人教版数学八年级上册第15章【分式】综合拓展练习
人教版八年级上册数学 第十五章 分式实际应用题 综合复习练习题(含答案)
人教版八年级上册数学第十五章分式实际应用题综合复习练习题
1.某装修工程,甲、乙两人可以合作完成,若甲、乙两人合作4天后,再由乙独作12天可以完成,已知甲独作每天需要费用580元.乙独作每天需费用280元.但乙单独完成的天数是甲单独完成天数的2倍.
(1)甲、乙两人单独作这项工程各需多少天?
(2)如果工期要求不超过18天完成,应如何安排甲乙两人的工期使这项工程比较省钱?
2.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
3.新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.
第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行
距离的倍.
(1)求广州到武汉的高铁路程;
(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.
4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.
(1)甲、乙二人每小时各做零件多少个?
(2)甲做几小时与乙做4小时所做机械零件数相等?
5.小明准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少6元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价各是多少?
(2)小明准备用自己的180元压岁钱购买这种笔和本子,计划180元刚好用完,并且笔和本子都买,请列出所有购买方案.。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(五)(含答案)
第十五章分式实际应用题综合复习(五)1.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?2.2020年1月份,为抗击新型冠状病毒,某药店计划购进一批甲、乙两种型号的口罩,已知一袋甲种口罩的进价与一袋乙种口罩的进价和为40元,用90元购进甲种口罩的袋数与用150元购进乙种口罩的袋数相同.(1)求每袋甲种、乙种口罩的进价分别是多少元?(2)该药店计划购进甲、乙两种口罩共480袋,其中甲种口罩的袋数少于乙种口罩袋数的,药店决定此次进货的总资金不超过10000元,求商场共有几种进货方案?3.某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.(1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?4.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?5.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2019年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2019 年地铁每小时客运量是2012年地铁每小时客运量的4倍,2019年客运240万人所用的时间比2012年客运240万人所用的时间少30小时,求2019年地铁每小时的客运量?6.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?7.甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?8.列分式方程解应用题某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.9.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?10.城都地铁17号线正在建设汇总,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参加该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案1.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.2.解:(1)设甲种口罩进价x元/袋,则乙种口罩进价为(40﹣x)元/袋,依题意有=,解得x=15,经检验x=15是原方程的解,则40﹣x=25.故甲种口罩进价15元/袋,则乙种口罩进价为25元/袋;(2)设购进甲种口罩y袋,则购进乙种口罩(480﹣y)袋,依题意有,解得200≤y<204.因为y是整数,甲种口罩的袋数少于乙种口罩袋数,所以y取200,201,202,203,共有4种方案.3.解:(1)设乙种电器购进x件,则甲种电器购进1.5x件,根据题意得:,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴1.5x=45.答:甲种电器购进45件,乙种电器购进30件.(2)(10350+9600)×40%=7980(元).答:售完这批电器商场共获利7980元.4.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.5.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.6.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y≥23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.7.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.8.解:设甲车的平均速度是x千米/时,则乙车的平均速度是1.2x千米/时,根据题意,得=+,解得x=60.经检验,x=60是原方程的解,此时1.2x=72.答:乙车的平均速度是72千米/时.9.解:(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据题意得:﹣=10,解得:x=200,经检验,x=200是原方程的根,且符合题意,∴2x+x=2×200+200=600.答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克.(2)设每千克茶叶售价y元,根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200.答:每千克茶叶的售价至少是200元.10.解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工180天完成该项工程,根据题意可得:+15(+)=1,解得:x=20,检验得:x=20是原方程的根,答:乙队单独施工,需要20天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥16,答:乙队至少施工16天才能完成该项工程.。
人教版 八年级数学上册 第15章分式 分式方程及其应用专题(含答案)
人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
人教版 八年级上册数学 第十五章 分式 综合复习(含答案)
人教版 八年级数学 第十五章 分式 综合复习一、选择题(本大题共10道小题)1. 下列各式中,属于分式的是 ( )A .B .C .+1D .2. 下列各式是分式方程的是( ) A.x -15+34=1B.3π+2x =3C.1x -1=2 D.x +2x -x +333. 计算(2x y2)3·(2y x )2÷(-2y x )的结果是( )A.8x3y6 B .-8x3y6 C.16x2y5 D .-16x2y54. 分式方程12x2-9-2x -3=1x +3的解为( ) A .x =3B .x =-3C .无解D .x =3或x =-35. 化简a2-b2ab -ab -b2ab -a2等于( )A. b aB. a bC. -b aD. -a b6. 已知当x=-2时,分式无意义,则□可以是 ( ) A .2-xB .x-2C .2x+4D .x+4 7. 若关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( ) A .-5B .-8C .-2D .58. 关于x 的方程+=0可能产生的增根是 ( )A .x=1B .x=2C .x=1或x=2D .x=-1或x=29. 有一个计算程序(如图),每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次运算的结果y n = .(用含字母x 和n 的式子表示)10. (2020·荆门)已知关于的分式方程=+2的解满足-4<x <-1,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定二、填空题(本大题共8道小题)11. 分式方程5y -2=3y的解为________.12. 