上海格致中学数学一元一次方程达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,

(1)写出数轴上点B表示的数________;

(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:

①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.

(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;

(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.

【答案】(1)﹣12

(2)6或10;0

(3)1.2或2

(4)3.2或1.6

【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;

(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;

②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;

(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;

(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.

【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。

(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。

(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。

2.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:

(1)求=________.

(2)若,则 =________

(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是

________(直接写答案)

【答案】(1)7

(2)7或-3

(3)-1,0,1,2.

【解析】【解答】(1)|5-(-2)|=7,

故答案为:7;

( 2 )|x-2|=5,

x-2=5或x-2=-5,

x=7或-3,

故答案为:7或-3;

( 3 )如图,

当x+1=0时x=-1,

当x-2=0时x=2,

如数轴,通过观察:-1到2之间的数有-1,0,1,2,

都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,

故答案为: -1,0,1,2.

【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.

3.综合题

(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______

A.点处

B.线段之间

C.线段的中点

D.线段之间

(2)当整数 ________时,关于的方程的解是正整数.

【答案】(1)A

(2)或

【解析】【解答】(1)故答案为:A;(2)或

【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.

4.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:

(1)|4﹣(﹣2)|的值.

(2)若|x﹣2|=5,求x的值是多少?

(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.

【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,

∴|4﹣(﹣2)|=6.

(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,

∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,

∴若|x﹣2|=5,则x=﹣3或7.

(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,

∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),

∴这样的整数是﹣2、﹣1、0、1、2、3、4.

【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.

5.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)

(1)计算(-3)⊙的值;

(2)若⊙(-4)=6,求的值.

相关文档
最新文档