TC277双线圈霍尔驱动芯片规格书
TC117HS 单通道直流马达驱动器 中文技术资料
0
—
uA
—
1.5
—
MΩ
RON
Io=±200mA
—
1
1.6
Ω
七、 输入/输出逻辑表
输入
INA
INB
L
L
H
L
L
H
H
H
OUTA Hi-Z
H L L
输出
OUTB Hi-Z
L H L
方式
待命状态 前进 后退 刹车
第2页共4页
86-755-82543821
C
TC117HS (文3件编号:S&CIC1072)
八、 输入/输Biblioteka 波形-20~85 150-55~150 350~370
2.0 1.5
单位 V W W
℃/W ℃/W
℃ ℃ ℃ ℃ A A
第1页共4页
86-755-82543821
TC117HS (文件编号:S&CIC1072)
五、 推荐工作条件 (Ta=25℃)
参数
符号
电源电压 控制输入电压 正、反转输出电流
VCC VIN Iout
全桥输出 B 端
G
地
G
地
O
全桥输出 A 端
四、 绝对最大额定值
参数 电源电压
功耗
热阻
工作温度 结温
存储温度 手工焊接温度 输出电流峰值 最大连续输出电流
符号 VCC
DIP-8 Pd
SOP-8 DIP-8 θJA SOP-8 Topr Tj Tstg
Iop Ioc
额定值 5.5 1 0.96 125 130
符号
测试条件
最小值 典型值 最大值 单位
睿奕科技双路磁保持继电器规格书2017
线圈脉冲宽度
≥50ms
介质耐压
断开触点间
2000VAC/min
触点与线圈间
4000VAC/min
绝缘电阻
1000MΩ(500VDC)
环境温度
-40℃ to 70℃
重量(不含外部连接)
约148g
外部尺寸
如左图所示
寿命
触点形式 触点材料 接触电阻 额定负载 触点最大切换电压 触点最大切换电流 触点最大切换功率
介质耐压 绝缘电阻
断开触点间
2000VAC/min
触点与线圈间
4000VAC/min
1000MΩ(500VDC)
环境温度
-40℃ to 70℃
重量(不含外部连接)
约69g
外部尺寸
如左图所示
寿命
触点形式 触点材料 接触电阻 额定负载 触点最大切换电压 触点最大切换电流 触点最大切换功率
机械寿命 电气寿命(阻性100A)
机械寿命 电气寿命(阻性100A)
2A(2H) 2B(2D)① AgSnO2
≤0.8mΩ(12VDC 1A) 100A 250VAC 440VAC/110VDC 100A 25000VA 3×105次
10000次(频率1000次/h)
额定电压(VDC) 9V 12V
线圈电阻 20Ω 36Ω
转换电压(VDC) ≤80%额定电压
绝缘电阻
1000MΩ(500VDC)
环境温度
-40℃ to 70℃
重量(不含外部连接)
约155g
外部尺寸
如左图所示
寿命
触点形式 触点材料 接触电阻 额定负载 触点最大切换电压 触点最大切换电流 触点最大切换功率
机械寿命 电气寿命(阻性100A)
CrossChip Microsystems CC6207 全极性微功耗霍尔效应开关说明书
CC6207全极性微功耗霍尔效应开关概述CC6207是一颗微功耗、高灵敏度全极性、并具有闩锁输出的霍尔开关传感装置,可直接取代传统的磁簧开关。
特别适用于使用电池电源的便携式电子产品,如行动电话、无绳电话、笔记型电脑、PDA等。
CC6207具有磁场辨别全极性,亦即只要磁场北极或南极靠近即可启动,磁场撤消后,输出便关闭。
与其他一般霍尔传感装置不同的是并不要特定南极或北极才可以动作,减少了组装时辨别磁极的困扰。
CC6207内部电路包含了霍尔薄片、电压稳压模块、信号放大处理模块、动态失调消除模块、锁存模块以及CMOS输出级。
由于CC6207使用先进的BiCMOS工艺,整体优化了的线路结构,使得产品获得极低的输入误差反馈。
产品采用了动态失调消除技术,该技术能够消除由封装应力,热应力,以及温度梯度所造成的失调电压,提高器件的一致性。
同时该产品采用及其小型化的封装工艺,使得产品更具极高的性能和市场优势。
CC6207提供SOT23-3,TO-92S和DFN4L三种封装,工作温度范围为-40~125°C。
特性◆工作范围宽,2~5V◆微功耗◆反应速度快,工作频率为40Hz◆全极性输出,对南极和北极磁场均可响应◆良好的温度稳定性◆开关点漂移低◆ESD(HBM)6000V◆SOT23-3和DFN4L小尺寸封装◆符合RoHS标准应用◆仪器仪表◆PDA◆笔记本电脑功能框图GND订购信息产品名称CC6207TO CC6207ST CC6207DN开关输出vs.磁场极性注意:磁场加在芯片的丝印面管脚定义CC6207XXYYWW132VDDGND VOUT1236207VDDVOUTGND NC GND TO-92S封装SOT23-3封装DFN4L 封装参数电源电压磁场强度工作环境温度典型应用电路工作时序图I DDI I DD(EN)IOperating Time曲线&波形(若无特别指明,V DD =3.5V @T a =25°C)扫描频率vs.V DD I DD(AVG)vs.V DD磁感应点vs.T a磁感应点vs.V DD封装信息(1)TO-92S 封装DHall 感应点位置注意:所有单位均为毫米。
驱动芯片TC426
2002-2012 Microchip Technology Inc.
Hale Waihona Puke DS21415D-page 1
TC426/TC427/TC428
Functional Block Diagram
V+
≈500 μA ≈2.5 μA
TC426 TC427 TC428
Noninverting Output (TC427) Input GND NOTE: TC428 has one inverting and one noninverting driver. Ground any unused driver input.