若y x -1·M =5xy x2-1,则分式M =________.13. (2020·黄冈)计算:的结果是________.14. 请你写出一个分母是二项式且能约分的分式: .15. 已知分式23x2-12,1x -2,其中m 是这两个分式中分母的公因式,n 是这两个分式的最简公分母,且n m =8,则x =________.16. 如果=成立,那么a 的取值范围是 .17. (2020·湘潭)若,则________.18. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .三、解答题(本大题共4道小题)19. 先化简(a2+4a a -2-42-a )·a -2a2-4,再从1,2,3中选取一个适当的数代入求值.20. 化简:(-)·(a 2-4)21. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.22. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a 元,是否存在正整数a ,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.人教版 八年级数学 第十五章 分式 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B [解析] 其中分母含有字母的只有.2. 【答案】C3. 【答案】D [解析] (2x y2)3·(2y x )2÷(-2y x )=8x3y6·4y2x2·(-x 2y )=-16x2y5.4. 【答案】C [解析] 去分母,得12-2(x +3)=x -3.解得x =3.检验:当x =3时,x 2-9=0,故x =3不是原分式方程的解.故原方程无解.5. 【答案】B 【解析】原式=(a +b )(a -b )ab -b (a -b )a (b -a )=(a +b )(a -b )ab +b a =(a +b )(a -b )+b2ab =a2-b2+b2ab=a2ab =a b ,故答案为B.6. 【答案】C7. 【答案】A [解析] 分式方程去分母转化为整式方程,由分式方程无解得到x +1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1.代入整式方程,得-5=-2+2+m.解得m =-5.故选A.8. 【答案】C9. 【答案】[解析] 由题意得y1=,y2=,y3=,…,所以y n=.10. 【答案】A【解析】解原分式方程得x=,且x≠2,-3.∵分式方程的解满足-4<x <-1,∴-4<<-1且≠-3.解得-7<k<14且k≠0.∴整数k=-6,-5,-4,-3,-2,-1,1,…,13.其中有6个负数,13个正数,因此它们的积是正数.故选A.二、填空题(本大题共8道小题)11. 【答案】y=-3[解析] 去分母,得5y=3y-6,解得y=-3.经检验,y=-3是分式方程的解.则分式方程的解为y=-3.12. 【答案】5xx+1[解析] 由题意,得M=5xyx2-1÷yx-1=5xy(x+1)(x-1)·x-1y=5xx+1.13. 【答案】【解析】本题考查了分式的混合运算,涉及到因式分解、分式加减、分式乘除等考点.===,因此本题答案为.14. 【答案】答案不唯一,如15. 【答案】23 [解析] 因为3x2-12=3(x +2)(x -2),所以m =x -2,n =3(x +2)(x -2).由已知,得3(x +2)(x -2)x -2=8. 所以3(x +2)=8.解得x =23.16. 【答案】a ≠ [解析] 由=成立,得2a-1≠0,解得a ≠.17. 【答案】【解析】本题主要考查了比的基本性质,准确利用性质变形是解题的关键. 根据比例的基本性质变形,代入求职即可;由可设,,k 是非零整数, 则. 故答案为:.18. 【答案】x= [解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.三、解答题(本大题共4道小题)19. 【答案】解:原式=a2+4a +4a -2·a -2a2-4(2分)=(a +2)2a -2·a -2(a +2)(a -2)(4分)=a +2a -2.(6分)由题意,a≠2,当a 取1时,原式=a +2a -2=1+21-2=-3;当a取3时,原式=3+23-2=5.(任意一值代入均可得分)(7分)20. 【答案】解:原式=·(a+2)(a-2)=3a+6-3a+6=12.21. 【答案】解:设甲工厂每天能加工x件新产品,则乙工厂每天能加工1.5x件新产品.依题意得-=10,解得x=40.经检验,x=40是原方程的解且符合题意.1.5x=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.22. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.。
人教版 八年级数学上册 第15章 分式 综合复习(含答案)
人教版 八年级数学上册 第15章 分式 综合复习一、选择题(本大题共10道小题)1. 计算x +1x -1x 的结果为( )A. 1B. xC. 1xD. x +2x2. 已知分式 (x -1)(x +2)x2-1的值为0,那么x 的值是( )A. -1B. -2C. 1D. 1 或-23.甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A. 8 B. 7 C. 6 D. 54. 要使分式有意义,则x 的取值范围应满足 ( )A .x ≠-1B .x ≠2C .x=-1D .x=25. 化简a2-b2ab -ab -b2ab -a2等于( ) A. b a B. a b C. -b a D. -a b6. 下列分式中,最简分式是 ( )A .B .C .D .7. A ,B 两地相距m 米,通信员原计划用t 小时从A 地到达B 地,现因有事需提前n 小时到达,则每小时应多走( )A .米B .米C .米D .米8. 把通分后,各分式的分子之和为( ) A .2a 2+7a+11B .a 2+8a+10C .2a 2+4a+4D .4a 2+11a+139. 若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A. m <92B. m <92且m ≠32C. m >-94D. m >-94且m ≠-3410. 若m+n-p=0,则m -+n --p +的值是 .二、填空题(本大题共5道小题)11. 方程 12x =2x -3的解是________.12. 化简:(a2a -3+93-a )÷a +3a =________.13. 化简:x +3x2-4x +4÷x2+3x(x -2)2=________.14. 化简:-= .15. 若m -3m -1·|m |=m -3m -1,则m =________.三、解答题(本大题共6道小题) 16. x -3x -2+1=32-x .17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 分式的定义告诉我们:“一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.”我们还知道“两数相除,同号得正”.请运用这些知识解决问题:(1)如果分式的值是整数,求整数x的值;(2)如果分式的值为正数,求x的取值范围.19. 先化简,再求值:(xx2+x -1)÷x2-1x2+2x+1,其中x的值从不等式组⎩⎨⎧-x≤12x-1<4的整数解中选取.20. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+.(1)下列分式中,属于真分式的是()A .B .C .-D .(2)将假分式化成整式与真分式的和的形式.21. 化简:(x -5+16x +3)÷x -1x2-9.人教版 八年级数学上册 第15章 分式 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】A 【解析】x +1x -1x =x +1-1x =xx =1.2.【答案】B 【解析】分式(x -1)(x +2)x2-1的值为0,须满足:⎩⎪⎨⎪⎧(x -1)(x +2)=0x2-1≠0,解得x =-2 .3. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x×2+(1x +1x )(x -2-3)=1, 解得x =8.4. 【答案】B[解析] 分式的分母不为0时,分式有意义.若分式有意义,则x-2≠0,即x ≠2.5.【答案】B 【解析】原式=(a +b )(a -b )ab -b (a -b )a (b -a )=(a +b )(a -b )ab +b a =(a +b )(a -b )+b2ab =a2-b2+b2ab =a2ab=ab ,故答案为B.6. 【答案】B[解析] ==,=,只有选项B 是最简分式.7. 【答案】D[解析] 由题意得-===.8. 【答案】A[解析] ==,=,=,所以把通分后,各分式的分子之和为-(a+1)2+6(a+2)+3a (a+1)= 2a 2+7a+11.9.