正反比例练习题

合集下载

正反比例应用题实战61题

正反比例应用题实战61题

正反比例应用题实战61题1.用同样的方砖铺地,铺20 平方米要320 块,如果铺42 平方米,要用多少块方砖?2.一间教室,用面积是0.16 平方米的方砖铺地,需要275 块,如果用面积是0.25 平方米的方砖铺地,需要方砖多少块?3.建筑工地原来用4 辆汽车,每天运土60 立方米,如果用6 辆同样的汽车来运,每天可以运土多少立方米?4.我国发射的人造地球卫星绕地球运行3 周约3.6 小时,运行20 周约需多少小时?5.一种铁丝,7.5 米长重3 千克,现在有19.5 米长的这种铁丝,重多少千克?6.汽车在高速公路上3 小时行240千米,照这样计算,5 小时行多少千米?7.修一条公路,4 天修了200米,照这样计算,又修了6 天,又修了多少米?8.小明读一本书,每天读12 页,8 天可以读完。

如果每天多读4 页,几天可以读完?9.今春分配给学校一些植树任务,每天栽200 棵6 天可以完成任务,现在需要 4 天完成任务,实际每天比原计划多栽多少棵?10.农场用3 辆拖拉机耕地,每天共耕225 公顷,照这样速度,用5 辆同样拖拉机,每天共耕地多少公顷?11.一艘轮船,从甲地从开往乙地,每小时航行20 千米,12 小时到达,从乙地返回甲地时,每小时多航行 4 千米,几小时可以到达?12.100 千克黄豆可以榨油13 千克,照这样计算,要榨豆油6.5 吨,需黄豆多少吨?13.一对互相咬合的齿轮,主动轮有20 个齿,每分钟转60 转,如果要使从动轮每分钟转40 转,从动轮的齿数应是多少?14.把3米长的竹竿直立在地面上,测得影长1.2 米,同时测得一根旗杆的影长为 4.8 米,求旗杆的高是多少米?15.一个机器零件长5毫米,画在图纸上是4 厘米,求这幅图纸的比例尺。

16.地图上的26厘米,在比例尺为1 : 1300000的地图上约是多少千米?17.李师傅计划生产450 个零件,工作8 小时后还差330 个零件没有完成,照这样速度,共要几小时完成任务?18.用一批纸装订同样的练习本,如果每本30 页,可以装订80 本。

六年级数学下册正反比例判断练习题(人教版)

六年级数学下册正反比例判断练习题(人教版)

正反比例练习题班级:姓名:成绩:一、判断题1.植树的成活率一定,植树的棵树和成活的棵树成正比例。

( )2.圆的面积和半径成正比例。

( )3.正方形的周长和边长成正比例。

( )4.圆柱体的高一定,底面半径与体积成正比例。

( )5.小明的年龄和她的妈妈的年龄成正比例。

( )6.圆锥体的高一定,体积和底面半径的平方成正比例。

( )7.总价一定,单价和数量成反比例。

()8..实际距离一定,图上距离与比例尺成正比例。

()9.正方体体积一定,底面积和高成反比例。

()10.订阅《辽沈晚报》的总钱数和分数成正比例。

()11、方砖的边长一定,要铺地面积和用砖块数成正比例。

()12、用瓷砖铺地,要用的砖数一定,铺地的面积和瓷砖的面积成正比例。

()13、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例。

()16、梯形的面积一定,高和上下底的和成反比例。

()17、圆的半径一定,圆的面积和兀不成比例。

()18、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例。

()19、南京到北京,所行驶的路程和速度不成比例。

()20、出盐率一定,盐的重量和盐水重量成正比例。

()21、正方形的边长和面积成正比例。

()22. y:7=x y和x成()比例。

23.圆柱德高一定,体积和底面积成()关系。

24.圆的周长和直径成()比例。

二、选择题1、因为14 X=2Y,所以X:Y=():(),X和Y成()比例。

2、因为X=2Y,所以X:Y=():(),X和Y成()比例。

3、下列各式中(a、b均不为0),a和b成正比例的是()。

A 、a×8=b×5B 、9a=6bC 、a×13 -1÷b= 0 D、a+710 =b4、下面不成比例的是( )。

A、正方形的周长和边长B、某同学从家到学校的步行速度和所用时间C、圆的体积和表面积5、如果y=15x, x和y成( )比例;如果y=X15, x和y成( )比例6、如果Y = 8X ,X 和Y 成()比例如果Y =X8,X 和Y 成()比例。

正反比例练习题大全

正反比例练习题大全

正反比例的练习题大全判断是否成比例,成什么比例1、正方形的边长和周长成。

()2、正方形的边长和面积成.()3、a是b的5倍,数a和数b成。

()4、如果4a=3b,那么a∶b=3∶4 。

( )5、圆的周长一定,直径和圆周率成。

( )6、8A=B,那么A和B成。

()7、长方体的体积一定,底面积和高成。

()8、如果x 与y成,那么3 x与y也成。

()9、圆的面积与半径的平方成。

()10、圆锥的体积一定,底面积和高成。

()11、三角形的高一定,底和面积成.( )12、路程一定,车轮的直径与车轮的转数成.()13、全班总人数一定,出勤人数和出勤率成。

( )14、从甲地到乙地,已走路程和未走路程成.( )15、减数一定,被减数和差成.( )16、甲数的3/4是乙数,那么甲数与乙成( )17、如果3x=y(x和y都不等于0),x与y。

()18、如果xy=1,x与y。

()(19、)如果5A=B,A与B。

( )(20)如果x+y=6,x与y。

( )(21)如果x与y互为倒数,x与y。

()(22)如果3:x=y:16,x与y。

()(23)如果20:x=12:y,x与y。

()(24)如果ab=k+2(k一定),那么a和b成反比例数成反比例( )25、《小学生作文》的单价一定,总价和订阅的数量.()26、小新跳高的高度和他的身高( )。

