金属材料热处理PPT课件

合集下载

金属材料及热处理基础知识.ppt

金属材料及热处理基础知识.ppt
硬质合金 HBW 450- 600 用于测量淬火钢
2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数

金属材料及其热处理ppt课件

金属材料及其热处理ppt课件
1. 体心立方晶格(BCC):
晶胞是一个立方体,原子位于立方体的八个顶点和立方体的中心。
具有体心立方晶格结构的金属有α-Fe、W、Mo、V、β-Ti等。 晶胞所包含原子数为: 8×1/8+. 1=2 个。
金属的晶格类型
2. 面心立方晶格(FCC) :
晶胞是一个立方体,原子位于立方体的八个顶点和立方体六个面的 中心。
表面热处理 (表面淬火和化学热处 理等);
特殊热处理 (形变热处理、磁场热 处理等)。
根据热处理在零件生产工艺流程 中的位置和作用,热处理又可分 为预备热处理和最终热处理。
A1、A3、Acm为钢在平衡条件下的临界点。在实际热处理会产生不同程度的滞 后。实际转变温度与平衡临界温度之差称为过热度(加热时)或过冷度(冷却时)。 通常把加热时的临界温度加注下标“c. ” 。
4. 在热处理工艺上的应用。
了解加热、冷却时相变的规律,确 定合适的热处理制度。
.
相图的应用
综上所述,相图是材料状态与成分、温度之间关系的图解, 是研究合金的重要工具:
1. 作为选材的依据。
2. 在铸造生产中的应用。
不同成分合金的熔点,确定合适的 冶炼和浇注温度。
3. 在锻造工艺上的应用。
.
合金及其组织结构
2. 相
合金中成分、结构及性能相同的组成部分称为相。相与相之间有明显的 界面-相界。
3. 组织
所谓合金的组织,是指合金中不同相之间相互组合配置的状态。数量、 大小和分布方式不同的相构成了合金不. 同的组织。单相组织、多相组织。
合金的晶体结构
根据合金中各组元之间结合方式的不同,合金的组织可分 为固溶体、金属化合物和混合物三类。
单晶体与多晶体
金属是由很多大小、外形和晶格排列方向均不相同的 小晶体组成,小晶体称为晶粒,晶粒之间交界的地方称为 晶界。

金属材料及热处理培训课件

金属材料及热处理培训课件

随炉缓慢冷却到室温的热处理工艺。▪ (也叫均匀化退火。)
▪ 目的 ▪ 均匀钢内部的化学成分,消除偏析。
▪ 适用情况 ▪ 主要于铸造后的高合金钢。
5.去应力退火
▪ 概念

为了消除由于变形加工以及铸造、焊接过程引起的
残余内应力而进行的退火称为去应力退火。
▪ 退火温度 ▪ 不超过Ac1,一般500~650℃。

让其中的碳化物球化(粒化)和消除网状的二
次渗碳体。(因此叫做球化退火。)
▪ 适用钢种 ▪ 主要适用于共析或过共析的工模具钢
T10钢球化退火组织 ( 化染 ) 500
4.扩散退火(均匀化退火)
▪ 概念

将工件加热到略低于固相线的温度(亚共析钢通常
为1050℃~1150℃),长时间(一般10~20h)保温,然后
40min,然后迅速放在端淬试验台上喷水冷却。
未淬透钢 淬透钢
a) 全淬透
b) 未淬透
四、钢的回火
▪ 什么是回火? 后再淬冷火却后到再室将温工的件一加种热热到处A理c1工温艺度。以下某一温度,保温
一般是紧接淬火以后的热处理工艺。
▪ 淬火后回火目的 ◆降低或消除内应力,以防止工件开裂和变形; ◆ 减少或消除残余奥氏体,以稳定工件尺寸; ◆调整工件的内部组织和性能,以满足工件的
➢ 由于感应加热速度快,奥氏体晶粒不易长大,淬火后获得非 常细小的隐晶马氏体组织,使工件表层硬度比普通淬火高2HRC ~3HRC,耐磨性也有较大提高。
➢ 表面淬火后,淬硬层中马氏体的比体积较原始组织大,因此 表层存在很大的残余压应力,能显著提高零件的弯曲、抗扭疲 劳强度。小尺寸零件可提高2~3 倍,大尺寸零件可提高20%~ 30%。
▪ 适用钢材 中碳钢(消除魏氏组织、晶粒粗大、带状组织等)

