高考理科数学《概率与统计》题型归纳与训练(有答案)

合集下载

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。

高考理科数学概率题型归纳与练习(含答案)

高考理科数学概率题型归纳与练习(含答案)

专题三:高考理科数学概率与数学期望一.离散型随机变量的期望(均值)和方差若离散型随机变量的分布列或概率分布如下:XX1x 2x …n xP1p2p…np 1. 其中,,则称为随机变120,1,2,...,,...1i n p i n p p p ≥=+++=1122...n n x p x p x p +++量的均值或的数学期望,记为或.X X ()E X μ数学期望 =()E X 1122...n nx p x p x p +++性质 (1);(2).(为常数)()E c c =()()E aX b aE X b +=+,,a b c 2. ,(其中)刻画了随机变2221122()()...()n n x p x p x p μμμ-+-++-120,1,2,...,,...1i n p i n p p p ≥=+++=量与其均值的平均偏离程度,我们将其称为离散型随机变量的方差,记为或X μX ()D X .2σ 方差2221122()()...()n nDX x p x p x p μμμ=-+-++-2.方差公式也可用公式计算.22221()()ni i i D X x p EX EX μ==-=-∑3.随机变量的方差也称为的概率分布的方差,的方差的算术平方根称为X X X ()D X的标准差,即X σ=1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

X -101P95二.超几何分布对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,不合格品数X 的分布如下表所示:X 012…lP0n M N Mn NC C C -11n M N Mn NC C C --22n M N Mn NC C C --…l n l M N Mn NC C C --其中min(,)l n M =一般地,若一个随机变量X 的分布列为()r n r M N MnNC C P X r C --==,其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)X H n M N :,并将()r n r M N MnNC C P X r C --==记为(;,,)H r n M N .1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.解:由2.2节例1可知,随机变量的概率分布如表所示:X X 012345P258423751807523751855023751380023751700237514223751从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:的数学期望约为.X 1.6667说明:一般地,根据超几何分布的定义,可以得到.0()r n r nM N Mnr Nr C C M E X n C N --===∑g g 2.在10件产品中,有3件一等品,4件二等品,3件三等品。

高中数学概率与统计复习 题集附答案

高中数学概率与统计复习 题集附答案

高中数学概率与统计复习题集附答案1. 概率1.1 条件概率题目:某班有60名学生,其中有30名男生和30名女生。

从中随机抽取一位学生,求抽到女生的概率。

答案:由于抽到女生只有30人中的一个机会,总数为60人,所以女生的概率为30/60=1/2。

1.2 独立事件题目:一副52张的扑克牌中,第一次从中抽取一张 A,不放回,第二次抽取一张 K,求第二次抽到 K 的概率。

答案:由于第一次抽取 A 后不放回,所以总共只剩下51张牌。

其中,抽到 K 的机会只有4张,所以概率为4/51。

1.3 事件的并、交与补题目:在数学课上,调查了50位学生的成绩情况,结果发现40位学生擅长代数,35位学生擅长几何,其中有30位学生既擅长代数又擅长几何。

求至少擅长其中一科的学生人数。

答案:根据题意,至少擅长其中一科的学生人数等于擅长代数的人数加上擅长几何的人数再减去既擅长代数又擅长几何的人数。

即40 + 35 - 30 = 45。

2. 统计2.1 样本均值题目:某班有30名学生,进行一次数学测验,得分如下:80, 85, 90, 70, 75, 95, 100, 85, 92, 78, 88, 90, 85, 82, 86, 88, 90, 92, 86, 95, 85, 82, 92, 88, 90, 85, 90, 88, 80, 90求该班级的平均分。

答案:将所有学生的得分相加,并且除以学生总数,即(80 + 85 + 90 + 70 + 75 + 95 + 100 + 85 + 92 + 78 + 88 + 90 + 85 + 82 + 86 + 88 + 90 + 92 + 86 + 95 + 85 + 82 + 92 + 88 + 90 + 85 + 90 + 88 + 80 + 90) / 30 ≈ 87.12.2 极差题目:某班级考试的分数如下:80, 85, 70, 95, 90, 92, 65, 88求该班级考试分数的极差。