27、学校全班的人数一定,每组的人数和级数.( )28、圆柱体积一定,圆柱的底面积和高。

()29、书的总册数一定,每包的册数和包数。

()30、在一块菜地上种的黄瓜和西红柿的面积.()31、小麦每公顷产量一定,小麦的公顷数和总产量.()32、书的总页数一定,已经看的页数和未看的页数。

( )33、轮船行驶的速度一定,行驶的路程和时间。

()34、每吨自来水的价钱一定,用水吨数和所需付的水费。

()35、货物的总重量一定,每辆车的载重量和汽车辆数( )比例36、在圆中,面积和半径()比例 ,周长和半径()比例。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
以下是一系列的数学正反比例练题,供学生练和巩固所学的知识。

1. 问题:一个园子总共有120棵树,如果每排10棵,共有几排?
答案:120 ÷ 10 = 12 排
2. 问题:一个长方形花坛的长为8米,宽为10米,如果每平方米能种5棵花,花坛能种多少棵花?
答案:8 × 10 × 5 = 400 棵花
3. 问题:某水果市场每个箱子里放20个苹果,如果共有3000个苹果,需要多少个箱子才能装完?
答案:3000 ÷ 20 = 150 个箱子
4. 问题:一辆车以每小时80公里的速度行驶,行驶300公里需要多少小时?
答案:300 ÷ 80 = 3.75 小时
5. 问题:一个水缸的容量为400升,每分钟排水20升,需要多少分钟才能排完?
答案:400 ÷ 20 = 20 分钟
6. 问题:小明每天花2小时做作业,如果他一共需要做8天,总共需要多少小时?
答案:2 × 8 = 16 小时
7. 问题:一辆公交车每小时能载客60人,需要载完400人,需要多少小时?
答案:400 ÷ 60 = 6.67 小时
8. 问题:某商品原价100元,打8折,现在售价多少?
答案:100 × (1 - 0.8) = 20 元
9. 问题:一桶油装满需要3分钟,如果用两个人一起装,需要多少时间?
答案:3 ÷ 2 = 1.5 分钟
10. 问题:橙子每斤售价5元,小明买了3斤橙子,一共需要支付多少元?
答案:5 × 3 = 15 元
以上是数学正反比例的练习题。

希望能帮助到你,加油!。

正反比例综合练习题

正反比例综合练习题

正反比例综合练习题练习一:1. 小明买了6件同样的商品,总共花费了90元。

如果小明再买6件相同的商品,他需要花费多少钱?解答:根据正反比例的原理,我们可以得到小明一件商品的价格是90元/6件 = 15元/件。

因此,小明再买6件商品的花费是15元/件 * 6件 = 90元。

答案:小明再买6件商品需要花费90元。

2. 一个建筑队伍共有30名工人,如果需要在15天内完成一项工程,那么增加到50名工人,需要多少天才能完成相同的工程?解答:根据正反比例的原理,我们可以设完成这项工程所需的时间为x天。

那么正比例关系可以表示为:30人 * 15天 = 50人 * x 天。

解方程可得:x = (30 * 15) / 50 = 9天。

答案:增加到50名工人需要9天才能完成相同的工程。

3. 一辆汽车以每小时60公里的速度行驶,如果行驶8小时,总共行驶了多少公里?解答:根据正反比例的原理,我们可以设行驶总距离为x公里。

那么正比例关系可以表示为:60公里/小时 * 8小时 = x。

解方程可得:x = 60公里/小时 * 8小时 = 480公里。

答案:汽车总共行驶了480公里。

练习二:1. 一张纸大小为20cm x 30cm,放大到原来的1.5倍后,新的纸的大小是多少?解答:根据正反比例的原理,我们可以设新纸的大小为xcm x ycm。

那么正比例关系可以表示为:20cm/30cm = x/1.5x。

解方程可得:1.5x = 20cm,x = 20cm / 1.5 = 13.3cm。

因此,新纸的大小为13.3cm x 20cm。

答案:新纸的大小是13.3cm x 20cm。

2. 一家工厂使用5台机器生产产品,如果需要在20天内完成订单,那么增加到10台机器,需要多少天才能完成相同的订单?解答:根据正反比例的原理,我们可以设完成订单所需的时间为x天。

那么正比例关系可以表示为:5台机器 * 20天 = 10台机器* x天。

解方程可得:x = (5 * 20) / 10 = 10天。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

(完整版)正反比例练习题

(完整版)正反比例练习题

正反比例练习题(1)一、判断下面两种相关联的量成不成比例,如果成比例,成什么比例。

11、分数的大小一定,它的分子和分母()比例。

12、全班人数一定,出勤人数和出勤率()比例。

13、正方体一个面的面积和它的表面积()比例。

14、在一定的时间里,做一个零件所用的时间和做零件的个数()比例。

15、圆的半径和面积()比例。

16、圆锥体的高一定,圆锥的底面半径和它的体积()比例。

17、4X=8Y,X和Y()比例。

18、车轮的直径一定,所行的路程和车轮的转数()比例。

19、圆柱的底面半径一定,圆柱的高和圆柱的体积()比例。

20、分数值一定,分子和分母()比例。

21、正方形的边长和面积()比例。

22、小麦的总重量一定,出粉率和面粉的重量()比例。

23、三角形的面积一定,底和高()比例。

24、要行一段路程,已行的和未行的路程()比例。

25、长方形的长一定,宽和周长()比例。

26、圆的半径和周长()比例。

27、总产量一定,单产量和数量()比例。

28、在同一时间里,杆高和影长()比例。

29、做一项工程,工作效率和工作时间()比例。

30、汽车从甲地到乙地,行车时间和速度()比例。

二、判断题,对的打√,错的打ⅹ。

1、速度和时间成反比例。

()2、圆的半径一定,圆的面积和兀不成比例()3、三角形的底一定,它的面积和高不成比例。

()4、正方形的边长和面积成正比例。

()5、出盐率一定,盐的重量和海水的重量成正比例。

()正反比例练习题(2)一、判断。

1、方砖的边长一定,要铺地面积和用砖块数成正比例()2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。