【答案】B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3mx -3=3,解得x =9-2m 2,解方程组⎩⎪⎨⎪⎧9-2m 2>09-2m 2≠3,得m <92且m ≠32,故选B.10. 【答案】-3[解析] 原式=-+---=+-.∵m+n-p=0,∴m-p=-n ,n-p=-m ,m+n=p. ∴原式=-1-1-1=-3.二、填空题(本大题共5道小题)11.【答案】x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.12. 【答案】a 【解析】原式=(a2a -3-9a -3)÷a +3a =a2-9a -3÷a +3a =(a +3)·aa +3=a.13. 【答案】1x 【解析】原式=x +3(x -2)2·(x -2)2x (x +3)=1x .14. 【答案】[解析] -=-===.15. 【答案】m =-1或m =3 【解析】m -3m -1·|m|=m -3m -1,去分母得(m -3)·|m|=m -3,即(m -3)(|m|-1)=0,所以m =3或m =±1,经检验m =1是方程的增根,所以m =3或m =-1.三、解答题(本大题共6道小题)16. 【答案】解:去分母得x -3+x -2=-3,(2分) 解得x =1,(4分)检验:x =1时,x -2=-1≠0,2-x =2-1=1≠0,(6分) ∴原方程的解为x =1.(8分)17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x+2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】解:(1)∵分式的值是整数,∴x+1=±1,解得x=0或x=-2.(2)∵分式的值为正数, ∴或解得x>0或x<-1.∴x 的取值范围是x>0或x<-1.19. 【答案】解:原式=x -x2-x x2+x ÷(x +1)(x -1)(x +1)2(2分)=-x2x (x +1)·(x +1)2(x +1)(x -1)=-xx -1.(4分)解不等式组⎩⎪⎨⎪⎧-x≤12x -1<4,得-1≤x <52,∴不等式组的整数解为-1,0,1,2,(5分)∵要使分式有意义,则x 只能取2,∴原式=-22-1=-2.(6分)20. 【答案】解:(1)C(2)==+=m-1+.21. 【答案】解:原式=(x -5)(x +3)+16x +3÷x -1x2-9(1分) =x2-2x +1x +3·x2-9x -1(2分)=(x -1)2x +3·(x +3)(x -3)x -1(3分)=(x -1)(x -3)(4分) =x 2-4x +3.(5分)。
人教版八年级数学上册第十五章 分式知识点总结和题型归纳
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
2021-2022学年人教版八年级数学上册《第15章分式》单元综合练习题(附答案)
2021-2022学年人教版八年级数学上册《第15章分式》单元综合练习题(附答案)1.分式有意义的条件是()A.x≠3B.x≠9C.x≠±3D.x≠﹣32.关于x的分式方程=0的解为x=2,则常数a的值为()A.a=﹣1B.a=1C.a=2D.a=53.计算(x3y2)2•,得到的结果是()A.xy B.x7y4C.x7y D.x5y64.若分式的值总是正数,a的取值范围是()A.a是正数B.a是负数C.a>D.a<0或a>5.分式可变形为()A.B.﹣C.D.﹣6.若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.17.某工程公司开挖一条500米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.8.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元9.甲,乙两个工程队,甲队修路300米与乙队修路400米所用的时间相等,乙队每天比甲队多修10米.若可列方程=表示题中的等量关系,则方程中x表示()A.甲队每天修路的长度B.乙队每天修路的长度C.甲队修路300米所用天数D.乙队修路400米所用天数10.若关于x的一元一次不等式组无解,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.7B.8C.14D.1511.化简:﹣=.12.计算:=.13.计算:+=.14.当x=时,分式的值为0.15.当x时,分式无意义;当x时,分式值为零.16.若分式的值是负数,则x的取值范围是.17.解分式方程:.18.某校庆为祝建国70周年举行“爱国读书日”活动,计划用500元购买某种爱国主义读书,现书店打八折,用500元购买的爱国主义读本比原计划多了5本,求该爱国主义读本原价多少元?19.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?20.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.21.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案1.解:当x2﹣9≠0时,分式有意义,由x2﹣9≠0得x2≠9,则x≠±3,故选:C.2.解:方程两边都乘以x(x﹣a),得:3x﹣2(x﹣a)=0,将x=2代入,得:6﹣2(2﹣a)=0,解得a=﹣1,故选:A.3.解:(x3y2)2•=x6y4•=x7y.故选:C.4.解:由题意可知:a>0且2a﹣1>0,或a<0且2a﹣1<0,∴a>或a<0,故选:D.5.解:分式可变形为:﹣.故选:D.6.解:==x﹣1=0,∴x=1;经检验:x=1是原分式方程的解,故选:D.7.解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天.所列方程为:﹣=4,故选:A.8.解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:原计划每间直播教室的建设费用是2000元,故选:C.9.解:方程中x表示甲队每天修路的长度,故选:A.10.解:解不等式组,得,∵不等式组无解,∴a﹣1≤6,∴a≤7.解分式方程,得y=,∵y=为非负整数,a≤7,∴a=﹣1或1或3或5或7,∵a=1时,y=1,原分式方程无解,故将a=1舍去,∴符合条件的所有整数a的和是﹣1+3+5+7=14,故选:C.11.解:原式==.故答案为:.12.解:=.故答案为:.13.解:原式===2,故答案为:214.解:∵分式的值为0,∴,解得x=﹣2.故答案为:﹣2.15.解:(1)若分式无意义,则x+2=0,故x=﹣2,(2)分式的值为0,即x2﹣4=0且x+2≠0,故x=2.16.解:∵<0,x2+1≥1>0,∴2﹣3x<0,解得:x>.故答案为:x>17.解:去分母得:72000﹣60000=24x,合并得:24x=12000,解得:x=500,经检验x=500是分式方程的根.∴x=500.18.解:设爱国主义读本原价x元,=+5,解得:x=25,经检验,x=25是分式方程的解,答:爱国主义读本原价25元19.解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.20.解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.21.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.。
人教版八年级数学上册 第十五章 分式 单元练习题及答案
第十五章 分式 单元练习一、选择题1.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1 C .-1 D .±12.下列式子计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 3.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-74.化简a +1a 2-2a +1÷⎝⎛⎭⎫1+2a -1的结果是( ) A.1a 2-1 B.1a +1C.1a -1D.1a 2+15.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A.2500x =3000x -50B.2500x =3000x +50C.2500x -50=3000xD.2500x +50=3000x 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题7.若分式3x x -2有意义,则x 应满足的条件是________. 8.方程12x =1x +1的解是________. 9.若3x -1=127,则x =________. 10.已知a 2-6a +9与(b -1)2互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b )的值是________.11.关于x 的方程2a x -1=a -1无解,则a 的值是________. 12.