最新(北京版)高考数学分项汇编 专题12 概率和统计(含解析)理

最新(北京版)高考数学分项汇编 专题12 概率和统计(含解析)理

专题12 概率和统计1. 【20xx 高考北京理第2题】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π (B )22π- (C )6π(D )44π-【答案】D考点:几何概型概率.2. 【20xx 高考北京理第8题】某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高m 值为( )A.5B.7C.9D.11 【答案】C考点:平均数.3. 【20xx 高考北京理第11题】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =__________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为__________.【答案】0.030 3考点:频率分布直方图.4. 【2005高考北京理第17题】(本小题共13分)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为.32(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (Ⅱ)求乙至多击中目标2次的概率; (Ⅲ)求甲恰好比乙多击中目标2次的概率. 【答案】5. 【2006高考北京理第18题】(本小题共13分)某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.a b c,且三门课程考试是否及格相互之间没假设某应聘者对三门指定课程考试及格的概率分别是,,有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)6. 【2007高考北京理第18题】(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.7. 【2008高考北京理第17题】(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.123(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.8. 【2009高考北京理第17题】(本小题共13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.∴()()441220,1,2,3,433k kkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,w.w.w.zxxk.c.o.m∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=9. 【20xx 高考北京理第17题】(13分) 某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p 、q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p ,q 的值; (3)求数学期望E ξ.10. 【20xx 高考北京理第17题】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。

2020年高考理科数学《概率与统计》题型归纳与训练

2020年高考理科数学《概率与统计》题型归纳与训练
例 1、某大学艺术专业 400 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽 取了100 名学生,记录他们的分数,将数据分成 7 组:[20,30),[30,40),,[80,90], 并整理得到如下频率分
布直方图:
(Ⅰ)从总体的 400 名学生中随机抽取一人,估计其分数小于 70 的概率; (Ⅱ)已知样本中分数小于 40 的学生有 5 人,试估计总体中分数在区间[40,50) 内的人数; (Ⅲ)已知样本中有一半男生的分数不小于 70 ,且样本中分数不小于 70 的男女生人数相等.试估计总体
100 (Ⅲ)由题意可知,样本中分数不小于 70 的学生人数为 (0.02 0.04) 10 100 60 ,所以样本中分数不 小于 70 的男生人数为 60 1 30 .所以样本中的男生人数为 30 2 60 ,女生人数为100 60 40 ,男生
2 和女生人数的比例为 60 : 40 3 : 2 ,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为 3: 2 .
【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应
注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1 ,当小矩形等高时,说明
频率相等,计算时不要漏掉其中一个. 【思维点拨】 1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少. 2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数 较多. 3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数 利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中 点的横坐标之和. 5.求回归直线方程的关键

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。

求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。

b) 中奖号码是偶数的概率为15/30,即1/2。

c) 中奖号码是质数的概率为8/30,即4/15。

问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。

求销售量的概率分布表。

解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。

求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。

b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。

问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。

若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。

解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。

以上是高中数学概率与统计概率分布的练习题及答案。

高考理科数学概率题型归纳与练习含答案(供参考)

高考理科数学概率题型归纳与练习含答案(供参考)

专题三:高考理科数学概率与数学期望一.离散型随机变量的期望(均值)和方差1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数)2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ.方差2221122()()...()n n DX x p x p x p μμμ=-+-++-2.方差公式也可用公式22221()()ni i i D X x p EX EX μ==-=-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X的标准差,即σ1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,其中min(,)l n M =一般地,若一个随机变量X 的分布列为()r n r M N MnNC C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)XH n M N ,并将()r n r M N MnNC C P X r C --==记为(;,,)H r n M N . 1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.X 0 1 2 3 4 5P从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:X 的数学期望约为1.6667.说明:一般地,根据超几何分布的定义,可以得到0()r n r nM N Mnr Nr C C M E X n C N --===∑. 2. 在10件产品中,有3件一等品,4件二等品,3件三等品。

高考数学(理):专题07 概率与统计(含解析)

高考数学(理):专题07 概率与统计(含解析)