()5、梯形的面积一定,高和上下底的和成反比例()6、圆的半径一定,圆的面积和兀不成比例()7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()8、南京到北京,所行驶的路程和速度不成比例()9、出盐率一定,盐的重量和海水重量成正比例。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
1. 正比例练题
- 问题1:如果三辆车可以在4小时内完成一项工作,那么六辆相同的车可以在多少小时内完成同样的工作?
- 问题2:如果5人可以在10天内完成一项任务,那么需要多少人才能在5天内完成相同的任务?
- 问题3:如果一辆汽车以每小时60公里的速度行驶,那么它在3小时内可以行驶多远?
- 问题4:如果用20升汽油行驶80公里,那么用40升汽油可以行驶多远?
- 问题5:某项工作需2小时完成,如果有12人同时进行,那么需要多长时间才能完成?
2. 反比例练题
- 问题1:如果六个工人可以在12天内完成一项任务,那么需要多少个工人才能在4天内完成相同的任务?
- 问题2:如果一项工作可以由10个工人在8小时内完成,那么需要多少个小时才能由5个工人完成?
- 问题3:如果一个有15个人的团队可以在20天内完成一个项目,那么需要多少天才能由25个人完成相同的项目?
- 问题4:如果一块土地上可以建造6个房子,那么在相同大小的土地上可以建造多少个房子?
- 问题5:如果一个工厂的产量与工人数成反比,当有20个工人时产量为1000个单位,那么有30个工人时产量为多少个单位?
这些练习题可以帮助你巩固正反比例的理解和运用。

请根据题意进行计算,并在所给的时间内完成解答。

正反比例练习题

正反比例练习题

正反比例练习题正反比例是数学中常见的一种比例关系,指两个变量之间的比例是相等的,其中一个变量增加,另一个变量相应地减少。

在解决实际问题中,正反比例关系经常用到。

本文将介绍一些正反比例练习题,帮助读者更好地理解和运用正反比例。

一、题目1小明利用正反比例关系绘制了一条直线。

当x为0时,y为8;当x 为4时,y为2。

试判断这条直线的方程式是什么?解答:设直线的方程为y=k/x (k为常数)由已知条件得:当x为0时,y为8,此时利用方程求得k=8*0=0;当x为4时,y为2,代入方程得:2=k/4,解得k=8;因此,直线的方程为y=8/x。

二、题目2某商品的价格和销量成反比关系。

当商品价格为10元时,销量为20个;当商品价格为20元时,销量为10个。

求商品的价格和销量之间的函数关系。

解答:设商品价格为x,销量为y。

由题意可知,x和y成反比关系,即xy=k(k为常数)。

根据题意,当x为10时,y为20,代入反比关系可求得k=10*20=200;当x为20时,y为10,代入反比关系可求得200=20*10;因此,商品的价格和销量之间的函数关系为xy=200。

三、题目3小王从城市A到城市B的距离为200千米,他选择骑自行车去。

第一天骑了100千米,第二天骑了80千米,第三天骑了多少千米?解答:设第三天小王骑的千米数为x。

根据题意,第一天骑了100千米,第二天骑了80千米,第三天骑了x千米,根据正反比例关系可得:100/200 = 80/(200-100-x);计算可得:(100*(200-100-x)) = 80*200;解得x=60;因此,小王第三天骑了60千米。

四、题目4在某连锁超市的促销活动中,每购买4件商品可以享受8折优惠,求购买10件该商品的折扣价格是多少?解答:设购买10件商品的折扣价格为x。

根据题意,购买4件商品享受8折优惠,根据正反比例关系可得:4/x = 8/10;解得x=5;因此,购买10件商品的折扣价格为5元。

六年级正反比例题100道

六年级正反比例题100道

六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。

2. 5本书的价格是20元,那么每本书的价格是多少元。

3. 一个足球的价格是50元,购买3个足球需要多少钱。

4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。

5. 4个橙子的总价是16元,1个橙子多少钱。

6. 一条绳子长6米,3条绳子总长多少米。

7. 如果每辆车能载5人,10辆车能载多少人。

8. 一盒巧克力有10块,3盒巧克力有多少块。

9. 每个学生要交100元的学费,10个学生总共交多少钱。

10. 一台电脑的价格是4000元,4台电脑的总价是多少元。

11. 如果1升油的价格是8元,5升油的价格是多少元。

12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。

13. 1本书的页数是200页,5本书的总页数是多少页。

14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。

15. 一棵树的高度是3米,5棵树的总高度是多少米。

16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。

17. 如果每本杂志售价10元,9本杂志总共多少钱。

18. 一辆车每小时行驶80公里,4小时能行驶多少公里。

19. 如果1公斤米的价格是5元,2公斤米总共多少钱。

20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。

21. 一支笔的价格是3元,12支笔总共多少钱。

22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。

23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。

24. 如果一个人的工资是3000元,5个人的总工资是多少元。

25. 每条鱼的重量是200克,10条鱼的总重量是多少克。

26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。

27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。

28. 每个学生要用5张纸,25个学生需要多少张纸。

29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。

小学数学正比反比练习题

小学数学正比反比练习题

小学数学正比反比练习题正文:一、正比例关系练习题1. 小明每天骑自行车上学,他的速度和用时的关系是什么?如果他以每小时15公里的速度骑行,那么骑行5小时能够走多远?2. 一辆汽车以每小时80公里的速度行驶,行驶4小时后,它能够走多远?3. 将正比例关系列为函数的形式:设x是小明骑自行车所花费的时间(小时),y是他骑行的距离(公里),写出函数y和x之间的关系式。

