中考数学二次函数应用专题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数应用专题

1、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

已知该商品的进价为每件30元,设销售该商品的每天利润为y元.

(1)求出y与x的函数关系式;

(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

2、某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.

(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;

(3)商场的营销部结合上述情况,提出了A、B两种营销方案:

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每件文具的利润不低于为25元且不高于29元.

请比较哪种方案的最大利润更高,并说明理由.

3、某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为

4、10、12,点A、B的纵坐标分别为﹣16、20.2-1-c-n-j-y

(1)试确定函数关系式y=a(x﹣h)2+k;

(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;

(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?

4、某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x 为整数,单位:天)部分对应值如下表所示.

另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)关系如图所示.

(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;

(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;

(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y

最大,并求出此时最大值.

5、某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).

(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;

(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;

(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?

6、我市某美食城今年年初推出一种新型套餐,这种套餐每份的成本为40元,该美食城每天需为这种新型套餐支付固定费用(不含套餐成本)3000元.此种套餐经过一段时间的试销得知,若每份套餐售价不超过60元时,每天可销售200份;若每份售价超过60元时,每提高1元,每天的销售量就减少8份.为便于结算,每份套餐的售价x(元)取整数,且售价不低于成本价.设美食城销售此种新型套餐所获的日销售利润为w(元).

(1)求w与x之间的函数关系式,并指出自变量x的取值范围;

(2)该美食城既要获得最大的日销售利润,又要吸引顾客,尽可能提高日销售量,则每份套餐的售价应定为多少元?此时日销售利润为多少?

(3)今年五一节前,为答谢广大消费者,该美食城也决定从4月起的一段时间内,每销售出一份此种新型套餐就返回顾客现金a元(a为整数),该美食城在此种新型套餐每份的售价不超过62元的情况下,为使每天让利顾客后的日销售最大利润不低于600元,求a的最大值.

7、大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.

(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?

(2)设每件商品的售价为x元,超市所获利润为y元.

①求y与x之间的函数关系式;

②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?

8、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

9、东门天虹商场购进一批“童乐”牌玩具,每件成本价30元,每件玩具销售单价x(元)与每天的销售量y(件)的关系如下表:

若每天的销售量y(件)是销售单价x(元)的一次函数

(1)求y与x的函数关系式;

(2)设东门天虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?

(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定“童乐”牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围。

10、为丰富农民收入来源,某区在多个乡镇试点推广大棚草莓的种植,并给予每亩地每年发放补贴150元补贴.年初,种植户蒋大伯根据以往经验,考虑各种因素,预计本年每亩的草莓销售收入为2000元,以及每亩种植成本y(元)与种植面积x(亩)之间的函数关系如图所示.

(1)根据图象,求出y与x之间的函数关系式;

(2)根据预计情况,求蒋大伯今年种植总收入w(元)与种植面积x(亩)之间的函数关系式. (总收入=销售收入-种植成本+种植补贴).

相关文档
最新文档