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、13.计算(1)-(-1)2016-(π-3.14)0+⎝⎛⎭⎫-12-2;(2)13a 2+12ab.14.化简:(1)⎝⎛⎭⎫1x 2-4+4x +2÷1x -2;(2)⎝⎛⎭⎫a +1a +2÷⎝⎛⎭⎫a -2+3a +2.15.先化简,再求值:⎝⎛⎭⎫x x +1-1÷1x 2-1,其中x =2016.16.解方程:(1)3x -1-x +3x 2-1=0;(2)2x +1+3x -1=6x 2-1.17.先化简,再求值:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1,x 在1,2,-3中选取合适的数.四、18.先化简,再求值:x 2+2x +1x +2÷x 2-1x -1-x x +2,其中x 是不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1的整数解.19.以下是小明同学解方程1-x x -3=13-x-2的过程. 解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步解得x =4. ……………………………………第二步检验:当x =4时,x -3=4-3=1≠0. ………第三步所以,原分式方程的解为x =4. …………………第四步(1)小明的解法从第________步开始出现错误;(2)写出解方程1-x x -3=13-x-2的正确过程.20.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h ,先遣队的速度是多少?大队的速度是多少?五、21.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:⎝ ⎛⎭⎪⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?22.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟.(1)由此估算这段路长约________千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a 米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了另一种方案,将原计划的a 扩大一倍,则路的两侧共计减少400棵树,请你求出a 的值.六、23.观察下列方程的特征及其解的特点.①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x=-5的解为x 1=-2,x 2=-3; ③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程:____________,其解为____________;(2)根据这类方程特征,写出第n 个方程:____________________,其解为________________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(其中n 为正整数)的解.参考答案与解析1.C 2.A 3.C 4.C 5.C6.B 解析:去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92.∵关于x 的方程x +m x -3+3m 3-x=3的解为正数,∴-2m +9>0,解得m <92.当x =3时,即-2m +92=3,解得m =32.故m 的取值范围是m <92且m ≠32.故选B. 7.x ≠2 8.x =1 9.-2 10.2311.1或0 12.12 -12 1021 解析:1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1)=2n (a +b )+a -b (2n -1)(2n +1),∴⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12.∴1(2n -1)(2n +1)=122n -1+-122n +1=12⎝⎛⎭⎫12n -1-12n +1,∴m =11×3+13×5+15×7+…+119×21=12⎝⎛⎭⎫1-13+13-15+15-17+…+119-121=12⎝⎛⎭⎫1-121=1021. 13.解:(1)原式=-1-1+4=2.(3分)(2)原式=2b 6a 2b +3a 6a 2b =3a +2b 6a 2b.(6分) 14.解:(1)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(3分) (2)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(6分) 15.解:原式=x -x -1x +1·(x 2-1)=-(x -1)=-x +1.(3分) 当x =2016时,原式=-2015.(6分)16.解:(1)方程两边同乘x 2-1,得3(x +1)-(x +3)=0,解得x =0.(2分)检验:当x =0时,x 2-1≠0,∴原分式方程的解为x =0.(3分)(2)方程两边同乘x 2-1,得2(x -1)+3(x +1)=6,解得x =1.(5分)检验:当x =1时,x 2-1=0,∴x =1不是原分式方程的解,∴原分式方程无解.(6分)17.解:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1=x 2-9x -1·x -1x +3=(x +3)(x -3)x -1·x -1x +3=x -3.(3分)∵当x =1和x =-3时,原分式无意义,∴选取x =2.当x =2时,原式=2-3=-1.(6分)18.解:原式=(x +1)2x +2·1x +1-x x +2=x +1x +2-x x +2=1x +2.(2分)解不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1,得-2≤x ≤1.(4分)∵x 是整数,∴x =-2,-1,0,1.当x =-2,-1,1时,原分式无意义,故x 只能取0.(6分)当x=0时,原式=12.(8分) 19.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以,原分式方程的解为x =4.(8分)20.解:设大队的速度为x km/h ,则先遣队的速度是1.2x km/h.(1分)根据题意得15x =151.2x+0.5,解得x =5.(5分)经检验,x =5是原分式方程的解且符合实际.(6分)1.2x =1.2×5=6.(7分)答:先遣队的速度是6km/h ,大队的速度是5km/h.(8分)21.解:(1)设所捂部分化简后的结果为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1.(4分) (2)原代数式的值不能等于-1.(5分)理由如下:若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0.当x =0时,除式x x +1=0,故原代数式的值不能等于-1.(9分) 22.解:(1)3(3分)(2)由题意可得3000a -30002a =12×400.(6分)解方程得a =7.5.经检验,a =7.5满足方程且符合题意.(8分) 答:a 的值是7.5.(9分)23.解:(1)x +20x=-9 x 1=-4,x 2=-5(3分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)x +n 2+n x +3=-2(n +2),x +3+n 2+n x +3=-2(n +2)+3,(x +3)+n 2+n x +3=-(2n +1),由(2)知x +3=-n 或x +3=-(n +1),即x 1=-n -3,x 2=-n -4.(10分)检验:∵n 为正整数,当x 1=-n -3时,x +3=-n ≠0;当x 2=-n -4时,x +3=-n -1≠0.∴原分式方程的解是x 1=-n -3,x 2=-n -4.(12分)。
人教版八年级数学上册第十五章 《分式》培优综合练习【含答案】