4. 小明骑自行车到山上游玩,用时与距离的关系是正比例关系。

他用时2小时到达离家20公里的山脚,那么他用时3小时能够到达离家多远的山脚?5. 一辆汽车以每小时60公里的速度行驶,行驶2小时15分钟后,它能够走多远?二、反比例关系练习题1. 公司A生产一批产品需要5个工人工作3天完成,那么如果只有3个工人参与生产,需要多少天才能完成?2. 某项工程由6个工人完成,需要12天,如果增加工人的数量,能否缩短工期?为什么?3. 设x是某项工程所需要的工人数,y是完成这项工程所需的天数。

当工人数增加时,工期缩短了吗?写出x和y之间的关系式。

4. 利用反比例关系解决实际问题:某项工程由10个工人完成,需要20天。

如果只有5个工人参与工作,那么需要多少天才能完成?5. 公司A和公司B生产某种产品,两个公司的产能成反比例关系。

如果公司B的产能是公司A的2倍,那么公司B需要多久才能完成和公司A一样多的产品?结语:通过以上练习题,我们可以更好地理解小学数学中的正比例关系和反比例关系。

掌握了这两种关系的概念和求解方法,我们可以更好地应用于实际生活中的问题求解。

希望同学们能够通过不断地练习,加深对正反比例关系的理解和运用能力。

正反比例判断练习题

正反比例判断练习题

正反比例判断练习题正反比例是数学中一种常见的关系模式,它描述了当一个变量增加时,另一个变量相应地减少,反之亦然。

本文将提供一些正反比例判断练习题,帮助读者熟悉和掌握该关系模式。

1. 小明每小时骑自行车的里程与所用时间成正反比。

如果小明骑自行车1小时可以骑行15公里,请问他骑行2小时可骑行多少公里?解析:由于小明每小时骑行的里程与时间成正反比,即骑行小时数越多,里程越短。

我们可以设小明骑行2小时的里程为x公里。

根据正反比例关系式可得:1/15 = 2/x,通过交叉乘法可得:1x = 15 * 2,即x = 30公里。

因此,小明骑行2小时可骑行30公里。

2. 甲园长每天在花坛中播种的花卉种子数量与土地面积成正反比。

如果甲园长在500平方米的花坛中播种了40颗花卉种子,请问他在1000平方米的花坛中可以播种多少颗花卉种子?解析:由于甲园长每天播种的花卉种子数量与土地面积成正反比,即种子数量与面积呈反比关系。

我们可以设甲园长在1000平方米的花坛中可以播种的花卉种子数量为x。

根据正反比例关系式可得:40/500 = x/1000,通过交叉乘法可得:40 * 1000 = 500x,即40000 = 500x。

因此,甲园长在1000平方米的花坛中可以播种80颗花卉种子。

3. 一个养猫爱好者发现,他养的猫咪数量与每只猫咪所需猫粮的重量成正反比。

如果他同时养了4只猫咪,每只猫咪每天需要200克猫粮,请问他养了8只猫咪时,每只猫咪每天需要多少克猫粮?解析:由于养的猫咪数量与每只猫咪所需猫粮的重量成正反比,即猫咪数量越多,每只猫咪所需猫粮的重量越少。

我们可以设养了8只猫咪时,每只猫咪每天需要的猫粮重量为x克。

根据正反比例关系式可得:4/200 = 8/x,通过交叉乘法可得:4x = 8 * 200,即4x = 1600。

因此,他养了8只猫咪时,每只猫咪每天需要400克猫粮。

通过以上的正反比例判断练习题,我们可以看出正反比例的特点和计算方法。

正反比例练习题大全

正反比例练习题大全

正反比例练习题大全1、判断正方形的边长和周长是否成比例。

2、判断正方形的边长和面积是否成比例。

3、判断数a和数b是否成正比例,已知a是b的5倍。

4、已知4a=3b,判断a和b是否成反比例,成比例的比值是多少。

5、判断圆的直径和圆周率是否成正比例,已知圆的周长一定。

6、已知8A=B,判断A和B是否成反比例。

7、判断长方体的底面积和高是否成正比例,已知体积一定。

8、判断x与y是否成比例,已知3x与y成比例。

9、判断圆的面积和半径的平方是否成正比例。

10、判断圆锥的底面积和高是否成正比例,已知体积一定。

11、判断三角形的底和面积是否成正比例,已知高一定。

12、判断车轮的直径和转数是否成正比例,已知路程一定。

13、判断出勤人数和出勤率是否成正比例,已知全班总人数一定。

14、判断已走路程和未走路程是否成反比例,已知从甲地到乙地。

15、判断被减数和差是否成正比例,已知减数一定。

16、已知甲数的3/4是乙数,判断甲数和乙数是否成比例。

17、已知3x=y(x和y都不等于0),判断x和y是否成比例。

18、已知xy=1,判断x和y是否成反比例。

19、已知5A=B,判断A和B是否成反比例。

20、已知x+y=6,判断x和y是否成反比例。

21、已知x和y互为倒数,判断x和y是否成反比例。

22、已知3:x=y:16,判断x和y是否成比例。

23、已知20:x=12:y,判断x和y是否成比例。

24、已知ab=k+2(k一定),判断a和b是否成反比例。

25、已知《小学生作文》的单价一定,判断总价和订阅的数量是否成正比例。

26、判断小新跳高的高度和他的身高是否成比例。

27、已知学校全班的人数一定,判断每组的人数和级数是否成正比例。

28、判断圆柱的底面积和高是否成正比例,已知体积一定。

29、已知书的总册数一定,判断每包的册数和包数是否成正比例。

30、判断在一块菜地上种的黄瓜和西红柿的面积是否成比例。

31、已知小麦每公顷产量一定,判断小麦的公顷数和总产量是否成正比例。

完整版)正反比例单元测试卷

完整版)正反比例单元测试卷

完整版)正反比例单元测试卷正比例和反比例测试卷一、填空题(23分)1.A和B的商是2,则A:B=2:1.2.甲比乙多,甲数与乙数的比是甲:乙=3:2.3.做一批同样大的衣服,这批衣服的件数和用布数成正比例。