金属材料与热处理(最全)PPT课件

金属材料与热处理(最全)PPT课件

铁碳合金和铁碳相图
3.1 铁碳合金中的组元和基本相 3.2 Fe-Fe3C相图 3.3 典型铁碳合金的平衡结晶过程及组织 3.4 铁碳合金的成分-组织-性能关系 3.5 铁碳相图在工业中的应用
• 工业纯铁:塑性较好 ,强度较低,具有铁 磁性,在一般的机器 制造中很少应用,常 用的是铁碳合金
• 铁素体(F):碳溶 于 -Fe中的一种间 隙固溶体,体心立方 晶体结构,组织和性 能与工业纯铁相同
珠光体(P):铁 素体和渗碳体 的机械混合物 ,是两者呈层 片相间的组织 ,即层片状组 织特征,可以 通过热处理得 到另一种珠光 体的组织形态
五个单相区: ABCD 以上-液相区(L) ;AHNA- 固溶体 区( ); NJESGN- 奥 氏 体 区 ( A);GPQ 以 上-铁素体区(F) ;DFKL-渗碳体区 (Fe-Fe3C)
• 奥氏体(A):碳溶 于 -Fe中的一种间隙 固溶体,具有面心立 方晶体结构,塑性好 ,变形抗力小,易于 锻造成型
铁碳合金中的组元和基本相
渗碳体:铁和碳 的金属化合物 ( 即 Fe3C) 属 于复杂结构的 间隙化合物, 硬而脆,强度 很低,耐磨性 好,是一个亚 稳定的化合物 ,在一定温度 下可分解为铁 和石墨
七个两相区(两相邻 的单相区之间) :
L+,L+A,L+Fe3C, +A,F+A,A+Fe3C,F +Fe3C
Fe-Fe3C相图
包晶反应: HJB水平线
LB+H(1495°) AJ
包晶反应仅可能在含碳 量0.09~0.53%的铁 碳合金中,其结果 生成生成奥氏体
恒温转变线
共晶反应: ECF水平线
Ae+Fe3C (1148°) Lc

金属热处理(共9张PPT)