7.概率与统计1.【2018年浙江卷】设0<p<1,随机变量ξ分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D点睛:2.【2018年理新课标I卷】下图来自古希腊数学家希波克拉底所研究几何图形.此图由三个半圆构成,三个半圆直径分别为直角三角形ABC斜边BC,直角边AB,AC.△ABC三边所围成区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边关系,之后应用相应面积公式求得各个区域面积,根据其数值大小,确定其关系,再利用面积型几何概型概率公式确定出p1,p2,p3关系,从而求得结果.详解:设,则有,从而可以求得面积为,黑色部分面积为,其余部分面积为,所以有,根据面积型几何概型概率公式,可以得到,故选A.点睛:该题考查是面积型几何概型有关问题,题中需要解决是概率大小,根据面积型几何概型概率公式,将比较概率大小问题转化为比较区域面积大小,利用相关图形面积公式求得结果.【2018年理新课标I卷】某地区经过一年新农村建设,农村经济收入增加了一倍.实现翻番.为3.更好地了解该地区农村经济收入变化情况,统计了该地区新农村建设前后农村经济收入构成比例.得到如下饼图:则下面结论中不正确是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入总和超过了经济收入一半【答案】A详解:设新农村建设前收入为M,而新农村建设后收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入综合占经济收入,所以超过了经济收入一半,所以D正确;故选A.点睛:该题考查是有关新农村建设前后经济收入构成比例饼形图,要会从图中读出相应信息即可得结果.4.【2018年全国卷Ⅲ理】某群体中每位成员使用移动支付概率都为,各成员支付方式相互独立,设为该群体10位成员中使用移动支付人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。

高中数学概率与统计练习题及参考答案2023

高中数学概率与统计练习题及参考答案2023

高中数学概率与统计练习题及参考答案2023以下是根据题目要求写出的高中数学概率与统计练习题及参考答案。

一、单项选择题1、设A、B为两事件,且P(A)=0.4,P(B)=0.6,则P(AB)的取值范围是A、[0.2,0.6]B、[0.24,0.6]C、[0.0,0.4]D、[0.16,0.6]答案:B2、已知事件A发生的概率为0.6,事件B发生的概率为0.5,事件A和事件B至少有一个发生的概率为:A、0.6B、0.5C、0.9D、0.1答案:C3、小明乘坐公交车去上学,如果按时到达的概率为0.8,那么他迟到的概率为:A、0.8B、0.2C、0.6D、0.4答案:B二、填空题1、一套大小为1、2、3的衣服,从中随意取出一件的概率为_______。

答案:1/62、在1~50中随机取出一个整数,使其能被6整除的概率是_______。

答案:1/63、事件A和事件B相互独立,且P(A)=0.4,P(B)=0.3,则P(AB)的取值为_______。

答案:0.12三、解答题1、某小区内有200户人家,其中有120户家庭有私家车,60户家庭有小轿车,70户家庭既有私家车又有小轿车。

试求出这些家庭中有汽车的概率是多少?解:设事件A为家庭有私家车,B为家庭有小轿车,P(A)=120/200=0.6,P(B)=60/200=0.3,P(AB)=70/200=0.35,所以这些家庭中有汽车的概率是P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.35=0.55。

2、某饮料公司一次生产200瓶矿泉水饮料,其中有5瓶不合格品,现从这200瓶中任意抽取20瓶,问抽取的20瓶中恰好有3瓶不合格品的概率是多少?解:设事件A为抽出20瓶中恰好有3瓶不合格品,根据二项分布公式P(A)=C(5,3)*C(195,17)/C(200,20)=56*17409840/6564120420=0.0148(保留四位小数)。

四、计算题1、某班级20名学生参加一次数学考试,已知这次考试的平均成绩是85分,标准差为7分,求这次考试成绩高于90分的学生人数的理论值和实际值。

2022届高考数学(理)热点题型概率与统计(含答案解析)

2022届高考数学(理)热点题型概率与统计(含答案解析)

2022届高考数学(理)热点题型概率与统计(含答案解析)概率与统计热点一常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用某,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|某-Y|,求随机变量ξ的分布列.解依题意,这4个人中,每个人去参加甲游戏的概率为3,去参加乙游戏的概率2为3.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4).则1P(Ai)=Ci43i24-i.3(1)这4个人中恰有2人去参加甲游戏的概率1P(A2)=C2432228=.273(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3+A4,且A3与A4互斥,313∴P(B)=P(A3+A4)=P(A3)+P(A4)=C441241某3+C43=9.3(3)依题设,ξ的所有可能取值为0,2,4.且A1与A3互斥,A0与A4互斥.8则P(ξ=0)=P(A2)=27,P(ξ=2)=P(A1+A3)=P(A1)+P(A3)11=C4332402331·3+C43某3=81,P(ξ=4)=P(A0+A4)=P(A0)+P(A4)02=C43441+C4317=81.4所以ξ的分布列是ξP08272408141781【类题通法】(1)本题4个人中参加甲游戏的人数服从二项分布,由独立重复试验,4人中恰有i人参加甲游戏的概率1P=Ci43i24-i,这是本题求解的关键.3(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件Ai 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已3212知甲队3人每人答对的概率分别为4,3,2,乙队每人答对的概率都是3,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.解(1)ξ=2,则甲队有两人答对,一人答错,132132111321-1-1-故P(ξ=2)=4某3某某某=;2+4某3某2+43224(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B.设乙队得分2为η,则η~B3,3.。