4.a÷b=c(定),a和b成比例。

5.已知数量x和y满足条件x:y=1:k,那么z和y成反比例。

6.M的等于N的,M:N=1:1.7.两个数的和是45,较小数是较大数的k分之一,那么较小数与较大数的比是1:k,较小数是15,较大数是30k。

8.如果A:4=5:B(A、B都不为0),那么A和B成反比例。

9.如果a÷b=c(b≠0),那么当a一定时,b和c成反比例;当b一定时,a和c成正比例;当c一定时,a和b成正比例。

10.一个分数的分子与分母的比是2:7,已知分子比分母小10,这个分数是20/70=2/7.11.按1:500的比例配制药水,4千克药粉需加入8千克的水。

12.长方体的体积一定,底面积和它的高成反比例。

13.z与y成反比例,并且在z=2时,y的对应值是4.8.(1)x与y的关系式为xy=9.6.(2)当x=0.6时,y的对应值是16.(3)当y=3时,x的对应值是1.6.14.如果4a=9b(a、b都不为0),那么a和b成反比例。

15.A、B两地,甲、乙两人骑自行车行全程所用的时间是4:5,如果甲、乙两人分别同时从A、B两地相对骑出,40分钟相遇,相遇后继续前进,乙到达A地比甲到达B地晚15分钟。

16.左边的表格中,如果X与y成正比例,空白处应填y;如果X与___反比例,空白处应填1/y。

二、判断题(5分)1.___的身高和体重成正比例。

(错)2.一段路程,所行路程和剩余路程成反比例。

(错)3.如果。

那么x和y成正比例关系。

(对)4.圆的周长和直径成正比例,正方形的边长与面积不成比例。

(前半句对,后半句错)5.爸爸今年的年龄是儿子年龄的3倍,随着时间的推移两人的年龄都在增加,所以爸爸的年龄和儿子的年龄成正比例。

正反比例练习

正反比例练习

学校___________ 班别___________ 姓名_____________ 分数_____________1、填空题。

(1)两种( )的量,一种量变化,另一种量随着( ),如果这两种量中对应的两个数的( )一定,就称这两种量成正比例。

(每空5分)(2)一个房间铺地面积和用砖数量如下表。

(每空5分) ①表中( ) 和( )是相关联的量,( )随着( )的变化而变化。

②第五组中用砖数量与铺地面积这两种量相对应的两个数的比是( ),比值是( )。

③上面求出的比值所表示的意义是每平方米的( ),用砖数量和铺地面积的( )是一定的,所以用砖数量和铺地面积成( )比例。

2、在百货公司的花布柜台上,有一张某种花布的长度和总价的表格。

(1)表中有两个变化的量?(10分)(2)花布的总价和长度是不是成正比例?说明理由。

(30分)拓展题(20分)小丽的爸爸买了某品牌的电动汽车带全家外出旅行,已知汽车行驶时每千米的耗电量一定,请你把下表填写完整。

汽车的耗电量和行驶路程成正比例吗?为什么?正比例学校___________ 班别___________ 姓名_____________ 分数_____________1、用收割机收割一片麦田,每天收割的面积和需要的天数如下表。

填表并回答问题。

(每空5分)(1)每天收割的面积和需要的天数成( )比例。

(2)如果每天收割25公顷,需要( )完成。

(3)如果收割这片麦田用了4天,平均每天收割( )公顷。

2、北京市开通了首条专门为自行车单独建设的专用道路,李老师骑行体验过程中行驶时间与速度情况如下表。

(1)把上表填写完整。

(每空10分)(2)行驶时间和骑行速度成( )比例。

(5分) (3)如果李老师骑完全程用了32.5分,平均每分骑行多少米?(10分)3、张阿姨做一批剪纸,她每时做的个数与所需时间的关系如下表。

(每空5分)(1)表中( )和( )是两种相关联的量,所需时间随着( )的增加而( )。

正反比例的练习题

正反比例的练习题

正反比例的练习题一、选择题1. 下列哪一项不是正比例关系?A. 速度与时间B. 路程与时间C. 面积与边长D. 体积与底面积2. 如果两个变量x和y满足y = kx(k为常数),则x和y之间的关系是:A. 反比例B. 正比例C. 非比例关系D. 无法确定3. 在反比例关系中,如果其中一个变量增加,另一个变量会:A. 增加B. 减少C. 保持不变D. 先增加后减少4. 已知A和B成正比例,当A增加时,B也会增加。

如果A的值从10增加到20,B的值从5增加到多少?A. 10B. 7.5C. 10D. 155. 某工厂的产量与工作时间成正比例关系,如果工作时间增加一倍,产量会:A. 减少B. 保持不变C. 增加一倍D. 增加两倍二、填空题6. 如果速度v(千米/小时)与时间t(小时)成反比例关系,那么它们的关系可以表示为________。