金属热处理(共9张PPT)
§2 退火和正火
一、退火 退火是将金属和合金加热到适当温度,保温一定
时间,然后缓慢冷却的热处理工艺。
按金属成分和性能要求的不同,退火可分为:
将铁碳合金完全奥氏体化,随之缓慢冷却,获得接近平 衡状态组织的退火工艺。完全退火的目的是通过完全重结晶 细化晶粒,降低硬度,改善切削性能。完全退火主要用于亚 共析钢的铸、锻件。
右图为 热处理的基本工艺过程的温度-时间关系曲线。 为了去除由于塑性变形加工、焊接等造成的以及铸件内存在的残余应力而进行的退火。
表面淬火加热的方法很多,如感应加热、火焰加热、电接触 钢加热和冷却时的温度变化曲线见图3-2。
主要有表面淬火、渗碳和渗氮等工艺。 提高钢件的硬度和耐磨性,淬火+不同回火,获得各种需要的性能,是强化钢的主要方法。
间后,在静止空气中冷却的热处理工艺。
把钢件加热到
以上100~150℃的正火则称为高温正火。
与退火类似,但冷却速度比退火快。钢件在正火后的强度和 硬度比退火稍高,但消除残余应力不彻底。又因操作简便、生 产率高,所以,正火常优先采用。低碳钢件可代替退火。
§3 淬火和正火 钢件在正火后的强度和硬度比退火稍高,但消除残余应力不彻底。
化学热处理是将金属和合金工件置于一定温度的活性介 质中保温,使一种或几种元素渗入它的表层,以改变其化学 成分、组织和性能的热处理工艺。
常用的有渗碳、渗氮、碳氮共渗和渗金属元素等。
使钢件中碳化物球状化而进行的退火工艺。球化退火主要 用于过共析钢,目的是使网状渗碳体球状化,降低硬度、提 高韧性,改善切削性能,为淬火作组织准备。
为了去除由于塑性变形加工、焊接等造成的以及铸件
内存在的残余应力而进行的退火。主要用于消除铸件、锻件、 焊接件和切削件的残余应力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
➢ 细晶强化:
合金的晶粒越细小,内部的晶粒和晶界的数目就越 多。细晶强化利用晶界上原子排列的不规则性,原子能 量高这一特点,对材料进行强化。
双晶粒的拉伸试验说明:晶界对形变有阻碍作用。
双晶粒拉伸示意图
低碳钢的σs 与晶粒大小的关系
.
在右图中,低碳钢的σs 与晶粒直径平方根的倒数呈线 性关系,可用下式表示:
.
1850~1880年,对于应用各种气体(诸如氢气、煤 气、 一氧化碳等)进行保护加热曾有一系列专利。1889~ 18901901~1925年,在工业生产中应用转筒炉进行气体 年渗英碳国;人30莱年克代获出得现多露种点金电属位光差亮计热,使处炉理内的气专氛利的。碳势达到 可控,以后又研究出用二氧化碳红外仪、氧探头等进一 步控制炉内气氛碳势的方法;
.
随着淬火技术的发展,人们逐渐发现淬冷剂对淬火 质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打 制3000把刀,相传是派人到成都取水淬火的。这说明中 国在古代就注意到不同水质的冷却能力了,同时也注意 了油和尿的冷却能力。
中国出土的西汉(公元前206~公元24)中山靖王墓中 的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达 0.6%以上,说明已应用了渗碳工艺。但当时作为个人 “手 艺”的秘密,不肯外传,因而发展很慢。
塑性材料的强度 通常以σb表示
大部分金属材料属于塑性材料,其塑性变形是靠位
错的运动而发生的,因此,任何阻止位错运动的因素都
可以成为提高金属材料强度的途径。
.
➢ 固溶强化:
当合金由单相固溶体构成时,随溶质原子含量的增 加,其塑性变形抗力大大提高,表现为强度和硬度上升, 塑性和韧性值下降。
σb
δ
δ
Cu-Ni固溶体的机械 性能与成分的关系
第四章 金属材料热处理
第一节 热处理的发展史 第二节 热处理的理论基础 第三节 钢的热处理 第四节 固溶与时效处理
.
第一节 热处理的发展史
早在公元前770~前222年,中国人在生产实践中就 已发现,铜铁的性能会因温度和加压变形的影响而变化。 白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢 的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕 下都出土的两把剑和一把戟,其显微组织中都有马氏体 存在,说明是经过淬火的。
.
弥散型两相合金强化的主要影响因素: 1)颗粒直径 2)第二相含量(体积分数) 3)第二相的分布状态
20世纪60年代以来,热处理技术运用等离子场,发 展了离子渗氮、渗碳工艺 ;激光、电子束技术的应用, 又使金属获得了新的表面热处理和化学热处理方法。
.
第二节 热处理的理论基础
热处理是将金属材料以一定的速度加热到预定温度 并保持预定的时间,再以预定的冷却速度进行冷却的综 合工艺方法。
在铸造、压力加工和焊接成形过程中,不可避免地 存在组织缺陷。对金属材料进行热处理主要源于提高其 综合机械性能,符合材料在设计和制备过程中所遵循的 “成分-组织-性能”的原则。
Al-Mg固溶体的应力ຫໍສະໝຸດ 应变曲线.固溶强化的实质:晶体结构中的弹性交互作用、 电 交互作用和化学交互作用。其中最主要的是:溶质 原子与位错的弹性交互作用阻碍了位错的运动。
不同溶质原子在位错周围的分布状态
Cotrell气团模型:溶质原子与位错弹性交互作用的结果, 使溶质原子趋于聚集在位错的周围,以减小点阵畸变, 降低体系的能量。(它对位错有“钉扎”作用)
晶体结构对加工硬化曲线的影响
.
➢ 时效强化:
时效强化是指获得过饱和固溶体后,在一定温度下 保温析出过渡相、第二相等而实现对材料强化的方法。
.
➢ 第二相强化(弥散强化):
通过各种工艺手段使第二相质点弥散分布,可以阻 碍合金内部的位错运动,从而提高合金强度的方法。
第二相一般指各种化合物质点。 获得第二相的途径: 1)生产中可通过对马氏体进行回火的方法获得弥散分布
的第二相; 2)也可通过共晶化合物进行热压力加工获得; 3)还可通过共析反应获得; 4)另外还可通过粉末冶金方法获得。
.
第二相在基体中的形态及分布: 以钢中Fe3C的形态与分布为例: a:过共析钢中, Fe3C呈连续网状分布在α晶界上。 塑性、强度下降。 b:珠光体中, Fe3C与铁素体呈平行间隔分布。 塑性、强度较高。(要求珠光体细小,片层间距小) c: 共析钢或过共析钢经球化退火后,Fe3C呈颗粒 状分布在α晶界上。 强度下降,塑性上升,便于加工。
σs= σ0+Kd-1/2 …… Hall-Petch公式
细晶强化理论的提出: (1)针对不同常规材料,探索抑制其晶粒长大的办法。 (2)在世界范围掀起了研究纳米材料的狂潮。 可以实现在提高材料强度的同时,也改善材料的塑性
和韧性,获得最佳的强韧性配合。
.
➢ 加工硬化:
加工硬化是指金属材料随着塑性变形程度的增加,强 度、硬度升高;塑性、韧性下降的现象。加工硬化(冷变 形)是热处理不能强化的金属材料的主要强化方法。
加工硬化曲线:
曲线分为三阶段 1)易滑移阶段(位错少干扰) 2)线性硬化阶段(位错塞积) 3)抛物线硬化阶段(螺旋位错
启动,位错密度下降)
.
加工硬化的实质: 是金属塑性变形时内部产生滑移,使 晶粒变形和细化亚组织,因而产生大量的位错,晶格严重 畸变,内部应力增加,其宏观效应就是加工硬化。
晶粒度对加工硬. 化曲线的影响
.
1863年,英国金相学家和地质学家展示了钢铁在显 微镜下的六种不同的金相组织,证明了钢在加热和冷却 时,内部会发生组织改变,钢中高温时的相在急冷时转 变为一种较硬的相。
法国人奥斯蒙德确立的铁的同素异构理论,以及英 国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初 步奠定了理论基础。与此同时,人们还研究了在金属热 处理的加热过程中对金属的保护方法,以避免加热过程 中金属的氧化和脱碳等。
.
金属材料的强化机制
结构材料 金属材料 高分子材料 陶瓷材料
强度
屈服强度 断裂强度 抗拉强度 疲劳强度
材料强度的唯一性判据 导致材料失效 的最大应力
.
通常研究的结构材料在室温工作条件下,最需要考虑的是屈服
强度和断裂强度。 屈服强度
断裂强度
σb≥σk
σb≤σk
脆性材料
塑性材料
脆性材料的强度 通常以σk表示
相关文档
最新文档