Absolute Maximum Ratings*
Supply Voltage ..................................................... +20V Input Voltage, Any Terminal ................................... VDD + 0.3V to GND – 0.3V Power Dissipation (TA 70°C) PDIP........................................................ 730 mW CERDIP .................................................. 800 mW SOIC ....................................................... 470 mW Derating Factor PDIP....................................................... 8 mW/°C CERDIP .............................................. 6.4 mW/°C SOIC ...................................................... 4 mW/°C Operating Temperature Range C Version ........................................ 0°C to +70°C I Version ....................................... -25°C to +85°C E Version...................................... -40°C to +85°C M Version ................................... -55°C to +125°C Storage Temperature Range.............. -65°C to +150°C
SDC1217低功耗霍尔开关说明书
Preliminary数据手册概述SDC1217是一款高精度低功耗霍尔开关,应用于S 极磁场检测,给出相应的数字输出。
在1.85V时的典型功耗小于4uW,因此非常适用于低耗电产品,可用于优先考虑功耗的电池供电系统,如触屏式手机,平板电脑,笔记本电脑等。
此产品具有精准的磁性开关切换点,而且其对于工艺差异和温度变化的灵敏度低。
采用小型的SOT-23-3。
特点⏹极低的功耗设计⏹工作电压范围:1.65V~5.5V⏹输出方式:CMOS输出⏹斩波放大器设计,对因工艺、工作温度和机械应力产生的噪声和失调敏感度低⏹S极使用⏹封装形式:SOT-23-3、TO-92S应用⏹触屏式手机、平板电脑⏹笔记本电脑、数码相机⏹玩具、游戏机⏹家用电器图1. 封装形式SOT-23-3TO-92SPreliminary数据手册管脚描述GND VDDOUTPackage: SOT-23-3OUT VDDGND Package: TO-92S图2. 管脚排布表1. 管脚描述功能框图VDD图3. 功能框图Preliminary 数据手册订购信息SDC1217X X -XIC 型号封装TO-92S: ZS SOT-23-3: JE1: 无铅G1: 无卤Blank: 袋装TR: 编带Preliminary数据手册表2. 极限参数表3. 推荐工作条件Preliminary数据手册表4. 电气特性特性曲线-40-20020406080246810平均电流(uA)图4. 平均电流VS环境温度(V DD=3.3V)2.53.0 3.54.0 4.55.0 5.5-224681.65平均电流(uA)电源电压(V)图5. 平均电流VS电源电压 (Ta=25℃)数据手册Preliminary磁场特性图6. 磁场特性图Preliminary数据手册工作原理上电复位当电源开启时,上电复位电路立即重置数字电路以在启动后获得正确的操作。
振荡器和时序器内建振荡器提供时钟信号给时序器去决定工作时间和待机时间。
EG276 两相无刷电机驱动芯片
ELECTRONIC GIANT EG276芯片用户手册二相无刷风扇霍尔驱动芯片版本变更记录目录1. 特点 (4)2. 描述 (4)3. 应用领域 (4)4. 引脚 (5)4.1. 引脚定义 (5)4.2. 引脚描述 (5)5. 结构框图 (6)6. 典型应用电路 (6)7. 电气特性 (7)7.1 极限参数 (7)7.2 典型参数 (7)7.3 测试电路 (8)7.4 磁电参数 (8)7.5 磁场方向工作参数 (10)8. 封装尺寸 (11)EG276芯片用户手册V1.01. 特点⏹单片集成,体积小,可靠性高⏹较宽的电压工作范围:3.5V至20V⏹内置霍尔传感器⏹400mA平均电流输出能力⏹集电极开路,互补输出⏹内置电压反转保护二极管⏹采用较小的TO-94封装2. 描述EG276集成了霍尔传感器和集电极开路互补输出驱动器,主要用于电子转换的二相无刷直流风扇。
芯片内部集成了霍尔感应器、基准电压、前置放大器、施密特比较器以及互补集电极开路输出(DO、DOB)。
在直流风扇应用中,有时会发生电源接反的情况,EG276内置了一个反接保护二极管,该反接保护二极管只能给芯片提供保护而不能给线圈提供保护。
如有必要,线圈可外接一个二极管,在电源反接的时候给线圈提供保护。
当磁通密度(B)大于工作电(Bop),DO开启输出低电平,同时DOB关闭输出高电平。
两个输出管脚的状态会一直保持到B低于释放点(Brp),这时DO、DOB改变各自的输出状态。
3. 应用领域⏹双线圈无刷直流风扇⏹回转计数器⏹双线圈无刷直流电机⏹速度测量4. 引脚4.1. 引脚定义图4-1. EG276管脚定义4.2. 引脚描述5. 结构框图DOGND图5-1. EG276结构框图6. 典型应用电路图6-1. EG276典型应用电路图7. 电气特性7.1 极限参数7.2 典型参数无另外说明,在A25℃,Vin=12V7.3 测试电路DO DOB图7-3. EG276测试线路图7.4 磁电参数(Magnetic flux density B)(O u t p u t V o l t a g e )(Magnetic flux density B)(O u t p u t V o l t a g e )图7-4a. EG276的2脚DO 输出磁电翻转特性 图7-4b. EG276的3脚DOB 输出磁电翻转特性当磁通量密度B 大于翻转点Bop 时,DO 开启为低电平如图7-4a 右半轴,DOB 关断为高电平如图7-4b 右半轴。
TC277双线圈霍尔驱动芯片规格书
双线圈直流马达驱动电路
数据手册
1.0版
1. 概览
简要描述
TC277是一款支持18V 电压应用的直流马达和风扇驱动电路。
芯片中除了集成整流器、霍尔传感器、信号放大器、迟滞比较器和双路漏极开路输出电路保护二极管、反向电压保护器,还设置了斩波器,提高驱动器的磁场特性。
当电路检测到的磁场强度大于翻转点(BOP ),双路输出驱动中输出DO 端开启(低),同时输出DOB 端关断(高)。
当芯片检测到的磁场强度低于释放点(BRP),DO 、DOB 状态翻转。
主要特点
□ 集成霍尔传感器
□ 3.0~18V 的宽电压工作范围 □ 低至1.5mA 的工作电流
□ 400mA 电流的输出驱动能力 □ 双路输出端内嵌保护二极管 □ 工作环境温度:-40C~85C □集成过温保护电路 □ 封装形式:TO-94
典型应用
□ 无刷直流风扇 □ 无刷直流马达 □ 转速检测 □ 速度测量
封装形式
□ TO94
引脚定义
2.
VDD
DO
DOB
图2: 功能框图
277
3. 磁场特性
V(DO) V(DOB)
图3: DO/DOB的输出和磁场的关系
4. 最大额定值
5. 电特性参数
6. 磁特性参数
表4: 磁特性参数(Ta=25C )
7. 测试电路
图4: 测试电路
8. 典型应用
图5: 典型应用电路
12V
VDD
277
277
9. 封装信息------TO94 (单位: mm)
封装尺寸
图6: 封装信息
传感器位置
图7: 传感器位置。
477(24V)单线圈霍尔驱动芯片规格书
所提供的产品均为 A 类品
VDD
应用
单线圈直流无刷风扇 单线圈直流无刷马达
VDD
温度补偿单元
电压调节器
DO
VDD
动态失调消除
迟滞比较器
输出驱动器
Hall
过温保护单元
DOB GND
1
订购信息 管脚定义
产品名称 CCH477TO CCH477ST
包装方式 袋装,1000 片/袋 卷盘编带,2500 片/盘
0.10
0.60
0
30
注意: 1. 所有尺寸单位均为毫米。 打标: CCH477
7
DS-477-SC- rev1.2
crossMAG 系列
封装型号 TO (TO-94)
SOT23-5
备注
5
4
印记面
1
2
3
TO-94 Package
SOT23-5
名称
TO94
引脚编号 SOT23-5
功能
VDD
1
1
电源电压
DO
2
3
全桥输出 1
DOB
3
4
全桥输出 2
GND
4
2
地
5
悬空
极限参数
参数
符号
数值
单位
V
DO 上升时间 VIN=18V, CH1=DO, CH2=DOB
VDD=18V
CCH477
VDD DO DOB GND VDD DO DOB GND
100~300mA
RL 820Ώ
RDSON 测试电路
开关特性测试电路
5
封装信息 TO-94 封装
霍尔两相直流无刷马达驱动电路JM266产品手册
北京蓝通精电科技有限公司 JM266 产品规格书
J M2 J M266 两相直流无刷马达驱动电路
概述:
66集成霍尔传感器和输出驱动电路,主要应用于无刷直流风扇的电转换。
此款IC集成了稳压电路、保护二极管、霍尔传感器、运算放大器、比较器和一对互补的开集电极输出(DO,DOB)。
当磁通量密度(B)大于操作点(BOP),DO就会开启(低电平),同时DOB 会关闭(高电平)。
两个输出管脚的状态会一直保持到B低于释放点(BRP),这时DO、DOB改变各自的输出状态。
对于直流风扇的应用,有时会发生电源反接的情况。
内部二极管只能给芯片提供保护而不能给线圈提供保护。
所以应用的时候,有必要附加一个外部的二极管,它在电源反接的时候给线圈提供保护。
特性:
●片上集成霍尔传感器
●3.5V~36V的操作电压
●400mA的平均输出沉电流
●内置保护二极管保护芯片电源反接的情况
●小型TO94封装形式
应用:
●双线圈无刷直流马达
●双线圈无刷直流风扇
●旋转计数
●速度测量
典型应用电路:
JM266
内部功能模块示意图:
管脚描述:
JM266
绝对最大数据:(25℃)
电学特性:
测试电路:
JM266磁特性:
打标信息:
JM266。
落木源TX-KA102超大功率 IGBT 单管驱动器 HIC 芯片 用户手册说明书
北京落木源电子技术有限公司IGBT驱动器(TX-KA102) 产品手册IGBT驱动器HIC芯片(TX-KA102)产品手册特点• 超大功率IGBT 单管驱动器,最大输出电流20A ,最大输出电荷20uC 。
• 三段式完善的过电流保护功能,先降栅压,再延迟判断,确实短路时实行软关断,并封锁短路信号以执行一个完整的保护过程。
• 可按默认值直接使用,也可根据需要调节盲区时间、延迟判断时间、软关断的速度、故障后再次启动的时间。
• IGBT 短路时的集射极电压阈值的设定可用电阻精细调节,也可使用传统的稳压管调节。
• 使用单一电源,驱动器内部设有负压分配器,减少了外部元器件。
•IGBT 的栅极充电和放电速度可分别调节。
应用• 可驱动2000A 以下IGBT 一只驱动特性(除另有指定外,均为在以下条件时测得:Ta=25℃,Vp=24V ,Fop=50KHz,模拟负载电容CL=220nF)参数符号测试条件最小值 典型值 最大值 单位 输入脉冲电流幅值 Ipwm 9 10 12mA VOH 14.5 V 输出电压VOL-8.5 V IOHP 20A 输出电流 IOLP Fop=20KHz Ton=2μS -20A 栅极电阻 Rg0.5Ω输出总电荷 Qout 参见本表下的图线20 uC 工作频率 Fop 参见本表下的图线 0100 KHz 占空比 δ0 100% 最小工作脉宽 Tonmin CL=100nF 0.5 μS 上升延迟 Trd 0.4 0.6 μS 下降延迟 Tfd0.5 0.7μS 上升时间 Tr 0.6 μS 下降时间 TfRg=1Ω,CL=220nF0.6 μS 绝缘电压 VISO 50Hz/1 min 3500 Vrms 共模瞬态抑制CMR30KV/μS驱动电源参数符号测试条件最小值典型值最大值单位输入电压Vp 23 24 25 VCL=0 20输入电源电流IdmAFop=50KHz,CL=220nF,Vp=24V 330工作条件环境温度符号测试条件最小值典型值最大值单位工作温度Top -40 85 ℃存储温度Tst -40 120 ℃短路保护性能(除另有指定外,均为在以下条件时测得:Ta=25℃,Vp=24V,Fop=50KHz,模拟负载电容CL=220nF)最小值值典型值最大值单位参数符号测试条件最小保护动作阈值(1) Vn 用户设置,典型值为缺省值7.5 V 保护盲区(2) Tblind 用户设置,最小值为缺省值 2.2 μS 初始栅压降落Vdrop 5 V 延迟判断时间(3) Tdelay 用户设置,最小值为缺省值 2 μS 软关断时间(4) Tsoft 用户设置,最小值为缺省值 5.5 μS故障后再启动时间(5) Trst 用户设置,典型值为缺省值1.1 mS故障信号延迟Tflt 0.2 μS 故障信号输出电流Iflt 8 10 mA1. 触发过流保护动作时的7脚对16脚的电压。