7. 某商品的单价为p元,数量为q个,总金额为m元,如果p和q成反比例关系,那么m与p的关系是________。

8. 已知x和y成正比例,x的值从2增加到4,y的值从3增加到6,那么x与y的比值k是________。

9. 在正比例关系中,如果变量A的值是变量B的两倍,那么变量B的值是变量A的________。

10. 某工厂的产量与机器数量成正比例关系,如果机器数量增加到原来的三倍,产量将________。

三、解答题11. 某工厂的产量与工作时间成正比例关系。

如果工作时间从8小时增加到12小时,产量从200件增加到多少件?(假设初始比例系数为25件/小时)12. 某城市的人口数量与人均收入成反比例关系,如果人均收入从2000元增加到3000元,人口数量从100万减少到多少?13. 已知某商品的单价p与销售量q成反比例关系,如果单价从10元降低到5元,销售量从1000件增加到多少?14. 某公司的总利润与销售量成正比例关系。

如果销售量从1000件增加到2000件,总利润从10万元增加到多少?15. 某学校的图书馆藏书数量与学生人数成反比例关系。

物理正反比例练习题大全

物理正反比例练习题大全

物理正反比例练习题大全
本文将提供一系列物理正反比例练习题,以帮助你加深对该概念的理解。

这些练习题涵盖了不同难度级别,适合初学者和进阶学习者。

让我们开始吧!
1.简单题
1.1 一个物体的质量为50千克,受到的重力为500___。

物体的重力与其质量是否成正比?
a) 是
b) 否
1.2 一个汽车以恒定速度行驶。

如果你将汽车的速度提高到原来的三倍,它的动能是否会增加至原来的三倍?
a) 是
b) 否
1.3 当你驾驶一辆汽车,刹车踏板踩得越深,制动力是否就越大?
a) 是
b) 否
2.中级题
2.1 一个气球在每分钟内以固定速度膨胀。

如果你将气球的速度提高到原来的两倍,它的膨胀率是否也会提高到原来的两倍?
a) 是
b) 否
2.2 一个弹簧的伸长长度与施加力成正比。

如果你将施加力翻倍,弹簧的伸长长度是否也会翻倍?
a) 是
b) 否
2.3 在一个曲线上行驶的汽车,速度越快,所需的离心力是否越大?
a) 是
b) 否
3.高级题
3.1 一个物体的速度与由一个___加速的时间成正比。

如果你将
___加速的时间延长三倍,物体的速度是否也会延长三倍?
a) 是
b) 否
3.2 一个橡皮球从不同高度自由落下,与落下时间是否成正比?
a) 是
b) 否
3.3 两个物体的质量与它们之间的引力是否成正比?
a) 是
b) 否
以上是一些物理正反比例练习题的例子,希望对你学习物理有
所帮助!。

(完整版)正比例和反比例练习题

(完整版)正比例和反比例练习题

一.判断1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆的周长和圆的半径成正比例。

()11.一个因数不变,积与另一个因数成正比例.()12.长方形的长一定,宽和面积成正比例.()13.大米的总量一定,吃掉的和剩下的成反比例.()14.圆的半径和周长成正比例.()15.分数的分子一定,分数值和分母成反比例.()16.铺地面积一定,方砖的边长和所需块数成反比例.()17.铺地面积一定,方砖面积和所需块数成反比例.()18.除数一定,被除数和商成正比例.()19.分母一定,分子和分数值成正比例()20.圆的面积一定,圆周率与半径成反比例()21.出勤率一定,实际出勤人数和应出勤人数成反比例()22.小明跳高的高度与他的身高成反比例()23.铺地面积一定,每块砖的面积与需要的块数成反比例()24.比的前项一定,比的后项和比值成反比例()25.文具盒的单价一定,买文具盒的个数和总价成正比例( )。

26.水稻产量一定,水稻的种植面积和总产量成反比例( )。

27.一堆货物一定,运出的和剩下的成正比例( )。

28.汽车行驶的速度一定,行驶的时间和路程成正比例( )。

29.比值一定,比的前项和后项成正比例( )。

30.煤的总量一定,每天的烧煤量和烧的天数成正比例( )。

31.李叔叔从家到工厂,骑车的速度和所需要的时间成反比例( )。

32.玉华做12道练习题,做完的与没做的题成正比例( )。

33.长方形面积一定,它的长和宽成正比例( )。

34.长方形的周长一定时,长和宽成反比例。

()35.三角形的面积一定时,底和高成反比例。

正反比例判断练习题

正反比例判断练习题
05
不成
06

07

01
比值一定,比的前项和后项( )比例
02
后项一定,比的前项和比值( )比例
03
前项一定,比的后项和比值( )比例
04

05

06

判断下面的量成什么比例。
在长方形中,长一定,面积和宽( )比例
01
宽一定,面积和长( )比例
02
面积一定,长和宽( )比例
01
02
因为直径和周长相关联, 且商一定,即周长c÷直径d=π(一定), 所以直径和周长成正比例。
一根铁丝剪成同样长的段数与每段的长度。
1
因为段数与每段的长度相关联, 且积一定,即段数×每段的长度=铁丝长(一定), 所以段数与每段的长度成反比例。
2
成正比例
订阅《大连晚报》的份数和钱数。
01
人的年龄和身高
01
分数的大小一定,它的分子和分母
02
成正比例
成正比例
正方体一个面的面积和它的表面积。
07
成反比例
比的前项一定,比的后项和比值。
08
成正比例
比的后项一定,比的前项和比值。
09
不成比例
煤的总数量一定,烧去的煤和剩下的煤。
10
成反比例
总人数一定,每行站的人数和行数
11
同时同地,竿高和影长。

总价一定,单价和数量( )比例
数量一定,单价和总价( )比例


判断下面的量成什么比例。
判断下面的量成什么比例。
份数一定,每份数和总数( )比例
每份数一定,份数和总数( )比例
总数一定,每份数和份数( )比例

六年级正反比例奥数题及答案

六年级正反比例奥数题及答案

六年级正反比例奥数题及答案
正反比例奥数题及答案
一、正反比例题
1. 某工厂发出8000瓶汽水,其中百分之八十的汽水放在
2.5升的瓶桶中,尚餘的放在5升的桶中。

