华科-自动控制原理课件

合集下载

自动控制原理第一章课件

自动控制原理第一章课件

自动控制ቤተ መጻሕፍቲ ባይዱ论已经成为现代工程技术人 员和科学工作者不可缺少的重要理论基础之 一。 自动控制原理》 从《自动控制原理》课程的内容上看侧重 于方法论, 于方法论,本课程的教学目的是使学生能学 好当前和近期我国工业部门所需的自动化理 论和技术, 论和技术,使学生深刻理解线性控制理论的 数学原理和方法,掌握自动控制的基本理论、 数学原理和方法,掌握自动控制的基本理论、 基本计算方法, 基本计算方法,为自动控制系统的分析与设 计打下一定的基础。 计打下一定的基础。
3.程序控制系统 3.程序控制系统 输入量按照给定的程序变化。 输入量按照给定的程序变化。 任务:使输出量按预先给定的程序指令而动作。 任务:使输出量按预先给定的程序指令而动作。 二、按使用的数学方法分类 1.线性系统 1.线性系统 2.非线性系统 2.非线性系统 3.连续控制系统 3.连续控制系统 4.离散控制系统 4.离散控制系统
1-3
闭环控制系统的基本组成
1-4
对控制系统的基本要求
一、对控制系统的基本要求 对控制系统的基本要求可以归纳为三个字: 对控制系统的基本要求可以归纳为三个字: 稳、快、准。
二、典型外作用 典型外作用的函数应具备以下条件: 典型外作用的函数应具备以下条件: 这些函数在现场或实验室中容易得到; ①这些函数在现场或实验室中容易得到; ②控制系统在这些函数作用下的性能应代表在实际工 作条件下的性能; 作条件下的性能; ③这些函数数学表达式简单,便于理论分析与计算。 这些函数数学表达式简单,便于理论分析与计算。 1.阶跃函数 1.阶跃函数 数学表达式为: 数学表达式为:
1.按输入作用补偿 1.按输入作用补偿 按输入作用补偿的补偿装置可提供一个输入信号 的微分作用, 的微分作用,并作为顺馈控制信号与原输入信号一起 对被控对象进行控制,以提高系统的跟踪能力。 对被控对象进行控制,以提高系统的跟踪能力。 2.按扰动作用补偿 2.按扰动作用补偿 按扰动作用补偿的补偿装置能够在可测量的扰动 对系统产生不利影响之前,提供一个控制作用, 对系统产生不利影响之前,提供一个控制作用,以抵 消扰动对系统输出的影响。 消扰动对系统输出的影响。

自动控制原理教学ppt

自动控制原理教学ppt
前馈校正
在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正

《自动控制原 》课件

《自动控制原 》课件

信号流图
总结词
表示信号传递和处理的图形表示
详细描述
信号流图是表示信号传递和处理的图形,通过信号流图可以分析系统的动态特性和稳定 性,以及各组成部分之间的相互影响。
03
自动控制系统分析方法
时域分析法
总结词
通过建立和解决自动控制系统的微分方 程来分析系统的动态性能。
VS
详细描述
时域分析法是一种直接的方法,通过建立 系统的微分方程来描述系统的动态行为, 并求解该方程以获得系统的响应。这种方 法可以提供关于系统性能的详细信息,如 超调量、调节时间、稳态误差等。
有卡尔曼滤波、扩展卡尔曼滤波等。
05
自动控制系统应用实例
总结词
温度控制系统是自动控制系统中常 见的一种,主要用于工业和家庭中 需要对温度进行精确控制的场合。
详细描述
温度控制系统通过温度传感器检测温度,并 将温度信号转换为电信号,控制器根据设定 值与实际值的偏差进行调节,控制加热或制
冷设备,使温度维持在设定范围内。
《自动控制原 》ppt课件
contents
目录
• 自动控制原理简介 • 自动控制系统数学模型 • 自动控制用实例
01
自动控制原理简介
自动控制系统的基本概念
自动控制系统
01
通过自动调节、控制、监视等手段,使某一设备或系统按照预
定的规律运行的系统。
自动控制系统的分类
1 2
按控制方式分类
开环控制系统、闭环控制系统、复合控制系统等 。
按被控参数分类
温度控制系统、压力控制系统、流量控制系统等 。
3
按控制规律分类
比例控制系统、积分控制系统、微分控制系统等 。
02