通惠KT270-EFG说明书
概 述 ------------------------------------------------------------------------- 1-1 性能指标 ---------------------------------------------------------------------- 1-1 应用范围 ---------------------------------------------------------------------- 1-1 安装与接线 ------------------------------------------------------------------- 2-1 安装场合 ---------------------------------------------------------------------- 2-1 安装方法 ---------------------------------------------------------------------- 2-1 接 线 ------------------------------------------------------------------------- 2-3 2.3.1 接线注意事项 ------------------------------------------------------- 2-3 2.3.2 线径尺寸 ------------------------------------------------------------- 2-4 2.3.3 标准接线例 ---------------------------------------------------------- 2-6 配 线 ------------------------------------------------------------------------- 2-13 信号说明 ---------------------------------------------------------------------- 2-14 输入/输出接口类型 --------------------------------------------------------- 2-18 2.6.1 数字量输入接口 --------------------------------------------------- 2-18 2.6.2 数字量输出接口 --------------------------------------------------- 2-18 2.6.3 脉冲量输入接口 --------------------------------------------------- 2-19 2.6.4 模拟量输入接口 --------------------------------------------------- 2-21 2.6.5 伺服电机光电编码器输入接口 --------------------------------- 2-22 2.6.6 编码器脉冲输出接口 --------------------------------------------- 2-22 伺服驱动器更换零件的大致标准 ----------------------------------------- 2-23 伺服驱动器运输时的注意事项 -------------------------------------------- 2-23 离子和非离子辐射 ---------------------------------------------------------- 2-23 驱动器通讯插座(SER)管脚定义------------------------------------------ 2-24 参 数 ------------------------------------------------------------------------- 3-1 参数一览表 ------------------------------------------------------------------- 3-1 参数功能 ---------------------------------------------------------------------- 3-4 报警与处理 ------------------------------------------------------------------- 4-1 报警一览表 ------------------------------------------------------------------- 4-1 报警处理方法 ---------------------------------------------------------------- 4-2 常见故障分析 ---------------------------------------------------------------- 4-9 显示与键盘操作 ------------------------------------------------------------- 5-1 键盘操作 ---------------------------------------------------------------------- 5-1 监视方式 ---------------------------------------------------------------------- 5-1 参数设置 ---------------------------------------------------------------------- 5-4 参数管理 ---------------------------------------------------------------------- 5-4 试运行 ------------------------------------------------------------------------- 5-6 JOG 运行 ---------------------------------------------------------------------- 5-6
爱乐高ACS706ELC-05C双向1.5mΩ霍尔效应线性电流传感器IC电路使用手册说明书
NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no respon-sibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.Recommended Substitutions:For existing customer transition, and for new customers or new appli-cations, refer to the ACS712.Bidirectional 1.5 mΩ Hall Effect Based Linear Current Sensor ICwith V oltage Isolation and 15 A Dynamic RangeACS706ELC-05CDate of status change: December 26, 2006These parts are in production but have been determined to beNOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available.Not for New DesignFeatures and Benefits• Small footprint, low-profile SOIC8 package• 1.5 m Ω internal conductor resistance• 1600 V RMS minimum isolation voltage between pins 1-4 and 5-8• 4.5 to 5.5 V, single supply operation • 50 kHz bandwidth• 133 mV/A output sensitivity and 15 A dynamic range • Output voltage proportional to ac and dc currents • Factory-trimmed for accuracy• Extremely stable output offset voltage • Near-zero magnetic hysteresis• Ratiometric output from supply voltageThe Allegro ACS706 family of current sensor ICs provides economical and precise solutions for current sensing in industrial, automotive, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switch-mode power supplies, and overcurrent fault protection.The device consists of a precision, low-offset linear Hall circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which the Hall IC converts into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which is programmed for accuracy at the factory.The output of the device has a positive slope (>V CC / 2) when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sampling. The internal resistance of this conductive path is typically 1.5 m Ω, providing low power loss. The thickness of the copper conductor allows survival of the device at up to 5× overcurrent conditions. The terminals of the conductive path are electrically isolated from the signal leads (pins 5 through 8). This allows the ACS706 to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques.The ACS706 is provided in a small, surface mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the flip-chip uses high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.Use the following complete part number when ordering:Part NumberPackageACS706ELC-05CSOIC8 surface mountTÜV AmericaCertificate Number:U8V 04 12 54214 005AB S O L UTE MAX I M UM RAT I NGSSupply V oltage, V CC ..........................................16 V Reverse Supply V oltage, V RCC ........................