高考《概率与统计初步》知识点和高考题、配套练习题(很全面)

高考《概率与统计初步》知识点和高考题、配套练习题(很全面)

专题十:《概率与统计初步》I、考纲1.统计与统计案例(1)随机抽样① 理解随机抽样的必要性和重要性。

② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。

(2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。

② 理解样本数据标准差的意义和作用,会计算数据标准差。

③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。

⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。

(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。

② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。

(4)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。

①独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。

②假设检验了解假设检验的基本思想、方法及其简单应用。

③回归分析了解回归的基本思想、方法及其简单应用。

2.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

② 了解两个互斥事件的概率加法公式。

(2)古典概型① 理解古典概型及其概率计算公式。

② 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率。

②了解几何概型的意义。

II、高考考情解读本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2014年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.II 、基础知识和题型 一、随机抽样1、简单随机抽样:(1).简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2).最常用的简单随机抽样方法有两种——抽签法和随机数法. 2、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号l +k , 再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 【提醒】系统抽样的最大特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. 3、分层抽样(1).分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2).当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3).分层抽样时,每个个体被抽到的机会是均等的. 4(一)简单随机抽样 1. (2012·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与样本容量无关 2. 下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验 3.(2013年高考江西卷(文5))(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【总结】采用随机数法时,若重复出现或超出范围的要去掉。

高三数学概率与统计练习题及答案

高三数学概率与统计练习题及答案

高三数学概率与统计练习题及答案1. 选择题1) 设事件A发生的概率为P(A)=0.4,事件B发生的概率为P(B)=0.3,事件A和事件B相互独立,求事件A和事件B同时发生的概率。

A. 0.7B. 0.12C. 0.24D. 0.1答案:B. 0.122) 某班级有40名学生,其中有20名男生和20名女生,现从班级中随机选取2名学生,求至少有1名男生的概率。

A. 0.5B. 0.8C. 0.9D. 0.75答案:D. 0.753) 一枚正常的骰子被掷两次,求两次点数和为8的概率。

A. 1/36B. 1/18C. 1/12D. 1/9答案:C. 1/124) 一批零件中有10%的次品,现从中随机抽取3个零件,求恰好有2个次品的概率。

A. 1/10B. 3/5C. 1/5D. 3/10答案:D. 3/102. 计算题1) 设事件A和事件B相互独立,已知P(A)=0.5,P(B)=0.3,求P(A 并B)。

解:由于A和B相互独立,所以P(A并B) = P(A) × P(B) = 0.5 × 0.3 = 0.15。

2) 某公司的员工中,男性占总人数的40%,女性占总人数的60%。

已知男性中有10%的员工是经理,女性中有15%的员工是经理。

现在从公司的员工中随机选取一个人,求选中的人是经理的概率。

解:设事件A表示选中的人是男性,事件B表示选中的人是经理。

根据题目已知,P(A) = 0.4,P(B|A) = 0.1(表示在选中的人是男性的条件下,他是经理的概率),P(B|A') = 0.15(表示在选中的人不是男性的条件下,他是经理的概率)。

则选中的人是经理的概率可以表示为P(B) = P(A) × P(B|A) + P(A') ×P(B|A') = 0.4 × 0.1 + 0.6 × 0.15 = 0.065。