华科-自动控制原理课件

华科-自动控制原理课件

统。其任务是要求输出量以一定的精度和速度跟踪
自动控制原理
(Automatic Control Theory)
华中科技大学控制系:樊 慧津
学时: 48+8/3.5 考试:闭卷考试 参考书目: 1. 王敏,秦肖臻编 自动控制原理。 北京:化学工业出版社, 2003 2. 孙德宝主编。自动控制原理。 北京:化学工业出版社, 2002 3. 胡寿松主编。自动控制原理。第三版。 北京:国防工业出版社,1994 4. 王划一主编。自动控制原理。 北京:国防工业出版社, 2001
与控制作用之间存在着负反馈的控制 方式。采用闭环控制的系统称为闭环
控制系统或反馈控制系统。闭环控制
是一切生物控制自身运动的基本规律。 人本身就是一个具有高度复杂控制能
力的闭环系统。
优点:具有自动补偿由于系统内部和外 部干扰所引起的系统误差(偏差)的
能力,因而有效地提高了系统的精度。
缺点:系统参数应适当选择,否则可能 不能正常工作。
反馈控制是一种最基本最重要的控制方式,引入反馈信号后,系统 对来自内部和外部干扰的响应变得十分迟钝,从而提高了系统 的抗干扰能力和控制精度。与此同时,反馈作用又带来了系统 稳定性问题,正是这个曾一度困扰人们的系统稳定性问题激发 了人们对反馈控制系统进行深入研究的热情,推动了自动控制 理论的发展与完善。因此从某种意义上讲,古典控制理论是伴 随着反馈控制技术的产生和发展而逐渐完善和成熟起来的。
的波动、环境温度的变化。
8

控制方式
开环控制是指系统的 被控制量(输出量)只受
• 开环控制
控于控制作用,而对控制
作用不能反施任何影响的 控制方式。采用开环控制
的系统称为开环控制系统。
优点:结构简单,成本低 廉,易于实现 缺点:对扰动没有抑制能 力,控制精度低

《自动控制原理》课件

《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域

自动控制原理课件ppt

自动控制原理课件ppt

G3(s)
G2(s)
H3(s)
E(S)
R(s)
G1(s)
H1(s)
H2(s)
C(s)
P2= - G3G2H3
△2= 1
P2△2=
梅逊公式求E(s)
P1= –G2H3
△1= 1
N(s)
G1(s)
H1(s)
H2(s)
C(s)
G3(s)
G2(s)
H3(s)
R(s)
E(S)
四个单独回路,两个回路互不接触
e
A
100%
一阶系统时域分析
无零点的一阶系统 Φ(s)=
Ts+1
k
, T
时间常数
(画图时取k=1,T=0.5)
单 位 脉 冲 响 应
k(t)=
T
1
e-
T
t
k(0)=
T
1
K’(0)=
T
1
2
单位阶跃响应
h(t)=1-e-t/T
h’(0)=1/T
h(T)=0.632h(∞)
h(3T)=0.95h(∞)
h(2T)=0.865h(∞)
第一章 自动控制的一般概念
1-1 自动控制的基本原理与方式 1-2 自动控制系统示例 1-3 自动控制系统的分类 1-4 对自动控制系统的基本要求
飞机示意图
给定电位器
反馈电位器
给定装置
放大器
舵机
飞机
反馈电位器
垂直陀螺仪
θ0
θc
扰动
俯仰角控制系统方块图
飞机方块图
液位控制系统
控制器
自动控制原理课件ppt
课件3 ~6为第一章的内容。制作目的是节省画图时间,便于教师讲解。 课件6要强调串联并联反馈的特征,在此之前要交待相邻综合点与相邻引出点的等效变换。 课件7中的省略号部分是反过来说,如‘合并的综合点可以分开’等。最后一条特别要讲清楚,这是最容易出错的地方! 课件10先要讲清H1和H3的双重作用,再讲分解就很自然了。 课件11 、12 、13是直接在结构图上应用梅逊公式,制作者认为没必要将结构图变为信号流图后再用梅逊公式求传递函数。