人教版八年级数学上册第十五章《分式》培优综合练习一.选择题1.要使分式有意义,则x的取值应满足()A.x=0B.x=1C.x≠0D.x≠12.计算:的结果是()A.B.C.D.3.如果a﹣b=4,且a≠0,b≠0,那么代数式(﹣b)÷()的值是()A.﹣4B.4C.2D.﹣24.分式方程﹣=0的解是()A.x=4B.x=C.x=﹣6D.x=﹣5.如图,在数轴上,表示的值的点可以是()A.P点B.Q点C.M点D.N点6.抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务.设原来每天生产x台呼吸机,下列列出的方程中正确的是()A.+=+2B.+=+2C.=﹣2D.=﹣27.若关于x的方程+=2的解为正数,则m的取值范围是()A.m<6B.m>6C.m>6且m≠8D.m<6且m≠08.已知x﹣=1,则x2+等于()A.3B.2C.1D.09.根据如图所示的框图,若输入x=()﹣1,y=,则输出的m的值为()A.﹣2B.2C.D.﹣0.510.若关于x的一元一次不等式组无解,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.7B.8C.14D.15二.填空题11.分式和的最简公分母为.12.使代数式有意义的x的取值范围是.13.若a2﹣4a+1=0,那么=.14.已知(ab≠0),则代数式的值为.15.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.三.解答题16.化简:(1)x﹣y+;(2)×.17.解方程:(1)=;(2)+2=.18.先化简,再求值:,其中x=﹣6.19.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).20.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案一.选择题1.由题意得:x﹣1≠0,解得:x≠1,故选:D.2.原式=÷=•=.故选:A.3.(﹣b)÷()=•=•=a﹣b,∵a﹣b=4,∴原式=4.故选:B.4.分式方程﹣=0,去分母得:2(x+2)﹣3x=0,去括号得:2x+4﹣3x=0,解得:x=4,经检验x=4是分式方程的解.故选:A.5.=+=+==1.故选:C.6.设原来每天生产x台呼吸机,根据题意可列方程:+=﹣2,整理,得:=﹣2,故选:D.7.原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,因为关于x的方程+=2的解为正数,所以2﹣>0,解得:m<6,因为x=2时原方程无解,所以可得2﹣≠2,解得:m≠0.故选:D.8.∵x﹣=1,∴(x﹣)2=1,即x2﹣2+=1,则x2+=3,故选:A.9.∵x=()﹣1=2,y=,∴x≠y,∴m=y=.故选:C.10.解不等式组,得,∵不等式组无解,∴a﹣1≤6,∴a≤7.解分式方程,得y=,∵y=为非负整数,a≤7,∴a=﹣1或1或3或5或7,∵a=1时,y=1,原分式方程无解,故将a=1舍去,∴符合条件的所有整数a的和是﹣1+3+5+7=14,故选:C.二.填空题(共5小题)11.分式和的分母分别是2(m﹣n)、(m﹣n).则它们的最简公分母是2(m ﹣n).故答案是:2(m﹣n).12.由题意,得.解得x≠±3且x≠﹣4.故答案是:x≠±3且x≠﹣4.13.∵a2﹣4a+1=0,∴a﹣4+=0,则a+=4,∴原式=4﹣2=2,故答案为:2.14.∵(ab ≠0),∴,∴(a 2+b 2)2=4a 2b 2,∴(a 2﹣b 2)2=0,∴a 2=b 2,∴a =±b ,当a =b 时,=12019﹣12020=1﹣1=0;当a =﹣b 时,=(﹣1)2019﹣(﹣1)2020=(﹣1)﹣1=﹣2;故答案为:0或﹣2.15.分式方程﹣=1的解为x =且x ≠,∵关于x 的分式方程﹣=1的解为正数,∴>0且≠,∴a >0且a ≠1.,解不等式①得:y >3;解不等式②得:y <a .∵关于y 的一元一次不等式组的解集为无解,∴a ≤3.∴0<a ≤3且a ≠1.∵a 为整数,∴a =2、3,整数a 的和为:2+3=5.故答案为5.三.解答题(共5小题)16.(1)原式=+==;(2)原式=×=.17.(1)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=6,解得x=3,检验:x=3时,(x+1)(x﹣1)=8≠0,∴分式方程的解为x=3;(2)两边都乘以x﹣4,得:﹣3+2(x﹣4)=1﹣x,解得x=4,检验:当x=4时,x﹣4=0,∴x=4是分式方程的增根,∴原分式方程无解.18.原式=×=﹣=,当x=﹣6时,原式==2.19.(1)设甲公司有x人,则乙公司有(x+30)人,依题意,得:×=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲公司有150人,乙公司有180人.(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,依题意,得:15000m+12000n=100000+140000,∴m=16﹣n.又∵n≥10,且m,n均为正整数,∴,,∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.20.(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.。
八年级数学上册第十五章《分式》单元综合复习练习题(含答案)
八年级数学上册第十五章《分式》单元综合复习练习题(含答案)一、选择题1.若分式15x +在实数范围内有意义,则x 的取值范围是( ) A .x ≠-5 B .x ≠0 C .x ≠5 D .x >-52.化简2a a b --2b a b-的结果是( ). A .a -bB .a +bC .a b a b +-D .a b a b +- 3.若代数式13x x +-有意义,则实数x 的取值范围是( ) A .=1x - B .3x = C .1x ≠- D .3x ≠4.计算234932ac b b ac⋅的结果是( ) A .23366ab c abc B .236ab c abc C .36abc ac D .26b c 5.代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个B .3个C .4个D .5个 6.222a b b b a b -⎛⎫⨯ ⎪-⎝⎭的结果是( ) A .1b B .2a b ab b -+ C .a b a b -+ D .1()b a b + 7.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2 B .m ≠﹣2 C .m =2 D .m ≠28.下列各式中,当m <2时一定有意义的是( )A .13m -B .11m -C .11m +D .13m + 9.化简2242213x x x x x a ÷-++-的结果为21x x -,则=a ( ) A .4B .3C .2D .1 10.解分式方程232112x x x +=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)11.已知0b a >>,则分式a b 与11a b ++的大小关系是( )A .11a a b b +<+B .11a a b b +=+C .11a a b b +>+D .不能确定12.一支部队排成a 米长队行军,在队尾的战士要与最前面的团长联系,他用t 1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t 2分钟.如果他从最前头跑步回到队尾,那么他需要的时间是( )A .1212t t t t 分钟 B .12122t t t t +分钟 C .12122t t t t +分钟 D .12122t t t t +分钟二、填空题13.若分式32x -的值为负数,则x 的取值范围是_______. 14.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 15.当x________时,分式121x x +-有意义. 16.若23a =,则2223712a a a a ---+的值等于_______. 17.若关于x 的分式方程11222k x x --=--的解是正数,则k 的取值范围是______. 18.化简1392()243a a b b b a÷÷⋅得________. 19.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 20.若关于x 的分式方程21x x -﹣1=1m x -无解,则m =___.三、解答题21.计算(1)223225103721x y y y x x ⋅÷; (2)2229(3)34x x x x x --÷-⋅+-;(3)22()b a b a b a ab ab -⎛⎫-⋅÷ ⎪-⎝⎭.22.解分式方程:2312xx x--=-.23.若x ya b bzc c a==---,求x y z++的值.24.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.①22xx y--;②2ba a--;③2211x xx x---+;④2231m mm----.25.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?26.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5 倍,两人各加工600 个这种零件,甲比乙少用5 天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150 元和120 元,现有3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800 元,那么甲至少加工了多少天?27.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?28.