–16 V Output V oltage, V OUT ........................................16 V Reverse Output V oltage, V ROUT ......................–0.1 V Output Current Source, I OUT(Source) ................. 3 mA Output Current Sink, I OUT(Sink) .......................10 mA Maximum Transient Sensed Current *, I R(max) ...100 A Operating Temperature, Maximum Junction, T J(max).......................165°C Storage Temperature, T S ......................–65 to 170°C*Junction Temperature, T J < TJ(max).*100 total pulses, 250 ms duration each, applied at a rate of1 pulse every 100 seconds.Nominal Operating Temperature, T A Range E ............................................–40 to 85ºC Overcurrent Transient Tolerance*, I P ................60 ABidirectional 1.5 m Ω Hall Effect Based Linear Current Sensorwith Voltage Isolation and 15 A Dynamic RangePackage LCPin 1: IP+Pin 2: IP+Pin 3: IP–Pin 4: IP–Pin 8: VCC Pin 7: VOUTPin 6: N.C.Pin 5: GNDPins 6 and 7 are internally connected in shipping product. For compatibility with future devices, leave pin 6 floating.Functional Block Diagram0.1 μFPERFORMANCE CHARACTERISTICS, over operating ambient temperature range, unless otherwise specifiedPropagation Time t PROP I P =±5 A, T A = 25°C– 3.15–μs Response Time t RESPONSE I P =±5 A, T A = 25°C–6–μs Rise Time t r I P =±5 A, T A = 25°C–7.45–μs Frequency Bandwidth f–3 dB, T A = 25°C; I P is 10 A peak-to-peak; no external filter–50–kHzSensitivity Sens Over full range of I P , I P applied for 5 ms; T A = 25°C–133–mV/A Over full range of I P , I P applied for 5 ms124–142mV/ANoise V NOISE Peak-to-peak, T A = 25°C, no external filter–90–mV Root Mean Square, T A = 25°C, no external filter–16–mVLinearity E LIN Over full range of I P , I P applied for 5 ms–±1±4.7% Symmetry E SYM Over full range of I P , I P applied for 5 ms98100104.5% Zero Current Output Voltage V OUT(Q)I P = 0 A, T A = 25°C–V CC / 2–VElectrical Offset Voltage V OE I P = 0 A, T A = 25°C–15–15mV I P = 0 A–65–65mVMagnetic Offset Error I ERROM I P = 0 A, after excursion of 5 A–±0.01±0.05ATotal Output Error1E TOT I P =±5 A, I P applied for 5 ms;T A = 25°C–±1.5–% I P = ±5 A, I P applied for 5 ms––±12.5%Characteristic Symbol Test Conditions Min.Typ.Max.Units ELECTRICAL CHARACTERISTICS, over operating ambient temperature range unless otherwise specifiedOptimized Accuracy Range I P–5–5A Linear Sensing Range I R–15–15A Supply Voltage V CC 4.5 5.0 5.5V Supply Current I CC V CC = 5.0 V, output open5810mA Output Resistance R OUT I OUT = 1.2 mA–12ΩOutput Capacitance Load C LOAD VOUT to GND––10nF Output Resistive Load R LOAD VOUT to GND 4.7––kΩPrimary Conductor Resistance R PRIMARY T A = 25°C– 1.5–mΩRMS Isolation Voltage V ISORMS Pins 1-4 and 5-8; 60 Hz, 1 minute16002500–V DC Isolation Voltage V ISODC–5000–V OPERATING CHARACTERISTICSTHERMAL CHARACTERISTICS2,3, T A = –40°C to 125°C, V CC = 5 V unless otherwise specified–Value–UnitsJunction-to-Lead Thermal Resistance RθJLMounted on the Allegro ASEK 70x evaluation board; additionalinformation about reference boards and tests is available on theAllegro Web site–5–°C/WJunction-to-Ambient Thermal Resistance RθJAMounted on the Allegro ASEK 70x evaluation board; additionalinformation about reference boards and tests is available on theAllegro Web site–41–°C/W1Percentage of I P, with I P = 5 A. Output filtered. Up to a 2.0% shift in E TOT may be observed at end-of-life for this device.2 The Allegro evaluation board has 1500 mm2 of 2 oz. copper on each side, connected to pins 1 and 2, and to pins3 and 4, with thermal vias connect-ing the layers. Performance values include the power consumed by the PWB. Further details on the board are available from the ACS704 Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found on pages 16 and 17 of this datasheet.3RθJA values shown in this table are typical values, measured on the Allegro evaluation board. The actual thermal performance depends on the board design, the airflow in the system, and thermal interactions between the device and surrounding components through the PCB and the ambient air. To improve thermal performance, see our applications material on the Allegro Web site.Typical Performance Characteristics-50-25255075100125150Supply Current versus Ambient TemperatureV CC = 5 VT A (°C)I C C (m A )4.54.64.74.84.95 5.15.25.35.45.5V CC (V)I C C (m A )8.008.058.108.158.208.258.308.358.408.458.50Supply Current versus Applied VCC11.01.52.02.53.03.54.0-9-8-7-6-5-4-3-2-10123456789V O U T (V )Output Voltage versus Primary CurrentV CC = 5 VI P (A)110115120125130135140145150160S e n s (m V /A )-9-8-7-6-5-4-3-2-1123456789I P (A)Sensitivity versus Primary CurrentV CC = 5 V-50-250255075100125150V O U T (Q ) (V )2.4702.5802.4902.5002.5102.5202.530Zero Current Output Voltage vs. Ambient TemperatureT A (°C)I P = 0 AZero Current Output Currrent versus Ambient Temperature(Data in above chart converted to amperes)I V O U T (Q ) (A )–0.3–0.2–0.10.10.20.3–50–25255075100125150T A (°C)V O M (m A )-1.0-0.8-0.6-0.4-0.200.20.40.60.81.0-50-25255075150100125T A (°C)Magnetic Offset Error versus Ambient TemperatureV CC = 5 V; I P= 0 A, after excursion to 5 A-50-25255075150100125T A (°C)00.51.01.52.02.53.0E L I N (%)Nonlinearity versus Ambient TemperatureV CC = 5 V I P= 5 ATypical Peak-to-Peak Noise of ACS706ELC-05C at T A =25°CStep Response of ACS706ELC-05C at T A =25°CACS706 Output (mV)5 A Excitation SignalTime = 10 μs/div.Excitation