《自动控制原理》全书总结PPT课件

《自动控制原理》全书总结PPT课件
3
开环控制系统的特点: 闭环控制系统的特点: 自动控制系统的本质特征: 闭环控制系统的基本组成,每个环节的作用。
4
闭环控制系统的组成和基本环节
闭环控制系统的结构(示意)图
控制器
要求精 度要高
1-给定环节;2-比较环节;3-校正环节;4-放大环节; 5-执行机构;6-被控对象;7-检测装置
5
题1-9、图为液位自动控制系统示意图。在任何情况 下,希望液面高度维持不变。试说明系统工 作原理,并画出系统结构图。
24
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
25
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(s)
1 Ts 1
1 t
单 位 阶 越 响 应 : x c (t) 1 eT, (t 0 )
11
◆传递函数第一种形式:
传递函数的表达形式有三种: 标准形式、有理分式形
式或多项式形式
W s X X c rs s b a 0 0 s s m n b a 1 1 s s m n 1 1
b m 1 s b m n m a n 1 s a n
m
K (Tis 1)
W s
14
1、熟悉典型环节传递函数 2、控制系统的传递函数的求取
动态结构图的编写、变换、化简 3、误差传递函数的求取 3、信号流图,梅逊公式求控制系统传函。 4、例题
15
结构图变换技巧
• 变换技巧一:向同类移动 分支点向分支点移动,综合点向综合点移动。

自动控制原理课件ppt

自动控制原理课件ppt

控制系统的性能分析
1. 稳态误差分析:分析系统在稳态下的误差以及如 何进行补偿。 2. 响应速度分析:分析系统的响应速度,并且可以 通过合适的控制参数来提高响应速度。 3. 稳定性分析:分析系统的稳定性及如何通过控制 来保证系统的稳定性。
3
反馈控制系统设计
Design of feedback control system
传感器与执行器
它可以感知环境变化并反馈给控制器;执行器则负责将控制器输出的电信号转化为机械运动,控制被控制对象 实现预定动作。这两者在自动控制系统中起到了至关重要的作用,是系统稳定性和机能性的关键依托。除了常 见的传感器和执行器外,还有许多其他类型的传感器和执行器,如力传感器、温度传感器、阀门等。在实际应 用中,要根据具体情况选择合适的传感器和执行器,从而实现自动化、智能化控制。
控制系统基础
第一部分主要介绍控制系统的定义、分类以及控 制系统中常见的各种变量; 第二部分介绍了控制系统的主要组成部分,包括 传感器、执行器、控制器等; 第三部分则着重探讨了控制系统的性能要求,如 稳定性、灵敏度、鲁棒性等方面。通过深入了解 控制系统的基础知识,可以更好地理解和应用自 动控制原理。
自动控制原理
Principles of Automatic Control
Form:XXX
202X-XX-XX
1. 概述自动控制原理 2. 控制系统数学模型 3. 反馈控制系统设计 4. 梯形图及控制程序设计 5. 控制系统稳定性分析 6. 现代控制理论应用
目录
1
概述自动控制原理
Overview of automatic control principles
4
梯形图及控制程序设计
Ladder diagram and control program design

自动控制原理

自动控制原理
自动控制原理
国家级精品课程
1
一 课程教材
《自动控制原理》(第三版)
——入选“十二五”国家级规划教材 新工科卓越工程师教育培训计划电气信息类专业系列教材
主编:吴怀宇 出版社:华中科技大学出版社 出版时间:2017年8月
2
二 课程特点
是高校自动化类、电气类、电子信息类、机械工 程类各专业的一门重要专业基础课。
(一)自动控制与自动控制系统
航空航天
40
(一)自动控制与自动控制系统