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案1.A2.B3.D4.D5.B6.B7.B8.A9.A10.C11.A12.C13.2x <14.315.12≠. 16.12- 17.4k <且0k ≠18.94a b19.-1或5或13- 20.221.解:(1)原式2223225213710x y x x y x y y=⋅⋅=; (2)原式21(3)(3)133(2)(2)2x x x x x x x x -+-=⋅⋅=+-+-+; (3)原式22()()b ab a b b a a b a b ⎡⎤=-⋅⋅=⎢⎥--⎣⎦. 22.方程2312x x x --=-, 224432x x x x x -+-=-,54x -=-,45x =, 经检验45x =是分式方程的解, ∴原分式方程的解为45x =. 23.解:∵x y a b b z c c a ==---, 设===---x y z k a b b c c a , ∴()x k a b =-,()y k b c =-,()z k c a =-,∴()()()x y z k a b k b c k c a ++=-+-+-=ka kb kb kc kc ka -+-+-=0;24.解:①2222x x x y x y-=---; ②()222b b b a a a a a a =-=---+---; ③()()222222111111x x x x x x x x x x x x -----+-==-+----+; ④()()222222333.111m m m m m m m m m -----+-=-=----- 25.解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得: 1200800502x x+=, 解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得: ()842001150m m +-≤,解得:87.5m ≤,∵m 为正整数,∴m 的最大值为87;答:最多购进87个甲种粽子.26.(1)设乙每天加工x 个零件,则甲每天加工1.5x 个零件60060051.5x x-= 化简得:600×1.5=600+5×1.5x解得x =40经检验,x =40是分式方程的解且符合实际意义.1.5x =60答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x 天,乙加工了y 天,则由题意得604030001501207800x y x y +⎧⎨+≤⎩=①②由①得y =75-1.5x ③将③代入②得:150x +120(75-1.5x )≤7800解得:x ≥40,当x =40时,y =15,符合问题的实际意义.答:甲至少加工了40天.27.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x 米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x 米. 由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 28.解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元.根据题意,得4000840010 1.4x x+=. 解得200x =.经检验:200x =是原方程的根.∴1.4 1.4200280x =⨯=(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进()100m -盒.打折前A 种茶叶的利润为100502m m ⨯=. B 种茶叶的利润为1001206000602m m -⨯=-. 打折后A 种茶叶的利润为1052m m ⨯=.B 种茶叶的利润为0.由题意得:5060006055800m m m +-+=. 解方程,得:40m =.∴1001004060m -=-=(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.。
八年级数学上册《第十五章-分式》同步练习题含答案(人教版)
八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(一)(含答案)
第十五章分式实际应用题综合复习(一)1.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)2.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)3.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?4.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?5.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.8.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?9.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?10.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案1.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.2.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个3.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.4.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.5.解:设原计划每天加工x个,根据题意,得,解得:x=400,经检验,x=400是原方程的解且符合题意.答:原计划每天加工400个.6.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.解:设改装前每节车厢乘坐x人,由题意列分式方程得:=+4,解得:x=120,经检验知x=120是原分式方程的解,则改装后每节车厢可以搭载的乘客人数=120×=200人,答:改装后每节车厢可以搭载的乘客人数为200人8.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.9.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.10.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.。
人教版数学八年级上册第15章 分式之方程实际应用 专项练习(二)
分式之方程实际应用专项练习(二)1.某校学生到离学校15千米的青少年营地举行活动,先遣队与大部队同时出发,已知先遣队的平均速度是大部队平均速度的1.2倍,预计比大部队早半小时到达.求先遣队的平均速度.2.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?3.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?4.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.5.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价7元售出150本时,出现滞销,便以定价的5折售完剩余的书.(1)每本书第一次的批发价是多少钱?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?6.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?7.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?8.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?9.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?10.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?11.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?12.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?13.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.14.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?16.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?17.