3) 一批电视机中有10%的次品,现从中随机抽取3台电视机,求抽取的3台电视机中至少有1台次品的概率。

2020年高考理科数学《概率与统计》题型归纳与训练及答案解析

2020年高考理科数学《概率与统计》题型归纳与训练及答案解析

2020年高考理科数学《概率与统计》题型归纳与训练【题型归纳】题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有5840155408-=),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比. 题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[Λ并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3. 【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关(0.010.020.040.02)100.9+++⨯=[40,50)1001000.955-⨯-=[40,50)540020100⨯=系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为; ②若,则, .【答案】(1) (2) (3)的分布列为;.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为A x Z ()2,N μσZ ()14.55,38.45()10,30X X 11.95σ=≈()2~,Z N μσ()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=26.5x =0.6826X ()2E X =x.(2)①∵服从正态分布,且, ,∴, ∴落在内的概率是. ②根据题意得, ; ; ; ; . ∴的分布列为∴. 50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=Z ()2,N μσ26.5μ=11.95σ≈(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=Z ()14.55,38.450.68261~4,2X B ⎛⎫ ⎪⎝⎭()404110216P X C ⎛⎫=== ⎪⎝⎭()41411124P X C ⎛⎫=== ⎪⎝⎭()42413228P X C ⎛⎫=== ⎪⎝⎭()43411324P X C ⎛⎫=== ⎪⎝⎭()444114216P X C ⎛⎫=== ⎪⎝⎭X ()1422E X =⨯=【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式k n k k n p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数).(3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.【巩固训练】题型一 古典概型与几何概型1.已知,,则函数在区间上为增函数的概率是( )A .B .C .D . {}0 1 2a ∈,,{}1 1 3 5b ∈-,,,()22f x ax bx =-()1 +∞,512131416【答案】A【解析】①当时,,情况为符合要求的只有一种; ②当时,则讨论二次函数的对称轴要满足题意则产生的情况表示: ,8种情况满足的只有4种; 综上所述得:使得函数在区间为增函数的概率为:1251214=+=P .2.在区间上任取一数,则的概率是( )A .B .C .D . 【答案】C【解析】由题设可得,即;所以,则由几何概型的概率公式.故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)74. 【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为0a =()2f x bx =- 1 1 3 5b =-,,,1b =-0a ≠22b b x a a -=-=1ba≤() a b ,()()()1 1 1 1 1 3-,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,()22f x ax bx =-()1 +∞,()0,4x 1224x -<<12131434211<-<x 32<<x 4,1==D d 41=P考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求列联表中的数据,,,的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?22⨯x y A B【答案】(Ⅰ),,,;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A, 由已知得,所以,,,.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10y =40B =40x =60A =302()1005y P A +==10y =40B =40x =60A =未注射 注射. 所以至少有%9.99的把握认为疫苗有效.2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程; (Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大? 参考公式:, , .【答案】(1);(2)公司应在区开设4个分店,才能使区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y yx x x n xyx n yx b y x ni ini iini ini iiΘ,6.0^^=-=x b y a , ∴y 关于x 的线性回归方程6.085.0+=x y .(2) ,区平均每个分店的年利润 ,∴时, 取得最大值,故该公司应在区开设4个分店,才能使区平均每个分店的年利润最大.10000005016.6710.8285020603=≈>⨯⨯S A x y x y x y x A z ,x y 20.05 1.4z y x =--A A y b x a ∧∧∧=+1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑a y b x ∧∧=-0.850.6y x =+A A 20.05 1.4z y x =--=20.050.850.8x x -+-A 0.80.050.85z t x x x ==--+800.0150.85x x ⎛⎫=-++ ⎪⎝⎭4x =t A A3. 某商场对商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,商品的日销售额最大.参考公式:2121^)(t n tyt n yt b ni ini ii--=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y , 980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i i i y t ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L , 所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布A A A A1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含的频率。

高考数学分类理科版之概率与统计的统计初步及解析

高考数学分类理科版之概率与统计的统计初步及解析

高考数学分类理科版之概率与统计的统计初步及解析统计初步一、选择题1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.120D.1405.(2016年全国III)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃。

《概率统计》知识点归纳总结(含答案)

《概率统计》知识点归纳总结(含答案)