机器人

交 通 系 统
41
(一)自动控制与自动控制系统
电扇:控制转速 洗衣机:控制水位、强弱、时间等 电冰箱、空调、电饭煲:控制温度
42
(一)自动控制与自动控制系统
自动控制的意义:
(1)提高了劳动生产率
使生产过程实现了自动化
10
控制理论的产生和发展划分为三个阶段: 经典控制理论 现代控制理论 智能控制理论
11
1.1.1 经典控制理论的发展
经典控制理论即古典控制理论,也称为自动控制理论。它 的发展大致经历了以下几个过程:
萌芽阶段
如果要追溯自动控制技术的发展历史,早在两千年前中国 就有了自动控制技术的萌芽。
12
(1) 两千年前我国发明
28
经典控制理论的主要特点:
是一套工程实用的方法,许多工作可用作图法来完成; 物理概念清晰,在分析和设计时便于联系工程实际作出
决定,减少盲目性; 可用实验方法建立系统的数学模型。
29
1.1.2 现代控制理论阶段
主要的模型形式:状态空间法(State Space Method) 主要发展过程:

自动控制原理—华中科技大学 第六章

自动控制原理—华中科技大学 第六章
11
6.4 反馈校正
在控制系统的校正中,反馈校正也是常用的校正方式之一。反馈校 正除了与串联校正一样,可改善系统的性能以外,还可抑制反馈环内不 利因素对系统的影响。 图6-1表示一个具有局部反馈校正的系统。在此,反馈校正装置 H(s) 反并接在 G2 (s)G3 (s)的两端,形成局部反馈回环(又称为内回环)。为 了保证局部回环的稳定性,被包围的环节不宜过多,一般为2个。
2
6.2 常用的校正装置及其特性
6.2.1 校正装置的连接方式: (1)串联校正 (1)串联校正 (2)顺馈校正 (2)顺馈校正 (3)反馈校正 (3)反馈校正 Gc(s): 校正装置传递函数 (s): G(s): 原系统前向通道的传递函数 H(s): H(s): 原系统反馈通道的传递函数
3
6.2.2 常用校正装置及其特性
• • •
(1) 超前校正网络 (2) 滞后校正网络 (3) 滞后-超前校正网络 滞后-
4
1. 超前校正网络
复阻抗
Z1 =
1 1 + Cs R 1
=
R 1 1+ R Cs 1
C1
Z2 = R2
网络的传递函数
R1 Ui R2 Uo
Z2 1 1+ aTs G(s) = = Z1 + Z2 a 1+Ts
图6-3 无源滞后网络
6
3. 滞后-超前校正网络
(1+Tas)(1+Tbs) Gc (s) = TaTbs2 + (Ta +Tb +Tab)s +1
Ta = RC , Tb = R2C2, Tab = RC2 1 1 1
令传递函数有两个不相等的负实根, 则 可写为 Gc (s)

自动控制原理课件ppt

自动控制原理课件ppt
控制目标。
传感器
检测系统的状态或参数,并将 检测结果转换为电信号传输给
控制器。
调节机构
根据控制器的指令调整系统的 参数或结构,以实现系统的稳
定和性能优化。
02
控制系统基本概念
系统稳定性
01Biblioteka 0203稳定性的定义
一个控制系统在受到扰动 后能够回到原始状态的能 力。
稳定性的分类
根据系统响应的不同,可 以分为渐近稳定、指数稳 定和不稳定三种类型。
闭环控制系统
系统的输出反馈到输入端,通过反馈 控制提高控制精度。
03
控制系统的数学模型
传递函数
定义
传递函数是描述线性定常系统动 态特性的数学模型,它反映了系 统输出与输入之间的函数关系。
形式
传递函数通常表示为有理分式的 形式,即 G(s) = num(s)/den(s) ,其中 s 是复变量,num(s) 是 分子多项式,den(s) 是分母多项
参数优化
根据系统性能指标,调整控制器的参数,以实现更好的控制效果 。
结构优化
对控制系统结构进行调整,以提高系统的稳定性和动态性能。
鲁棒性优化
提高系统对不确定性和干扰的抵抗能力,保证系统在各种情况下 都能稳定运行。
控制系统的调试与测试
硬件调试
对控制系统的硬件部分进行调试,确保硬件设备正常工作 。
软件调试
自动控制的应用
工业自动化
航空航天
交通运输
智能家居
自动化生产线、机器人 、自动化仪表等。
飞行器控制、卫星轨道 控制等。
自动驾驶车辆、列车控 制等。
智能家电、智能照明等 。
自动控制系统的组成
01
02
03