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?18.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?19.某商场用8万元购进一批新型衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果用去17.6万元.(1)该商场第一批购进衬衫多少件?(2)商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?20.小明家在“吾悦广场”购买了一间商铺,准备承包给甲、乙两家装修公司进行店面装修,经调查:甲公司单独完成该工程的时间是乙公司的2倍,已知甲、乙两家公司共同完成该工程建设需20天;若甲公司每天所需工作费用为650元,乙公司每天所需工作费用为1200元,若从节约资金的角度考虑,则应选择哪家公司更合算?参考答案1.解:设大部队的速度为x千米/时;则先遣队的速度为1.2x千米/小时.根据题意,得﹣=,解得x=5,经检验:x=5是原方程的根,∴1.2x=6.答:先遣队的行进速度为6千米/小时.2.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.3.解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100﹣a)个,由题意得:12a+10(100﹣a)≥1080,解得a≥40.答:至少购进A40个.4.解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.5.解:(1)设每本书第一次的批发价是x元,则第二次购书时,每本书的批发价是(1+20%)x元,根据题意得:.解得:x=5.经检验,x=5是原方程的解,答:每本书第一次的批发价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为150×(7﹣5×1.2)+(250﹣150)×(7×0.5﹣5×1.2)=﹣100(元),所以两次共赚钱480﹣100=380(元),答:该老板两次售书总体上是赚钱了,共赚了380元.6.解;设每个小组有x名学生,根据题意得:,解之得x=10,经检验,x=10是原方程的解,且符合题意.答:每组有10名学生.7.解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;秒,设慢车驶过快车某个窗口需用t1根据题意得x+y=,=.∴t1即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;=,(2)所求的时间t2∴,的值最小,依题意,当慢车的速度为8米/秒时,t2t=,2∴t的最小值为62.5秒.2答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.8.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.9.解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.10.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.11.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.12.解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥33,因此,A种型号健身器材至少购买34套.13.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.14.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.15.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≤200×120,解得:y≥140.答:乙队至少需要140天才能完工.16.解:(1)设甲每小时做x个零件,则乙每小时做(x+8)个零件,依题意,得:=,解得:x=32,经检验,x=32是原方程的解,且符合题意,∴x+8=40.答:甲每小时做32个零件,乙每小时做40个零件.(2)40×4÷32=5(小时).答:甲做5小时与乙做4小时所做机械零件数相等.17.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.18.解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.19.解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,依题意,得:﹣=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意.答:商场第一批购进衬衫2000件.(2)(2000+2000×2﹣150)×58+150×58×0.8﹣80000﹣176000=90260(元).答:售完这两批衬衫,商场共盈利90260元.20.解:设乙公司单独完成需x天,则甲公司单独完成需要2x天,根据题意得:+=,解得:x=30,经检验,x=30是原方程的解.∴应付甲公司2×30×650=39000(元).应付乙公司30×1200=36000(元).∵36000<39000,∴公司应选择乙公司.答:公司应选择乙公司,应付工程总费用36000元.。
人教版 八年级数学 上册第15章 分式 综合训练
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版 八年级数学 第15章 分式 综合训练一、选择题1. 在式子+中,分式的个数是 ( )A .2B .3C .4D .52. 下列各式中是最简分式的是 ( ) A . B .C .D .3. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .54. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-25. 不改变分式的值,使分子、分母最高次项的系数变为正数,正确的是( )A .B .C .D .6. 不改变分式0.2x -10.4x +3的值,把它的分子和分母中各项系数都化为整数,则所得结果为( ) A.2x -14x +3B.x -52x +15C.2x -14x +30D.2x -10x +37. 有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为 ( )A .B .C .-1D .+18. 老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图K -42-1所示:接力中,自己负责的一步出现错误的是( ) A .只有乙 B .甲和丁 C .乙和丙D .乙和丁9. 若m+n-p=0,则m -+n --p +的值是 .10. (2020·齐齐哈尔)若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <﹣10 B .m ≤﹣10 C .m ≥﹣10且m ≠﹣6 D .m >﹣10且m ≠﹣6二、填空题11. 如果分式2x -1有意义,那么x 的取值范围是________.12.已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.13. 计算(-2y x 3)2·x 46y的结果是________.14. 若式子1x -2和32x +1的值相等,则x =________.15. 将分式16xyz,18x2y2通分时,需要将分式16xyz的分子与分母同时乘________,将分式18x2y2的分子与分母同时乘________.16. 在括号内填上适当的整式,使下列等式成立:(1)a+bab=()a2b;(2)a+2a2-4=1().17. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.18. (2020·潍坊)若关于x的分式方程33122x mx x+=+--有增根,则m=_________.三、解答题19. 不改变分式的值,使下列分式的分子与分母均按某一字母的降幂排列,并使分子、分母的最高次项的系数都是正数.(1); (2).20. (2020·绵阳)先化简,再求值:(x+2+32x-)÷2122x xx++-,其中x=2-1.21. 先化简,再求值:(xx-3-1x-3)÷x2-1x2-6x+9,其中x满足2x+4=0.22. x2+4x+4x2+2x化简:2xx+1-2x+4x2-1÷x+2x2-2x+1,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.人教版 八年级数学 第15章 分式 综合训练-答案一、选择题 1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】D6. 【答案】B7. 【答案】A 8. 【答案】D9. 