则5升的桶发出了多少瓶汽水?
答案:1000瓶。

2. 小明带了500元去旅行,其中百分之三十的钱用来买水,剩余的钱用来买礼物,请问小明可以买多少礼物?
答案:350元。

3. 某学校有650名学生,其中的75%的学生参加思想品德课,其余student参加英语课,问思想品德课一共有多少学生参加?
答案:487.5 名。

4. 李明在拍卖会上以620元买了一台电视,其中百分之50的钱用来买一台操作简单的DVD机,他剩下多少钱?
答案:310 元。

5. 李华有600元购物,其中百分之五十的钱用来买图书,其余的钱用来买衣服,他最多可以买多少件衣服?
答案:300 元。

二、反比例题
1. 某书店有5000本书,其中文学及历史类的书有七成,请问,数学及物理的书有多少本?
答案:2000 本。

2. 小芳有700元要购物,其中百分之25的钱用来买图书,那么剩下的
钱它最多可以买多少件衣服?
答案:525 元。

3. 某公司总收入6500元,其中百分之九十的收入用来购买原料,问剩下的收入可用来购买什么?
答案:650 元。

4. 一个幼儿园有200名小学生,其中百分之八十的小孩参加音乐课,问参加体育课的小孩有多少名?
答案:40 名。

5. 某工厂发出7500瓶汽水,其中6升的桶装的有七成,请问其余放在2.5升的桶中有多少。

答案:1500 瓶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用比例知识解典型题库1、食堂有一批煤,计划每天烧30千克,可以烧18天,实际每天烧36千克,可以烧多少天?2、食堂有一批煤,计划每天烧30千克,可以烧18天,实际只烧了15天,平均每天烧了多少千克?3、同学们做操,每行站15人,正好站了32行。

如果每行站20人,要站多少行?4、同学们做操,每行站15人,正好站了32行。

如果要站24行,每行应站多少人?5、从甲城到乙城,客车每小时行50千米,6小时到达。

货车要8小时到达,货车每小时行多少千米?6、一堆煤原计划烧25天,实际每天用煤比原计划节约1/5,这堆煤实际能烧多少天?7、小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?8、小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?9、运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?10、运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?11、用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?12、一种水管,40米重60千克。

现称得一捆水管重270千克,这捆水管共长多少米?13、一榨油厂用400千克芝麻可以榨油144千克。

照这样计算,要榨10吨油要多少吨芝麻?14、8台榨油机每天榨油56吨,现在增加了5台同样的榨油机,每天多榨油多少吨?15、一种农药中药液和水是按照1:1500配制而成的。

现在有3克这样的药液,可配制出多少克农药?16、配制一种药水,药粉和水的质量比是1:500。

(1)现有水1500千克,要配制这种药水要药粉多少千克?(2)现有药粉8千克,要配制这种药水需水多少千克17、一台织布机4小时织布32米,照这样计算,15小时织布多少米?18、同学们做广播操,每行站15人,站了12行,如果每行站18人,要站多少行?19、100克海水可以晒出3克盐,照这样计算,6吨海水可以晒出多少吨盐?20、机器上有两个互相咬合的齿轮,主动轮有100个齿,每分钟转120转,从动轮有60个齿,每分钟转多少转?21、8台榨油机每天榨油56吨,现在增加了5台同样的榨油机,每天多榨油多少吨?22、在比例尺是1:12000000的地图上,量得济南到青岛的距离是4厘米。

在比例尺是1:8000000的地图上,济南到青岛的距离是多少厘米?23、有含盐15%的盐水200千克,要使含盐率降为5%,需要加水多少千克?24、加工一批零件,计划每天加工30个,72天完成,实际每天加工36个,实际多少天完成?25、李华看一本故事书,计划每天看10页,18天可以看完,如果要6天完成,每天看多少页?26、一架飞机5小时可以飞行3500千米,照这样计算,8小时可以飞行多少千米?27、一个车间女职工比男职工少30人,男职工与女职工人数的比是5:3.这个车间一共有多少职工?(用比例方法解)28、完成一项任务,原计划30人20天完成,现在要提前5天完成,需要增加多少人?29、甲乙丙三人的存款平均数是4500元,已知甲和乙的存款数之比是4:3,丙存款数比甲多300元,三人个各存款多少元?30、一辆汽车到某地执行任务,上午10点出发到下午1点共行了120千米,照这样速度下午3点可到达目的地,这辆汽车到达目的地时共行了多少千米?(用两种方法解答)31、明星小学四年级一班为邓梅大姐姐捐款98元.已知男生和女生捐款钱数的比是4:3,男生、女生各捐款多少元?(用比例方法解)32、某服装厂用297.5米布做同一型号的儿童服装,做了50套后还剩下122.5米,这批布共可做这样的服装多少套?33、装修一间客厅,用边长2分米的方砖铺地,需要500块,用边长4分米的方砖铺地,需要多少块?34、一部机器上有两个互相咬合的齿轮,主动轮有100个齿,每分钟转90转.从动轮有36个齿,每分钟转多少转?(用比例方法解)35、某工厂计划上半年生产机器900台,前4个月生产了640台,照这样计算,上半年实际生产的机器台数超过原计划多少台?(用比例解)36、城建工程队修一条自来水管道,用9米长的新管替换原来长6米的旧管.240根新管,可以换下多少根旧管?(用比例方法解)37、轮船从甲地到乙地顺水每小时行25千米,从乙地回甲地逆水每小时行15千米,往返一次共6小时,求甲、乙两地的路程.、.38、装订一批儿童课外读物,计划每天装订80本,20天可装订完,实际2天就装订了400本,照这样计算,多少天可以完成任务?(用正反比例解答)39、要修一条长140米的堤坝,用3.5天就修了24.5米,照这样计算,还要几天完成?40、用80厘米×80厘米的方砖给一套房铺地,需200块,如果改用边长60厘米×60厘米的砖铺,大约需几块?41、汽车5小时行200千米,照这样计算,3小时行多少千米?42、一批零件,原计划生产120个,8天可以完成;实际每天比计划多生产40个,可以提前几天完成?43、两个互相咬合的齿轮,大齿轮有100个齿,小齿轮有40个齿。