华科大自动控制原理 第一章 绪 论

华科大自动控制原理 第一章 绪 论


1.3.2
性能
开环控制和闭环控制
开环控制 闭环控制
开环控制和闭环控制的比较
有无反馈
精度 稳定性 经济型 实例

低 不改变稳定性 成本低 交通红绿灯 电机速度系统一

高 可能改变稳定性 成本高 水位控制 电机速度系统二 温度控制

1.4控制系统的分类
电位器
功率放大器
电动机
开环控制:输出量对输入量(控制作用)没有影响的系统。 电动机速度控制系统二 与系统一的区别是:对系统输出进行了测量,而且将测量的输出送到 输入端,并与参考输入形成偏差,通过偏差进行控制。
转速给定值
控制器
滑杆位置 电位器
电位器电压
电枢电压
转速
电位器
功率放 大器
电动机
Байду номын сангаас
测速发电机


1932年柰奎斯特(Nyquist)提出了负反馈系统的频率域 稳定性判据。 1940年,波德(H.Bode)进一步研究通信系统频域方法, 提出了频域响应的对数坐标图描述方法。 频域分析法主要用于描述反馈放大器的带宽和其他频 域指标。 1943年,霍尔(A.C.Hall)利用传递函数(复数域模型) 和方框图,把通信工程的频域响应方法和机械工程的 时域方法统一起来,人们称此方法为复域方法。 1948年伊文斯(W.Evans)又进一步提出了属于经典方 法的根轨迹设计法,它给出了系统参数变换与时域性 能变化之间的关系。 总结:经典控制理论的分析方法为复数域方法,以传递 函数作为系统数学模型, 优点:可通过试验方法建立数学模型,物理概念清晰,。 缺点:只适应单变量线性定常系统,对系统内部状态缺 返回 少了解。
自动控制

自动控制原理第一章PPT课件

自动控制原理第一章PPT课件

-
16
首次冲出太阳系 (美国伽利略号木 星 探 测 器 , 1989 年)
-
仿人机器人 (日本,2001年)
17
神舟五号载人航天成功(中国,2003年)
-
18
勇气号、机遇号火星探测器(美国,2004年)
-
19
“作为技术科学的控制论,对工程技术、生物
和生命现象的研究和经济科学,以及对社会研
究都有深刻的意义,比起相对论和量子论对社
(1)装置用方框表示 (2)信号用带箭头的线段表示 (3)信号引出点 (4)信号相加点(比较点)
-
27
方框(块)图 中的符号
控制系统框图的基本组成单元
元部件 信号(物理量)及传递方向 比较点 引出点 - 表示负反馈
-
返回 28
1-2自动控制系统基本控制方式
1. 开环控制 2. 闭环控制 3. 复合控制
近年来,我国在自动化仪表、工业调节器、数字控 制技术、航天工程、核动力工程等方面的研究和应用 取得了长足进展。
-
22
二.自动控制理论
1.定义 自动控制理论是研究自动控制共同规律的技术科 学. 2.分类 (1)经典控制理论:以传递函数为基础,主要研 究单输入—单输出,线性定常系统的分析和设计问题 。 (2)现代控制理论:主要研究具有高性能,高精 度的多变量多参数系统的最优控制问题。
-
25
三、自动控制系统
1.定义: 为了实现各种复杂的控制任务,将被控对象 和控制装置按照一定的方式连接起来组成的一 个有机总体。
控制装置(控制器):外加的设备或装置. 被控对象(process, plant, controlled system ):设备或生产过程.