【答案】-310. 【答案】D二、填空题11. 【答案】x≠1 12. 【答案】8013. 【答案】2y3x 214. 【答案】711.1515. 【答案】4xy3z16. 【答案】(1)a2+ab(2)a -217. 【答案】(a +3)(a -3)3(a -3) 3(a +3)(a -3)18. 【答案】3三、解答题19. 【答案】解:(1)==. (2)==-.20. 【答案】解:原式=(x +2+32x -)÷2122x x x ++-=212x x --÷()212x x +-=()()112x x x -+-·()221x x -+=11x x -+. 当x 2-1时,原式=11x x -+211211---+222-=1221. 【答案】解:原式=x -1x -3·(x -3)2(x +1)(x -1)(2分)=x -3x +1,(3分) ∵2x +4=0, ∴x =-2,(5分)∴原式=-2-3-2+1=5.(7分)22. 【答案】32 解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2 =2x x +1-2x -2x +1=2x -2x +2x +1=2x +1.(4分)∵不等式x≤2的非负整数解是0,1,2,且当x =1时原分式无意义, ∴x 可取0或2,(6分) 当x =0时,原式=2,当x =2时,原式=23.(任选一值代入均可得分)(8分)一天,毕达哥拉斯应邀到朋友家做客。
八年级数学上册第15章分式专题练习(包含答案),推荐文档
人教版八年级数学上册第15章分式专题练习(含答案)A级基础题1 .分式方程了 = 1的解是()X—8A . - 1 B. 1 C. 8 D . 152 1 一2. 把分式方程——=-化为一元一次方程时,方程两边需同乘以()x+ 4 xA. xB. 2xC. x + 4 D . x(x+ 4)3. 分式方程黑匸=匚警的解是()20+ v 20- vA . v=—20B . v= 5C . v =—5D . v = 203 14. 分式方程2;= 口的解为()A . x= 1B . x= 2C . x = 3D . x= 45. 甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/时,依题意列方程正确的是()30 40 _ 30 40A——= ------- B ---------- =——■ x x—15 x—15 x30 40 30 40C — = --------D ------------- =—x x+ 15 x+15 xx2一 16. 方程=0的解是___________ .x+ 17. 今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为___________ 元.2 1& 解方程:x2—! + x+7 =1.3 —x 19. 当x为何值时,分式£的值比分式口的值大3?10. 据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同•求一片国槐树叶一年的平均滞尘量.B级中等题11. 对于非零实数a, b,规定a ® 1 1b= b—j若2® (2x—1)一1,贝y x 的值为()5m 5 31 A.:6B・4 C.2D. —612. 若关于x的方程- 2 ( x+ m_丨_ 一2有增根,则m的值是x—2 2—x13. 我市某校为了创建书香校园,去年购进一批图书•经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C级拔尖题14. 某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10% ;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投沪―如投资收益资收益率=实际投资额X 100%)?⑵对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题15. 某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款 1 936元.请问该学校九年级学生有多少人?16. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场,服装厂有A, B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A, B两车间共同完成一半后, A 车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A, B两车间每天分别能加工多少件.参考答案1. D2.D3.B4.C5.C6. 1解析:原方程求解,得x = 1或—1•经检验,x =- 1是原方程的增根,所以 x = 1 是原方程的根.7.2 200元 解析:设条例实施前此款空调的售价为x 元,由题意列方程,得10-000(1入+ 10%) =10 000,解得 x = 2 200 元.x — 2008. 解:方程两边同时乘以(x + 1)(x — 1),得 2+ (x — 1) = (x + 1)(x — 1).解得 x = 2 或—1. 经检验:x =— 1是方程的增根. 原方程的解为x = 2.3一 x 19. 解:由题意列方程,得 一 —=3,解得x = 1.2— x x — 2经检验x = 1是原方程的根. (2x — 4)毫克,根据题意,得经检验,x = 22是方程的解.答:一片国槐树叶一年的平均滞尘量为 22毫克.A AAAAO 斤解析:••• a e b = 1-a ,.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分式】综合拓展练习
一.选择题
1.已知=2,则的值为()
A.4B.6C.7D.8
2.一辆汽车以80千米/时的速度行驶,从A城到B城需t小时,如果该车的速度增加v千米/时,那么从A城到B城需要()
A.B.C.D.
3.若整数a使得关于x的方程的解为整数,且关于y的不等式组有偶数解且至多有3个偶数解,则所有符合条件的整数a的和为()
A.﹣12B.﹣9C.12D.15
4.下列说法正确的是()
A.分式的值为零,则x的值为±2
B.根据分式的基本性质,等式
C.分式中的x,y都扩大3倍,分式的值不变
D.分式是最简分式
5.不改变分式的值,下列各式变形正确的是()
A.B.=﹣1
C.D.=
6.若把分式的x,y同时扩大2倍,则分式的值()
A.扩大为原来的2倍B.缩小为原来的
C.不变D.缩小为原来的
7.某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资1万个,原计划采购该物资200万个.实际采购中,在当地又招募到10名志愿者,结果比原计划推迟一天结束采购任务并实际购得300万个.设原有采购志愿者x名.则据题意可列方程为()
A.=1B.=1
C.=1D.=1
8.已知x+=3,那么分式的值为()
A.B.C.D.
9.已知实数a,b为方程x2﹣6x+4=0的解,且a≠b,则+的值是()
A.7B.﹣7C.11D.﹣11
10.从﹣1,0,1,2,3,4,5这7个数中随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程的解为非负数,那么这7个数中所有满足条件的a的值之和是()
A.6B.8C.9D.10
二.填空题
11.分式的最简公分母是.
12.已知x=﹣3时,分式无意义,x=﹣4时,此分式的值为0,a+b=.
13.关于x的分式方程+=3的解为正实数,且不等式组无解,则满足条件的正整数m之和等于.
14.某校准备用m元(m为小于700的整数)购买某种运动器械,某批发兼零售体育用品店规定:购买这种运动器械50件起可以按批发价出售,小于50件则按零售价出售(零售价为整数),批发价比零售价每件便宜4元.若按零售价购买,可以刚好用完m元;但若多买12件则可按批发价结算,也恰好只要m元.则m的值为.
15.已知关于x的分式方程﹣3=的的解为正数,则k的取值范围为.
三.解答题
16.(1)先化简,再求值:(1﹣)÷,其中x=5.
(2)解分式方程:+2=.
17.某商场用22000元购入一批电器,然后以每台2800元的价格销售,很快售完.商场又以48000元的价格再次购入该种型号的电器.数量是第一次购入数量的2倍,售价每台上调了200元,进价每台也上调了200元.
(1)商场第一次购入的电器每台进价是多少元?
(2)商场既要尽快售完第二次购入的电器,又要使在这两次销售中获得的总利润不低于16800元.打算将第二次购入的部分电器按每台九折出售,最多可将多少台电器打折出售?
18.已知关于x的分式方程+=.
(1)若方程有增根,求k的值.
(2)若方程的解为负数,求k的取值范围.
19.(1)探索:如果,则m=;如果,则m=;
(2)总结:如果(其中a,b,c为常数),则m=(用含a,b,c的式子表示);
(3)利用上述结论解决:若代数式的值为整数,求满足条件的整数x的值.
20.先化简,再求值
(1),若﹣3<x≤1,请你选取一个合适的x的整数值,求出原式的值;(2),其中a与2,4构成△ABC的三边,且a为整数.。