《概率统计》知识点归纳总结1.加法公式结合独立性)()()()()(B P A P B P A P B A P -+=+例如:7.0)(,6.0)(==B P A P88.07.0*6.07.06.0)()()()()(=-+=-+=+B P A P B P A P B A P2. 分布函数的性质P39(其中分布函数)(x F 不是连续函数,非严格意义的单调递增性)3.方差的性质,二项分布)(p n B X ,~,泊松分布)(λπ~Y 的方差2,3.0,4===λp n44.312*97.0*3.0*4*16916)3()4()34(D =+=+=+=-DY DX Y D X D Y X4. ),(~2nN X σμ),N(~X 2σμ正态总体,b]U[a,~X 均匀总体),N(~X 2σμ正态总体,n X D X E 2)(,)(σμ==b]U[a,~X 均匀总体,n a b X D b a X E 12)()(,2)(2-=+=5总体均值()E X 的无偏估计量(系数相加等于1);P178:12(1)2121X 21X + ;5432151515151X 51X X X X ++++ 6加法公式结合独立性)()()()()(B P A P B P A P B A P -+=⋃减法公式结合独立性)()()()()()(B P A P A P AB P A P B A P -=-=-7.已知随机变量X 的分布律为记X 的分布函数为,则3F = 1 .8.平均值就是数学期望,P59:24; P117:11 9.置信区间10.假设检验中,犯第一类错误的概率就是显著性水平α犯第一类错误的概率,显著性水平α为 0.03,则在原假设 H 0成立的条件下,拒绝H 0的概率为___0.03________接受H 0的概率为______0.97_________ 11.A 和B 互斥(互不相容),A 和B 对立事件,P9,性质v12.概率等于0的事件,不一定是不可能的事件13.离散型随机变量,联合分布能唯一确定边缘分布,反之不成立14随机变量P143:(3.8),),1(~t 2n F15.显著性水平α是犯第I 类错误(弃真错误的概率)计算题: 16. 已知概率密度函数,利用概率密度函数求待定系数,分布函数,计算概率概率密度函数为⎩⎨⎧<≥=-0)(3x x Ae x f x 求{}01P X <<17.联合分布求边缘分布,判断独立性,判断是否相关,P7518.已知概率密度求方差(用方差的性质先化简),概率密度用P58:21(2),计算)13(XD19已知离散型随机变量的分布律求参数的最大似然估计值;P176:4(1),答案P6620全概率公式,贝叶斯公式的应用3. 已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03.求(1)任意抽查一个产品,它被判为合格品的概率(2)一个经检查被判为合格的产品确实是合格品的概率.2、设A 表示合格品,A 表示次品,B 表示被检合格,则()0.95,()0.05,()1()0.98,()0.03P A P A P B A P B A P B A ===-== (1) 由全概率公式,得()=()()()()=0.950.98+0.050.03=0.9325P B P A P B A P A P B A +⨯⨯(2)由贝叶斯公式,得()()()()()()()P A P B A P A B P A P B A P A P B A =+=0.950.980.99840.950.980.050.03⨯=⨯+⨯3、某公司有甲、乙、丙三位秘书,让他们把公司文件的45%,40%,15% 进行归档,根据以往的经验,他们工作中出现错误的概率分别为0.01,0.02,0.05.现发现有一份文件归错档,试问该错误最有可能是谁犯的?解:设事件i A 表示“文件由第i 位秘书归档”()1,2,3i =,B 表示“文件归错档”. 依题意,()10.45P A =, ()20.4P A =, ()30.15P A =,()10.01P B A =, ()20.02P B A =,()30.05P B A =由全概率公式可知()()()()()()()112233P B P B A P A P B A P A P B A P A =++0.010.450.020.40.050.15=⨯+⨯+⨯0.02=()()()()1110.010.450.2250.02P B A P A P A B P B ⨯===()()()()2220.020.40.40.02P B A P A P A B P B ⨯===()()()()3330.050.150.3750.02P B A P A P A B P B ⨯===由此可见,这份文件由乙归错档的可能性最大.21. 正态分布计算概率;P59:28 答案P27。

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。

为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。

1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。

以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。

求事件A发生且事件B不发生的概率。

解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。

因此,事件A发生且事件B不发生的概率为0.42。

题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。

求事件C或事件D发生的概率。

解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。

因此,事件C或事件D发生的概率为0.9。

2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。

以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。

现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。

解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。

即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。

因此,选出的3名学生全为男生的概率为0.0283。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考理科数学《概率与统计》题型归纳与训练
【题型归纳】
题型一 古典概型与几何概型
例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 .
【答案】
【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:
(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;
(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率.
【答案】(1)详见解析;(2)20
11. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵5
27564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.
(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有
5
840155408-=
2 ),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率20
11=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算.
【思维点拨】
1. 求复杂互斥事件概率的方法
一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()
1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.
2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比.
题型二 统计与统计案例
例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[ 并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70
的男女生人数相等.试估计总体。

相关文档
最新文档