自动控制原理课件ppt

自动控制原理课件ppt

03
非线性控制系统
非线性控制系统的特点
非线性特性
01
非线性控制系统的输出与输入之间存在非线性关系,
如放大器、继电器等。
复杂的动力学行为
02 非线性控制系统具有复杂的动力学行为,如混沌、分
叉、稳定和不稳定等。
参数变化范围广
03
非线性控制系统的参数变化范围很广,如电阻、电容
、电感等。
非线性控制系统的数学模型
线性控制系统的性能指标与评价
性能指标
衡量一个控制系统性能的好坏,需要使用一些性能指标,如响应时间、超调量、稳态误差等。
性能分析
通过分析系统的性能指标,可以评价一个控制系统的优劣。例如,响应时间短、超调量小、稳态误差小的系统性能较 好。
系统优化
根据性能分析的结果,可以对控制系统进行优化设计,提高控制系统的性能指标。例如,可以通过调整 控制器的参数,减小超调量;或者通过改变系统的结构,减小稳态误差。

采样控制系统的数学模型
描述函数法
描述函数法是一种分析采样控制系统的常用方法,通过将连续时间 函数离散化,用差分方程来描述系统的动态特性。
z变换法
z变换法是一种将离散时间信号变换为复平面上的函数的方法,可 用于分析采样控制系统的稳定性和性能。
状态空间法
状态空间法是一种基于系统状态变量的方法,可以用于分析复杂的采 样控制系统。
航空航天领域中的应用
总结词
高精度、高可靠性、高安全性
详细描述
自动控制原理在航空航天领域中的应用至关重要。例如 ,在飞机系统中,通过使用自动控制原理,可以实现飞 机的自动驾驶和自动着陆等功能,从而提高飞行的精度 和安全性。在火箭和卫星中,通过使用自动控制原理, 可以实现推进系统的精确控制和姿态调整等功能,从而 保证火箭和卫星能够准确地进行轨道变换和定点着陆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
智能控制
是近年来新发展起来的一种控制技术,是人工智能在 控制上的应用。智能控制的概念和原理主要是针对被控对 象、环境、控制目标或任务的复杂性提出来的,它的指导 思想是依据人的思维方式和处理问题的技巧,解决那些目 前需要人的智能才能解决的复杂的控制问题。被控对象的 复杂性体现为:模型的不确定性,高度非线性,分布式的传 感器和执行器,动态突变,多时间标度,复杂的信息模式, 庞大的数据量,以及严格的特性指标等。智能控制是驱动 智能机器自主地实现其目标的过程
7
控制系统分析:已知系统的结构参数,分析系统的稳定性,求取系
统的动态、静态性能指标,并据此评价系统的过程称为控制系统分 析。
控制系统设计(或综合):根据控制对象和给定系统的性能指标,
合理的确定控制装置的结构参数,称为控制系统设计。 被控量 :指被控对象中要求保持给定值、要按给定规律变化的物理 量。被控量又称输出量、输出信号 。 给定值:系统输出量应达到的数值(例如与要求的炉温对应的电 压)。 扰动:是一种对自动控制系统输出量起反作用的信号,如电源电压
与控制作用之间存在着负反馈的控制 方式。采用闭环控制的系统称为闭环
控制系统或反馈控制系统。闭环控制
是一切生物控制自身运动的基本规律。 人本身就是一个具有高度复杂控制能
力的闭环系统。
优点:具有自动补偿由于系统内部和外 部干扰所引起的系统误差(偏差)的
能力,因而有效地提高了系统的精度。
缺点:系统参数应适当选择,否则可能 不能正常工作。
10
反馈的概念
反馈:把输出量送回到系统的输入端并与输入信号比较的 过程。若反馈信号是与输入信号相减而使偏差值越来越 小,则称为负反馈;反之,则称为正反馈。显然,负反 馈控制是一个利用偏差进行控制并最后消除偏差的过程, 又称偏差控制。同时,由于有反馈的存在,整个控制过 程是闭合的,故也称为闭环控制。
20
经典控制理论
控制理论的发展初期,是以反馈理论为基础的自动调节原理, 主要用于工业控制。第二次世界大战期间,为了设计和制造飞机及 船用自动驾驶仪、火炮定位系统、雷达跟踪系统等基于反馈原理的 军用装备,进一步促进和完善了自动控制理论的发展。