signal = 1.00 A/div.Output = 100 mV/div.Time = 20 μs/div.Noise = 20.0 mV/div.ACS706ELC-05C Noise Filtering and Frequency Response Performance Break Frequencyof Filter on Output(kHz)Resistance,R F (kΩ)Capacitance,C F (μF)NominalProgrammedSensitivity(mV/A)FilteredPeak-to-Peak Noise(mV)Resolutionwith Filtering(A)Rise Timefor 5A Step,Filtered(μs)Unfiltered––133 900.6777.45800.2000.01 75.90.5718.26500.32064.70.48610.08 400.39260.30.45311.39 200.80043.30.32617.56 10 1.628.90.21831.96 7.0 3.1518.30.13754.55 3.3 4.813.80.10481.77 0.626 1.90.015404.16 0.3530.760.00573732.89OUTTypical Application DrawingThe ACS706 outputs an analog signal, V Sig. that varies linearly with the bidirectional primarysensed current, I P, within the range specified. R F and C F, are recommended for noise management,with values that depend on the application, as shown in the noise filtering table.Sensitivity (Sens). The change in device output in response to a 1 A change through the primary conductor. The sensitivity is the prod-uct of the magnetic circuit sensitivity (G / A ) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.Noise (V NOISE ). The product of the linear IC amplifier gain (mV/G) and the noise floor for the Allegro Hall effect linear IC (≈1 G). The noise floor is derived from the thermal and shot noise observed in Hall elements. Dividing the noise (mV) by the sensitivity (mV/A) provides the smallest current that the device is able to resolve.Linearity (E LIN ): The degree to which the voltage output from the device varies in direct proportion to the primary current through its full-scale amplitude. Nonlinearity in the output can be attributed to the saturation of the flux concentrator approaching the full-scale current. The following equation is used to derive the linearity:Definitions of Accuracy Characteristics1001– [{[{V out_full-scale amperes –V OUT(Q)()2 (V out_half-scale amperes –V OUT(Q))100where V out_full-scale amperes = the output voltage (V) when the sensed current approximates full-scale ±I P .Symmetry (E SYM ). The degree to which the absolute voltage output from the device varies in proportion to either a positive or nega-tive full-scale primary current. The following formula is used to derive symmetry:Quiescent output voltage (V OUT(Q)). The output of the device when the primary current is zero. For a unipolar supply voltage, it nominally remains at V CC ⁄ 2. Thus, V CC = 5 V translates into V OUT(Q) = 2.5 V . Variation in V OUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.Electrical offset voltage (V OE ). The deviation of the device output from its ideal quiescent value of V CC / 2 due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.Accuracy (E TOT ). The accuracy represents the maximum deviation of the actual output from its ideal value. This is also known as the total ouput error. The accuracy is illustrated graphically in the Output V oltage versus Current chart on the following page.Accuracy is divided into four areas:∙ 0 A at 25°C. Accuracy at zero current flow at 25°C, without the effects of temperature.∙ 0 A over Δ temperature. Accuracy at zero current flow including temperature effects.∙ Full-scale current at 25°C. Accuracy at the full-scale current at 25°C, without the effects of temperature.∙ Full-scale current over Δ temperature. Accuracy at full-scale current flow including temperature effects.Ratiometry . The ratiometric feature means that its 0 A output, V OUT(Q), (nominally equal to V CC /2) and sensitivity, Sens, are propor-tional to its supply voltage, V CC . The following formula is used to derive the ratiometric change in 0 A output voltage, ∆V OUT(Q)RAT (%):100V IOUT(Q)VCC /V IOUT(Q)5VV CC /5 VThe ratiometric change in sensitivity, ∆Sens RAT (%), is defined as:100Sens VCC /Sens 5V V CC /5 V ‰Output voltage vs. current, illustrating device accuracy at 0 A and at full-scale currentDefinitions of Dynamic Response CharacteristicsPropagation delay (t PROP): The time required for the device output to reflect a change in the primary cur-rent signal. Propagation delay is attributed to inductive loading within the linear IC package, as well as in the inductive loop formed by the primary conductor geometry. Propagation delay can be considered as a fixed time offset and may be compensated.Response time (t RESPONSE): The time interval between a) when the primary current signal reaches 90% of its final value, and b) when the device reaches 90% of its output corresponding to the applied current.Rise time (t r): The time interval between a) when the device reaches 10% of its full scale value, and b) when it reaches 90% of its full scale value. The rise time to a step response is used to derive the bandwidth of the device, in which ƒ(–3 dB) = 0.35 / t r. Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.Device Branding Key (Two alternative styles are used)ACS706T ELC05C YYWWA ACS Allegro Current Sensor706Device family numberT Indicator of 100% matte tin leadframe platingE Operating ambient temperature range codeLC Package type designator05C Primary sensed currentYY Manufacturing date code: Calendar year (last two digits) WW Manufacturing date code: Calendar weekA Manufacturing date code: Shift codeACS706T ELC05CL...L YYWWACS Allegro Current Sensor706Device family numberT Indicator of 100% matte tin leadframe platingE Operating ambient temperature range codeLC Package type designator05C Primary sensed currentL...L Manufacturing lot codeYY Manufacturing date code: Calendar year (last two digits)WW Manufacturing date code: Calendar week Standards and Physical SpecificationsParameter SpecificationFlammability (package molding compound)UL recognized to UL 94V-0Fire and Electric Shock UL60950-1:2003EN60950-1:2001CAN/CSA C22.2 No. 60950-1:2003Chopper Stabilization TechniqueChopper Stabilization is an innovative circuit technique that is used to minimize the offset voltage of a Hall element and an associated on-chip amplifier. Allegro patented a Chopper Stabilization technique that nearly eliminates Hall IC output drift induced by temperature or package stress effects. This offset reduction technique is based on a signal modulation-demodulation process. Modulation is used to separate the undesired dc offset signal from the magnetically induced signal in the frequency domain. Then, using a low-pass filter, the modu-lated dc offset is suppressed while the magnetically induced signal passes through the filter. As a result of this chopper stabilization approach, the output voltage from the Hall IC is desensitized to the effects of temperature and mechanical stress. This technique produces devices that have an extremely stable Electrical Offset V oltage, are immune to thermal stress, and have precise recoverability after temperature cycling.This technique is made possible through the use of a BiCMOS process that allows the use of low-offset and low-noise amplifiers in combination with high-density logic integration and sample and hold circuits.Concept of Chopper Stabilization TechniqueApplications InformationIn order to quantify transient common-mode voltage rejection for the ACS706, a device was soldered onto a printedcircuit board. A 0.1 μF bypass capacitor and a 5 V dc power supply were connected between VCC and GND (pins 8 and5) for this device. A 10 k Ω load resistor and a 0.01 μF capacitor were connected in parallel between the VOUT pin andthe GND pin of the device (pins 7 and 5).A function generator was connected between the primary current conductor (pins 1 thru 4) and the GND pin ofthe device (pin 5). This function generator was configured to generate a 10 V peak (20 V peak-to-peak) sinewave between pins 1-4 and pin 5. Note that the sinusoidal stimulus was applied such that no electrical currentwould flow through the copper conductor composed of pins 1-4 of this device.The frequency of this sine wave was varied from 60 Hz to 5 MHz in discrete steps. At each frequency, thestatistics feature of an oscilloscope was used to measure the voltage variations (noise) on the ACS706 outputin mV (peak to peak). The noise was measured both before and after the application of the stimulus. Transientcommon-mode voltage rejection as a function of frequency is shown in the following figure.Transient Common-Mode Voltage Rejection in the ACS706(kHz)Frequency of 20 V Peak-to-Peak Stimulus –60–55–50–45–40–35–30Tr a nsi e ntR ej ect i o n(d B)The Effect of PCB Layout on ACS706 Thermal PerformanceEight different PC boards were fabricated to characterize the effect of PCB design on the operating junction temperature of the Hall-effect IC inside of the ACS706. These PC boards are shown in the figure below. 2 oz. Cu on one side of board 2 oz. Cu on both sides of board An ACS706 device was soldered on to each PCB for thermal testing. The results of the testing are shown in the following table.Test Results on Eight Thermal Characterization PCBsTested at 15A, T A = 20°C, still air, 2 oz. copper traces, current carried on and off boardby 14 gauge wiresPC BoardsSides with Traces Trace Width (mm)Trace Length (mm)Temperature Rise Above Ambient (°C)1 450901.550Overheated 410481.5101102450531.550106410381.51054Improved PC Board DesignsThe eight PC boards in the figure above do not represent an ideal PC board for use with the ACS706. The ACS706 evaluation boards, for sale at the Allegro Web site On-Line Store, represent a more optimal PC board design (see photo below). On the evaluation boards, the current to be sensed flows through very wide traces that were fabricated using 2 layers of 2 oz. copper. Thermal management tests were conducted on the Allegro evaluation boards and all tests were performed using the same test conditions described in the bulleted list above. The results for these thermal tests are shown in the table below. When using the Allegro evaluation boards we see that even at an applied current of 20 A the junction temperature of the ACS706 is only ≈30 degrees above ambient temperature.Test Results on Eight Electrical Characterization PCBsTested at T A = 20°C, still airApplied Current(A)Temp Rise Above Ambient( C)1522 2031Allegro Current sensor IC evaluation board with ACS706 and external connections.The products described herein are manufactured under one or more of the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889; 5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894; 5,694,038; 5,729,130; 5,917,320; and other patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such de p ar t ures from the detail spec i f i c a t ions as may be required topermit improvements in the per f or m ance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or sys t ems without express written approval.The in f or m a t ion in c lud e d herein is believed to be ac c u r ate and reliable. How e v e r, Allegro MicroSystems, Inc. assumes no re s pon s i b il i t y for its use; nor for any in f ringe m ent of patents or other rights of third parties which may result from its use.Copyright©2005, 2006 Allegro MicroSystems, Inc.Package LC, 8-pin SOICPreliminary dimensions, for reference onlyDimensions in millimetersU.S. Customary dimensions (in.) in brackets, for reference only(reference JEDEC MS-012 AA)Dimensions exclusive of mold flash, gate burrs, and dambar protrusionsExact case and lead configuration at supplier discretion within limits shownA Terminal #1 mark area。
