制动力密切相关。

另外,刹车片的磨损状态也会影响制动力。

-刹车系统的液压压力:制动液的压力越大,制动力越大。

2.刹车半径的计算刹车半径是指刹车盘(或鼓)的半径。

刹车半径的大小决定了制动力矩的大小。

刹车盘(或鼓)的半径可以通过测量得到,或者根据制动器的设计参数确定。

三、制动力矩计算的实例假设一个汽车质量为1000千克,制动力为3000牛顿,刹车盘的半径为0.3米,测算制动力矩。

首先,根据制动力的计算公式,制动力=3000牛顿。

然后,根据刹车半径的计算公式,刹车半径=0.3米。

最后,根据制动力矩的计算公式,制动力矩=制动力×刹车半径=3000牛顿×0.3米=900牛顿·米。

因此,这个汽车的制动力矩为900牛顿·米。

列车制动力计算公式

列车制动力计算公式

列车制动力计算1,紧急制动计算①列车总制动力 )(kN K B h h ∑=ϕ式中∑hK------全列车换算闸瓦压力的总和,kN ;h ϕ---换算摩擦系数;②列车单位制动力的计算公式 )/()(1000)(1000kN N gG P K g G P B b h h ∙+=∙+∙=∑ϕ其中)/()(kN N gG P Kh hϑ=∙+∑,则h h bϕϑ∙=1000式中 G P +------------列车的质量,t ; h ϕ---换算摩擦系数;h ϑ------------------列车制动率;∑hK------全列车换算闸瓦压力的总和,kN ;2,列车常用制动计算 1≤=bb cc β 由此可得 )/(1000kN N b b c h h c cβϑϕβ=∙=式中 c β-----常用制动系数cb -------列车单位制动力表1 常用制动系数 1p 为列车管空气压力列车管减压量r/kPa 50 60 70 80 90 100 110 120 130 140 150 160 170旅客列车 kPap 6001=0.19 0.29 0.39 0.47 0.55 0.61 0.69 0.76 0.82 0.88 0.93 0.98 1.00货物列车kPap 6001=0.17 0.28 0.37 0.46 0.53 0.60 0.67 0.73 0.78 0.83 0.88 0.93 0.963,多种摩擦材料共存时列车制动力的计算同一列车中的机车,车辆可能采用不同材料的闸瓦或闸片,他们具有不同的换算摩擦系数列车总制动力应当是各种闸瓦的换算闸瓦压力与该种闸瓦的换算摩擦系数乘积的总和。

即))((kN 332211∑∑∑∑∑=∙∙∙+++=h h h h h h h h K K K K B ϕϕϕϕ式中,1h K ,1h ϕ代表机车的闸瓦制动,2h K ,2h ϕ代表车辆的闸瓦制动,3h K ,3h ϕ代表车辆的盘形制动,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制动力的产生
ω
Σ Kφ
K
R
Σ K
Σ BL'
sx 力为:Bm=(∑KФ) 三、制动距离计算 列车制动距离 = 空走距离 + 实制动距离 Sx = Sk + St (一)、空走距离的计算 SK = tk V0 /3.6 (二)、实际制动距离计算
1000 1.06 mvdv vo 1000 vdv 0 B 12.96 (B Wk ) 12.23 ( M 0 ik g ) m
第四节 制动计算
车辆制动计算主要有:
制动载荷计算 制动能力计算 制动距离计算
一、车辆载荷分析
(一)与制动有关的车辆载荷 1. 垂直静载荷 作用在车体上的垂直静载荷主要包括车体自 重和车体载重。 车体自重:车体钢结构、木结构,以及安装 在车体上其他零件和设备重量。
2. 垂直动载荷 由于轨面不平,钢轨轨缝等原因以及车 辆本身状态不良引起轮轨间冲击和车辆簧 上振动而产生的垂向冲击力。 3. 纵向力 纵向力是当列车启动、加速或减速、制动和 调车作业时,在车辆与车辆之间或调车机 车与车辆之间所产生的牵引或压缩冲击力。
4. 侧向力 作用在车体上,主要包括风力、曲线运 行时的离心力和列车蛇形运动产生的轮轨 作用力。 5. 扭转载荷 当车辆通过线路的缓和曲线段,前为 转向架已进入缓和曲线,而后为转向架处 于水平直线时,车体将承受扭转变形。
(二) 制动时载荷分析 Q = Pa h 二、制动力计算 v a
а T Q Σ BL
相关文档
最新文档