如果大齿轮每分钟转90转,小齿轮每分钟转多少转?44、甲乙两数的比是3:5,已知甲数为84,乙数为多少?45、5台抽水机3小时能抽水600立方米,照这样计算,4台抽水机4小时能抽水多少立方米?46、一本书原有416页,每页30行每行25字,现在把它重排,重排后每页32行,每行26字,重排后有多少页?47、一批粮食,计划3600人吃15天。

吃了3天后,又增加了1200人。

余下的粮食还可以吃几天?48、甲乙两个仓库,甲仓存粮120吨,比乙仓的存粮数少1/3,乙仓存粮多少吨?49、李师傅加工一批零件,每小时做24个,10小时完成;如果工作效率提高25%,几小时可以完成?50、用一批纸装订练习本,如果每本20页,可以装订600本;如果每本减少8页,可以多装订多少本?51、一个筑路队修一段公路,原计划每天修3.3千米,10天完成;实际每天修5.5千米,修完这段公路比原来少用几天?52、一个机器厂要装配一批机器共270台,4天装配了108台。

按照这样的速度,剩下的任务几天可以装配完?53、少先队员在校办工厂做纸盒,原计划每天做240个,8天做完。

现在要比原计划提前2天做完,平均每天做多少个?54、做一项工程,甲前3天就完成了它的1/3,照这样计算,余下的工程还要几天完成?正比例反比例练习(一)一.选择填空,判断数量间的比例关系。

(1)比例尺一定,图上距离与实际距离____________。

(2)圆的面积一定,直径与圆周率_______________。

(3)比的前项一定,比的后项与比值_________________。

(4)时间一定,速度与路程____________。

(5)被减数一定,减数与差______________。

(6)圆锥体体积一定,底面积与高_____________。

A、成正比例B、成反比例C、不成比例二.选择填空。

ab=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。

A、成正比例B、成反比例三.判断对错(1)正方体的表面积与体积成正比例。

()(2)一堆煤的总量不变,每天烧去的数量与烧的天数成反比例。

()(3)长方体底面积一定,体积和高成正比例。

()(4)三角形的面积不变,它的底与高成反比例。

()四、下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1)买相同的电脑,购买的电脑台数与总价(2)每捆练习本的本数相同,练习本的总本数与捆数(3)总路程一定,已行的路程与未行的路程(4)分数值一定,分数的分子与分母(5)长方形的长一定,它的面积和宽(6)长方体的体积一定,底面积和高(7)一本书的总页数一定,看的天数与平均每天看的页数(8)圆的周长和直径(9)订阅《扬子晚报》,订的份数与总价(10)图上距离一定,实际距离与比例尺(11)小麦的出粉率一定,小麦的质量与面粉的质量(12)六(1)班同学做操,每排站的人数与排数五、下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?(1)小红看一本儿童小说,每天看12页,10天可以看完;如果每天看15页,8天可以看完。

(2)一种螺丝钉,20个重30克。

一盒这样的螺丝钉是600克,一共有400个六、用比例解答(1)印刷厂装订一批图书,原计划每天装订500本,30天完成;实际只用了25天就完成了任务,实际每天装订多少本?(用比例方法解答)(2)修路队修一条长120千米的公路,前4天修了20千米;照这样的速度,修完全路共需要多少天?(用比例方法解答)比例知识练习一、填空。

(1)A数除以B数,商是5,那么A数和B数的比是( ):( )。

(2)在2:5、12 :0.2、310 :15 三个比中,与58 :14 能组成比例的一个比是( )。

(3)如果A×3=B×5,那么A:B=( ):( )。

(4)如果X= 57 Y,那么X:Y=( ):( )。

(5)从6、24、20、18与5这五个数中选出四个数组成一个比例是:( ):( )=( ):( )。

(6)在比例里,如果组成比例的两个内项互为倒数,一个外项是2.4,那么另一个外项是( )。

(7)南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是( ) 厘米。

(8)判断下列量成不成比例,成什么比例:①汽车载重量一定,汽车的辆数和运货物的总重量( )比例。

②长方形的长一定,宽和周长( )比例。

③总路程一定,时间和速度( )比例。

④被除数一定,除数和商( )比例。

⑤正方形的周长和边长( )比例。

⑥一本书的总页数一定,已看过的页数和还剩下的页数( )比例。

⑦工作时间一定,工作效率和工作总量( )比例。

二、下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?(1) 一辆汽车从甲地到乙地要行200千米。

每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

(2) 某工厂3小时织布1800米。

照这样计算,8小时织布x米。

三、应用题。

1.AB两地相距480千米,画在图上是15厘米,求这幅图的比例尺。

2.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?3.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?4.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?5.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

6.一幅地图的线段比例尺是:0 40 80 120 160千米,甲乙两城在这幅地图上相距18厘米,两城间的实际距离是多少千米?丙丁两城相距660千米,在这幅地图上两城之间的距离是多少厘米?7.某建筑工地挖一个长方形的地基,把它画在比例尺是的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?8.在比例尺是1 :2500000的地图上,量得甲乙两城之间的距离是7.2厘米。

相关文档
最新文档