THB7128 高细分、大功率 两相混合式步进电机驱动芯片说明书
THB7128高细分、大功率两相混合式步进电机驱动芯片一、 特性:●双全桥MOSFET 驱动,低导通电阻Ron=0.53Ω●最高耐压40VDC,大电流3.3 A(峰值)●多种细分可选(1、1/2、1/4、1/8、1/16、1/32、1/64、1/128)●自动半流锁定功能●内置混合式衰减模式●内置输入下拉电阻●内置温度保护及过流保护二、管脚图:OUT1A OUT2B OUT2AOUT1B VCC191715 42 1816310 1三、 管脚说明:端子 端子符号 端子说明1 GND 地2 CW/CCW 正/反转信号输入端3 CLK 脉冲信号输入端4 OSC1 斩波频率设定电容连接端5 VREF 电流设定端6 GND 地7 OUT2B B相 OUT输出端8 NFB B相 电流检测电阻连接端9 OUT1B B相 OUT输出端10 GND 地11 OUT2A A相 OUT输出端12 NFA A相 电流检测电阻连接端13 OUT1A A相 OUT输出端14 VM 电源VM连接端15 VCC 接VCC电源16 M1 细分设置端17 M2 细分设置端18 M3 细分设置端19 ENABLE 脱机信号控制端四、 电器参数:1、最高额定值Absolute Maximum Ratings (Ta 25°C)项目 符号 额定值 符号 最高工作电压 VMmax 36V最大输出电流 Iomax 3.3A 最高逻辑输入电压 VINmax 6VVREF最高输入电压 VREFmax 3V 工作环境温度 Topg -30~+105℃保存环境温度 Tstg -40~+125℃2、正常运行参数范围Operating Range (Ta =30 to 85°C)参数 符号 最小 典型.最大 单位 逻辑输入电压 VIN2 5.0 6 V数字信号电源 VCC 3.3 5.0 6 V电源电压 VM9 −32V输出电流 Io0 − 3.0 A电流设定端 VREF0 −3V3、电器特性Electrical Characteristics (Ta = 25°C, VREF =1.5 V, VM = 24 V)项目 符号 条件 最小 标准 最大 符号待机时消耗电流 IMstn VCC=0 200 μA 消耗电流 IM VCC=5V 4 mA TSD温度 TSD 设计保证 180 ℃ Thermal Hysteresis值 ΔTSD 设计保证 40 ℃IinL1 VIN=0.8V 8 μA 逻辑端子输入电流IinH1 VIN=5V 50 μA 逻辑输入“H”Level电压 Vinh 2.0 V 逻辑输入“L”Level电压 Vinl 0.8 V 斩波频率 Fch Cosc1=100pF 83KHz OSC1端子充放电电流 Iosc1 10 μA 斩波振荡电路Vtup1 1 V 电压阈值 Vtdown10.5 V VREF端子输入电流 Iref VREF=1.5V CLK=10KHZ-0.5 μA 通电锁定切换频率 Falert 1.6 Hz Blanking时间 Tbl 1 uS 输出Ronu Io=2.0A、上側ON阻抗 0.3 Ω 输出ON阻抗Rond Io=2.0A、下側ON阻抗 0.25Ω 输出漏电流 Ioleak VM=36V 50 μA 二极管正向压降 VD ID=-2.0A 1.1V 电流设定基准电压 VRF VREF=1.5V、電流比100% 300 mV 输出短路保护Timer Latch时间 Tscp 256 μs五、 端子说明1、CLK脉冲输入端(脉冲上升沿有效)2、CW/CCW:电机正反转控制端CW/CCW为低电平时,电机正转CW/CCW为高电平时,电机反转3、ENABLE:使能端ENABLE端子为低电平时,输出强制关断,为高阻状态。
SDC277规格书,PDF,电路图,方案
绝对最大额定值(注意:应用不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响
器件的可靠性。)
参数
符号
数值
单位
电源电压
Vcc
20
V
反向电压
Vrcc
-20
V
磁场强度
B
无限制
G
持续
250
输出电流
锁定
Ic
400
mA
瞬间峰值
700
工作环境温度
Ta
-20~85
℃
储存环境温度
Ts
-65~150
磁场开关点(G)
霍尔开关集成电路
磁场对电压 20 0 -20 -40 -60
2V 4V 6V 8V 10V 12V 14V 16V 18V 20V 电源电压
图 5 磁场电压特性曲线
数据手册
SDC277
BOP BRP
典型应用图
SDC277
Coil
VCC DO DOB GND
应用
无刷直流马达 无刷直流风扇 转速计 速度测量
管脚描述
1.VCC
277
2. DO
3.DOB
4.GND
编号
1 2 3 4
图 1 管脚排布
12 3 4
名称
VCC DO DOB GND
表 1 管脚描述
功能
电源 输出脚 输出脚
地
©2013 绍兴光大芯业微电子有限公司
2013.01 Rev1.0
符号
Bop Brp
下限
10 -70
上限
70 -10
单位
Gauss Gauss
符号
MC33772B 电池单元控制器 IC 第 6.0 版说明书
MC33772B电池单元控制器第1 简介33772是一款SMARTMOS锂离子电池单元控制器IC,专为混合动力汽车(HEV)和电动汽车(EV)等汽车应用以及能源存储系统(ESS)和不间断电源(UPS)系统等工业应用而设计。
该器件对差分电池单元电压和电流执行ADC转换,并进行电池库仑计数和电池温度测量。
该信息通过串行外设接口(SPI)或变压器隔离(TPL)以数字方式传输到微控制器进行处理。
2 特性●工作电压5.0 V ≤ V PWR≤ 30 V,瞬态电压40 V●3至6个电池单元管理●0.8 mV总单元电压测量误差●隔离式2.0 Mbps差分通信或4.0 Mbps SPI●初始化时可寻址●同步电池单元电压/电流测量和库仑计数●电池组总电压测量●7个GPIO/温度传感器输入● 5.0 V基准电源输出,5 mA电流能力●自动过压/欠压和温度检测,可路由至故障引脚●集成睡眠模式过压/欠压和温度监控●板载300 mA被动单元平衡,带诊断功能●支持热插拔●内部和外部故障(如断路、短路和泄漏)检测●支持ISO 26262,最高达到ASIL D安全系统●与最多可支持14个电池单元的MC33771完全兼容●符合AEC-Q100要求3 简化应用电路图图1. 简化应用电路图,SPI用例图2. 简化应用电路图,TPL用例4 应用●汽车:12 V至高压电池组●电动自行车和电动踏板车●能源存储系统(ESS)●不间断电源(UPS)●电池接线盒5 订购信息5.1 器件编号定义MC33772B x y z AE/R25.2 器件编号列表本小节描述可订购器件编号及其差异。
上提供可订购器件编号。
[1] 如需订购卷带包装的器件,请添加器件编号后缀R2。
6 引脚配置信息6.1 引脚示意图图3. 引脚示意图6.2 引脚定义7 基本产品特性7.1 额定值和工作要求的关系工作电压范围与以AGND引脚为基准的VPWR引脚相关。
在工作范围的上限和下限,均无法提供有关IC性能的信息。
UH277 霍尔电路
UNISONIC TECHNOLOGIES CO., LTDUH277LINEAR INTEGRATED CIRCUITCOMPLEMENTARY OUTPUTS HALL EFFECT LATCH ICDESCRIPTIONThe UTC UH277 is a Latch-Type Hall Effect sensor with built-in complementary output drivers. It’s designed with internal temperature compensation circuit and built-in protection diode prevent reverse power fault. The application is aimed for brush-less DC Fan The UH277 Outputs operate as the Hysteresis Characteristics. The Outputs alternately ON and OFF when either the magnetic flux density larger than threshold B OP or the magnetic flux density lower than B RP.FEATURES* Widen Power Supply range from 3V ~ 20V.* On-chip Hall sensor with excellent hysteresis.* Open Collector outputs had the sinking capability up to 300mA.* Output Clamping Diodes reduce the peak output voltages during switching.* Build-in reverse protection diode.Lead-free: UH277L Halogen-free: UH277GORDERING INFORMATIONOrdering NumberNormal Lead Free Plating Halogen FreePackage Packing UH277-G04-K UH277L-G04-K UH277G-G04-K SIP-4 BulkPIN DESCRIPTIONPIN NO. PIN NAME P/I/O DESCRIPTION1 V CC P Positive Power Supply2 DO OOutputPin3 DOB OOutputPin4 V SS PGroundBLOCK DIAGRAMSENSOR LOCATIONSABSOLUTE MAXIMUM RATINGS (Ta=25℃)PARAMETER SYMBOL RATINGS UNITSupply Voltage V CC 20 V Reverse V CC Polarity Voltage V RCC -25 V Output OFF Voltage V CE 32 V Magnetic flux density B UnlimitedContinuous 0.3Hold 0.4Output ON Current Peak (Start Up)I C 0.7A Power Dissipation P D 500 mW Junction Temperature T J +150 ℃ Operating Temperature T OPR -20 ~ +85 ℃ Storage Temperature T STG -65 ~ +150 ℃ Note 1: Output Zener protection voltageELECTRICAL CHARACTERISTICS (Ta =25℃, unless otherwise specified) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Low Supply Voltage V CE V CC =3.5V, I L =100mA 0.6V Supply Voltage V CC 3 20 V Output Saturation Voltage V CE(SAT)V CC =14V, I L =300mA 0.3 0.6V Output Leakage Current I CEX V CE =14V, V CC =14V <0.1 10 μA Supply Current I CC V CC =20V, Output Open 15 25 mA Output Rise Time t R V CC =14V, R L =820Ω, C L =20pF 0.3 3 μS Output Falling Time t F V CC =14V, R L =820Ω, C L =20pF 0.04 1 μS Switch Time Differential Δt V CC =14V, R L =820Ω, C L =20pF 0.3 3 μSMAGNETIC CHARACTERISTICSA gradePARAMETR SYMBOL MIN TYP MAX UNIT Operate Point B OP 5 