1868年,马克斯威尔(J.C.Maxwell)提出了低阶系统的稳定性代 数判据 。 1875年和1896年,数学家劳斯(Routh)和赫尔威茨(Hurwitz)分 别独立地提出了高阶系统的稳定性判据,即Routh和Hurwitz判据。
和信息特征
1.4 对控制系统的基本要求:明确对自控系统的基本要求,正确理
解三大性能指标的含义。
4
控制:操纵,节制使不超出范围或随意活动。
手动控制
人在控制过程中起三个作用: (1)观测:用眼睛去观测温度计和转速表的指示值;
(2)比较与决策:人脑把观测得到的数据与要求的数据相比较,并进行
判断,根据给定的控制规律给出控制量; (3)执行:根据控制量用手具体调节,如调节阀门开度、改变触点位置。
自动控制原理
(Automatic Control Theory)
华中科技大学控制系:樊 慧津
学时: 48+8/3.5 考试:闭卷考试 参考书目: 1. 王敏,秦肖臻编 自动控制原理。 北京:化学工业出版社, 2003 2. 孙德宝主编。自动控制原理。 北京:化学工业出版社, 2002 3. 胡寿松主编。自动控制原理。第三版。 北京:国防工业出版社,1994 4. 王划一主编。自动控制原理。 北京:国防工业出版社, 2001
• 随着控制理论应用范围的扩大,从个别小系统的控制,发 展到若干个相互关联的子系统组成的大系统进行整体控制, 从传统的工程控制领域推广到包括经济管理、生物工程、 能源、运输、环境等大型系统以及社会科学领域。 • 大系统理论是过程控制与信息处理相结合的系统工程 理论,具有规模庞大、结构复杂、功能综合、目标多样、 因素众多等特点。它是一个多输入、多输出、多干扰、多 变量的系统。大系统理论目前仍处于发展和开创性阶段。
5
1.1 自动控制的基本概念
在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。 如数控车床按预定程序自动切削,人造卫星准确进入预定轨道并回收
等。
除了在工业上广泛应用外,近几十年来,随着计算机技术的发展和应 用,在宇航、机器人控制、导弹制导及核动力等高新技术领域中,自 动控制技术更具特别重要的作用。不仅如此,自动控制技术的应用范 围现在已扩展到生物、医学、环境、经济管理和其它许多社会生活领 域中,特别在化学工业中的应用有传热设备控制,反应器控制,流体 输送设备控制,精馏塔控制等。自动控制已成为现代社会生活中不可 缺少的一部分。


二战期间(1938-1945年)奈奎斯特(H.Nyquist)提出了频率响应 理论 1948年,伊万斯(W.R.Evans)提出了根轨迹法。至此,控制 理论发展的第一阶段基本完成,形成了以频率法和根轨迹法为主要 方法的经典控制理论。
21
经典控制理论的基本特征
( 1 )主要用于线性定常系统的研究,即用于常系数线性微分方程 描述的系统的分析与综合; (2)只用于单输入,单输出的反馈控制系统; ( 3 )只讨论系统输入与输出之间的关系,而忽视系统的内部状态, 是一种对系统的外部描述方法。 基本方法:根轨迹法,频率法,PID调节器 (频域)
11
比较以上两种控制方式
由于开环控制的特点是控制装臵只按照给定的输入信号对 被控制量进行单向控制,而不对控制量进行测量并反向影 响控制作用。这样,当炉温偏离希望值时,开关K的接通或 断开时间不会相应改变。因此,开环控制不具有修正由于 扰动(使被控制量偏离希望值的因素)而出现的被控制量
与希望值之间偏差的能力,即抗干扰能力差。
6
自动控制:自动控制,就是在没有人直接参与的情况下,利用外加
的设备或装置(控制装置),使机器、设备或生产过程(控制对象) 的某个工作状态或参数(被控量)自动地按照预定的规律运行。 自动控制系统:是指能够对被控对象的工作状态进行自动控制的系统。 它是控制对象以及参与实现其被控制量自动控制的装置或元部件的组
实验安排
4周(332/322),8,11周(620)南一楼
0401-0402班 周一(11-12)
0403-0404班 周四(11-12)
4周(332/322),7,11周(620)南一楼
0405-0406班 周二(9-10) 0407-0408班 周二(11-12) 14周 计算中心四楼401机房 0401-0408班 周五(1-2)
在闭环控制中,被控量一般是由测量装臵检测并反馈到输 入端,然后由比较装臵将它与输入信号综合得到偏差(误
差),有时,测量与综合作用是由一个装臵完成的,如水
银温度计。由于采用了接触式水银温度计,可以不断对炉 温进行测量和比较,根据炉温的实际偏差进行控制,提高
了控制精度和抗干扰能力。
12