50 G Release Point B RP -50 -5 G Hysteresis B HYS 20 100 GB gradePARAMETR SYMBOL MIN TYP MAX UNIT Operate Point B OP 5 70 G Release Point B RP -70 -5 G Hysteresis B HYS 20 140 GC gradePARAMETR SYMBOL MIN TYP MAX UNIT Operate Point B OP 100 G Release Point B RP -100 G Hysteresis B HYS 20 200 GCHYSTERESIS CHARACTERISTICSTYPICAL APPLICATION CIRCUITTEST CIRCUIT14VPERFORMANCE CHARACTERISTICSTa(℃) 25 50 60 70 80 85 90 95 100105110115120P D (mW) 550 525 515 505 485475465455445425 405 385 36575501220B RPSupply Voltage (V)Typical Magnetic Switch Point VS.Supply Voltage25-25524B OPB HYSF l u x D e n s i t y (G)161015Supply Voltage (V)Typical Supply Current versus Supply Voltage520S u p p l y C u r r e n t (m A )20181425UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in presented in this document does not form part of any quotation or contract, is believed to be accurate。
霍尔电流传感器规格书
霍尔替代型电流传感器规格书HIT 系列深圳市航智精密电子有限公司HIT600 霍尔替代型电流传感器多点零磁通技术系统应用于航智高精度直流传感器,采用激励磁通闭环控制技术、自激磁通门技术及多闭环控制技术相结合,实现了对激励磁通、直流磁通、交流磁通的零磁通闭环控制,并通过构建高频纹波感应通道实现了对高频纹波的检测,从而使传感器在全带宽范围内拥有比较高的增益和测量精度。
产品图片核心技术性能特点◇激励磁通闭环控制技术◇原、副边隔离测量◇自激退磁技术◇出色的线性度和准确度◇多点零磁通技术◇极低的温漂◇多级量程自动切换技术◇极低的零漂◇温控补偿技术◇强抗电磁干扰能力◇宽频带和低响应时间应用领域◇医疗设备:扫描仪、MRI ◇轨道交通:高速列车、地铁、有轨无轨电车◇电力:变流器、逆变器◇测试仪器仪表:功率分析仪、高精密电源◇新能源:光伏、风能◇汽车:电动汽车◇舰船:电力驱动舰船◇航空航天:卫星、火箭◇计量:检定与校准◇智能电网测量:发电、电池监测、中低压变电站◇工业控制:工业电机驱动、UPS 、焊接、机器人、吊车、电梯、滑雪升降机电气性能项目符号测试条件最小值标称最大值单位原边额定直流电流I PN_DC— — ±600 — Adc原边额定交流电流*I PN— — 354 — Aac原边过载电流I PM1分钟— — ±720 Adc 工作电压V C— ±14.2 ±15 ±15.8 V 功耗电流I PWR原边额定工作电流±30 ±230 ±270 mA 电流变比K N输入:输出3000:1 3000:1 3000:1 —额定输出电流I SN原边额定工作电流— ±0.2 — A 测量电阻R M— 0 2 5 Ω*:指交流有效值精度测量项目符号测试条件最小值标称最大值单位精准度X G输入直流,全温度范围— — 500 ppm 线性度εL全范围— — 50 ppm 温度稳定性T C— — — 50 ppm/K 零点失调电流I O@25℃— — ±5 uA 零点失调电流I OT全温度范围— — ±10 uA 反应时间t r di/dt=100A/us,上升至90%I PN— 1 — us 电流变化率di/dt — 100 — — A/us 频带宽度(-3dB) F — 0 — 100 kHz安全特性项目符号测试条件数值单位隔离电压/ 原边与副边之间Vd 50Hz,1min 5 KV瞬态隔离耐压/ 原边与副边之间Vw 50us 10 KV爬电距离/ 原边与外壳之间dCp — 11 mm 电气间隙距离/ 原边与外壳之间dCi — 11 mm 相比漏电起痕指数CTI IEC-60112 275 V一般特性项目符号测试条件最小标称最大单位工作温度范围T A— -40 — +80 ºC 存储温度范围T S— -55 — +95 ºC 相对湿度RH — 20 — 80 % 质量M — 320±5 g运行状态说明在供电电源正常的情况下,当穿过电流传感器的母线电流在传感器额定工作电流以下时,穿过传感器的输入电流与传感器输出电流成比例关系。
易良盛科技(天津)有限公司 ES247M 微功耗全极型CMOS输出霍尔开关 数据手册说明书
微功耗全极型CMOS输出霍尔开关ES247M 1.概述ES247M是一款基于混合信号CMOS技术的全极型霍尔效应传感器,这款IC采用了先进的斩波稳定技术,因而能够提供准确而稳定的磁开关点。
在电路设计上,ES247M提供了一个内嵌的受控时钟机制来为霍尔器件和模拟信号处理电路提供时钟源,同时这个受控时钟机制可以发出控制信号使得消耗电流较大的电路周期性的进入“休眠”模式;同样通过这个机制,芯片被周期性地“唤醒”并且根据预定好的磁场强度阈值检测外界穿过霍尔器件磁场强度的大小。
如果磁通密度高于“工作点”阈值或者低于“释放点”阈值,则开漏输出晶体管被驱动并锁存成与之相对应的状态。
而在“休眠”周期中,输出晶体管被锁定在其先前的状态下。
在电池供电应用中,这种设计对于延长工作寿命提供了最好支持。
ES247M的输出晶体管在面向封装标示的一面存在一定强南极或北极磁场时会被锁定在开(B OP)状态,而在无磁场时锁定在关(B RP)状态。
2.特点◆微功耗电池供电应用◆全极性的输出开关◆工作电压可低至1.6V◆高灵敏度直接簧片开关的替代应用◆CMOS输出3.应用◆固态开关◆无绳手机提醒开关◆翻盖式手机屏保开关◆低占空比替代簧片管的磁传感开关4.典型应用电路微功耗全极型CMOS 输出霍尔开关ES247M5.功能框图6.内部时钟电路(V DD =2.75V )Awake T AW :20μsPeriodSleep T SL :40msTimeCurrent 0I SPI AWI AVG Sample &Output Latched7.管脚定义12347yww247xxxx微功耗全极型CMOS输出霍尔开关ES247MSO引脚编号UA引脚编号名称类型功能11V DD电源电源电压引脚23OUT输出CMOS输出引脚32GND地接地引脚8.极限参数参数符号参数值单位电源电压(工作时)V DD6V电源电流I DD5mA输出电压V OUT7V输出电流I OUT10mA工作温度范围T A-40to125℃储存温度范围T S-50to150℃静电击穿电压-4000V注意:应用不要超过最大额定值,以防止损坏。
常用电子元器件芯片资料-CS277霍尔开关电路
CS277霍尔开关电路CS277霍尔开关集成电路是一种单片式半导体集成电路。
该电路由反向电压保护器、精密电压调节器、霍尔电压发生器、差分放大器、施密特触发器、温度补偿器和互补型集电极开路输出器等七部分组成,它具有工作电压范围宽、磁灵敏度高、负载和反向保护能力强等特点。
该电路由于具有高达400 mA 的负载能力,并且是互补型输出,因此,它是无刷风扇最理想的器件。
极限参数量 值 参 数 符号最小最大 单位 电源电压 V CC 3.5 24 V 磁感应强度 B 不限 不限 GS 输出电流 I o - 400 mA 工作温度范围 T A -20 85 ℃ 储存温度范围T S-55150℃电特性(Ta=25℃)量 值参 数 符号 测 试 条 件最小 典型 最大 单位 电源电压V CC3.5 - 20.0 V 输出低电平电压 V OL V CC =3.5~20V ,B=200GS, Io=300mA- 200 600 mV 输出漏电流I OH Vo= V CC max V CC 开路 - 0.1 10 μA 电源电流 I CC Vo= V CC max Vo 开路 - 12 16 mA 输出上升时间 t r V CC =12V R L =820ΩC L =20pF - 1.5 3 μS 输出下降时间t fV CC =12V R L =820ΩC L =20pF-0.31.5μS磁特性(Ta=25℃)量 值参 数符号档次 最小 典型 最大 单位A- - 50 B - - 70 C - - 90 工作点磁感应强度B OPD - - 120 A-50 - - B -70 - - C -90 - - 释放点磁感应强度B RPD-120 - - 回差B H4080-GS 注:可根据用户要求分档。
产品特点. 单片集成, 体积小 . 温度补偿、工作温区宽. 负载能力强 . 反向保护 . 集电极开路,互补输出 . 4引线环氧树脂封装. 由于采用合金锡电镀、焊接温度可降低 . 可靠性高封装外型(单位:mm)说明电压调节器:当电源电压从3.5V~20V变化时,保证该电路正常工作。
霍尔元件的工作原理和主要参数
霍尔元件的工作原理和主要参数在传感器中,有一类是对磁敏感的,称为磁敏传感器(或称磁传感器),这一类传感器有干簧管(干簧管开关)、霍尔传感器、磁阻传感器、磁敏二极管和磁敏三极管等。
干簧管开关是有一对(或三个)封装在玻璃管中的电极(触头)组成的机械开关。
在磁场中,电极受磁场作用,使触头接通或断开(组成常开或常闭继电器)主要用于接近开关。
利用磁场作为媒介可以检测很多物理量,例如:位移、振动、力、转速、加速度、流量、电流、电功率等。
它不仅可实现非接触测量,并且不从磁场中获取能量。
在很多情况下,可采用永久磁铁来产生磁场,不需要附加能源,因此,这一类传感器获得极为广泛的应用。
在磁敏传感器中,霍尔元件及霍尔传感器的生产量是最大的。
它主要用于无刷直流电机(霍尔电机)中,这种电机用于磁带录音机、录像机、XY记录仪、打印机、电唱机及仪器中的通风风扇等。
另外,霍尔元件及霍尔传感器还用于测转速、流量、流速及利用它制成高斯计、电流计、功率计等仪器。
[1].霍尔元件(1).工作原理霍尔元件是利用霍尔效应制成的磁敏元件。
若在图1所示的金属或半导体薄片两端通以电流I,并在薄片的垂直方向上施加磁感应强度为B的磁场,那么,在垂直于电流和磁场的方向上将产生电势U(称为霍尔电动势或霍尔电压)。
H 这种现象成为霍尔效应。
霍尔效应的产生是由于运动电荷受到磁场中洛伦兹力作用的结果。
霍尔电势U可用下式表示: HU=RIB/d (V) HH3-1 式中 R——霍尔常数(mC) HI——控制电流(A)B——磁感应强度(T)d——霍尔元件的厚度(m)-1-12 令 K=R/d(VAWbm) HH则得到U=KIB HH由上式可知,霍尔电势的大小正比于控制电流I和磁感应强度B。
K称为霍尔元件的灵敏度,它与元件材料的H性质与几何尺寸有关。
为求得较大的灵敏度,一般采用R大的N型半导体材料做霍尔元件,并且用溅射薄膜工艺H使d做得很小。
温度传感器的种类较多,我们介绍几种主要的温度传感器及应用电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双线圈直流马达驱动电路
数据手册
1.0版
1. 概览
简要描述
TC277是一款支持18V 电压应用的直流马达和风扇驱动电路。
芯片中除了集成整流器、霍尔传感器、信号放大器、迟滞比较器和双路漏极开路输出电路保护二极管、反向电压保护器,还设置了斩波器,提高驱动器的磁场特性。
当电路检测到的磁场强度大于翻转点(BOP ),双路输出驱动中输出DO 端开启(低),同时输出DOB 端关断(高)。
当芯片检测到的磁场强度低于释放点(BRP),DO 、DOB 状态翻转。
主要特点
□ 集成霍尔传感器
□ 3.0~18V 的宽电压工作范围 □ 低至1.5mA 的工作电流
□ 400mA 电流的输出驱动能力 □ 双路输出端内嵌保护二极管 □ 工作环境温度:-40C~85C □集成过温保护电路 □ 封装形式:TO-94
典型应用
□ 无刷直流风扇 □ 无刷直流马达 □ 转速检测 □ 速度测量
封装形式
□ TO94
引脚定义
2.
VDD
DO
DOB
图2: 功能框图
277
3. 磁场特性
V(DO) V(DOB)
图3: DO/DOB的输出和磁场的关系
4. 最大额定值
5. 电特性参数
6. 磁特性参数
表4: 磁特性参数(Ta=25C )
7. 测试电路
图4: 测试电路
8. 典型应用
图5: 典型应用电路
12V
VDD
277
277
9. 封装信息------TO94 (单位: mm)
封装尺寸
图6: 封装信息
传感器位置
图7: 传感器位置。