复合控制
是开环和闭环控制相结合的一种控制方式。它是在闭环
主要内容
绪论 控制系统的数学模型 线性系统的时域分析 线性系统的频域分析 线性系统的校正方法
线性离散控制系统(采样系统分析)
状态空间分析设计
3
第一章 绪论
1.1 自动控制的基本概念:明确什么叫自动控制,正确理解被控对象、
控制装置和自控系统等概念。
1.2 自动控制理论的发展:了解自动控制理论发展的四个主要阶段。 1.3 控制系统的分类:明确系统常用的分类方式,掌握各类别的含义
控制回路的基础上,附加一个输入信号或扰动信号的顺
馈通路,用来提高系统的控制精度。顺馈通路通常由对 输入信号的补偿器或对扰动信号的补偿器组成。 优点:具有很高的控制精度,可以抑制几乎所有的可 量测扰动 缺点:补偿器的参数要有较高的稳定性
13
方框图的概念
输入信号
方框 信号线 信号线
输出信号
• 方框 • 信号线
智能控制是从“仿人”的概念出发的。其方法包括学 习控制、模糊控制、神经元网络控制和专家控制等方法。
27
1.3 控制系统的分类

恒值系统和随动系统(按参考输入形式分类)
恒值系统是指参考输入量保持常值的系统。其任
务是消除或减少扰动信号对系统输出的影响,使被 控制量(即系统的输出量)保持在给定或希望的数 值上。 随动系统是指参考输入量随时间任意变化的系
控制装臵和被控对象分别用方框表示 方框的输入和输出以及它们之间的联接用带
箭头的信号线表示
• 输入信号 进入方框的信号 • 输出信号 离开方框的信号
14
开环控制系统方框图
输入量
控制装置
被控对象
输出量 (被控制量)
输入量:加在电阻丝两端的电 压 被控制对象:炉子 被控制量(输出量):炉温 控制装臵:开关K和电热丝,对 被控制量起控制作用。
反馈控制是一种最基本最重要的控制方式,引入反馈信号后,系统 对来自内部和外部干扰的响应变得十分迟钝,从而提高了系统 的抗干扰能力和控制精度。与此同时,反馈作用又带来了系统 稳定性问题,正是这个曾一度困扰人们的系统稳定性问题激发 了人们对反馈控制系统进行深入研究的热情,推动了自动控制 理论的发展与完善。因此从某种意义上讲,古典控制理论是伴 随着反馈控制技术的产生和发展而逐渐完善和成熟起来的。
15
闭环控制的电加热炉方框图
扰动
输入量 (炉温希望值) 温度计 继电器 电阻丝 炉温
输出量 (炉温实际值)
16
人取书的控制过程
输入量 (书的位置)
眼睛


输出量 (手的位置)
17
闭环控制系统方框图
18
反馈控制系统的组成、名词术语和定义
反馈控制系统方框图
19
1.2 自动控制理论的发展
自动控制理论是研究自动控制共同规律的技术科学。既 是一门古老的、已臻成熟的学科,又是一门正在发展的、具 有 强 大 生 命 力 的 新 兴 学 科 。 从 1868 年 马 克 斯 威 尔 (J.C.Maxwell)提出低阶系统稳定性判据至今一百多年里, 自动控制理论的发展可分为四个主要阶段: 第一阶段:经典控制理论(或古典控制理论)的产生、发展 和成熟; 第二阶段:现代控制理论的兴起和发展; 第三阶段:大系统控制兴起和发展阶段; 第四阶段:智能控制发展阶段。
相关文档
最新文档