2018年全国中考数学试卷解析分类汇编专题3+整式与因式分解
2018年全国各地中考数学真题汇编:因式分解-精品
2018年中考数学真题汇编:因式分解1.(2018安徽)下列分解因式正确的是()A.B.C. D.【答案】C2.(2018四川绵阳)因式分解:________。
【答案】y(x++2y)(x-2y)3.(2018浙江舟山)分解因式m2-3m=________。
【答案】m(m-3)4.(2018浙江绍兴)因式分解:4x2-y2=________。
【答案】(2x+y)(2x-y)5.因式分解: ________.【答案】6.分解因式:________.【答案】a(a+1)(a-1)7.分解因式:________.【答案】ab(a+b)(a-b)8.分解因式:=________.【答案】(4+x)(4-x)9.因式分解:________.【答案】10.分解因式:x3-9x=________ .【答案】x(x+3)(x-3)11.分解因式:________.【答案】12.因式分解:________.【答案】13.分解因式:________.【答案】14.分解因式:________.【答案】a(a-5)15.因式分解:________【答案】16.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.【答案】(1)解:如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数(2)解:设m= (其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)= =3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.。
【中考汇编】2018版中考数学真题汇编310页(含答案解析)
【中考汇编】2018版中考数学真题汇编目录【中考汇编】2018版中考数学真题汇编:1.1实数【中考汇编】2018版中考数学真题汇编:1.2整式及其运算【中考汇编】2018版中考数学真题汇编:1.3因式分解【中考汇编】2018版中考数学真题汇编:1.4分式【中考汇编】2018版中考数学真题汇编:1.5二次根式【中考汇编】2018版中考数学真题汇编:2.1一元一次方程【中考汇编】2018版中考数学真题汇编:2.2一元二次方程【中考汇编】2018版中考数学真题汇编:2.3二元一次方程组【中考汇编】2018版中考数学真题汇编:2.4不等式与不等式组【中考汇编】2018版中考数学真题汇编:3.1平面直角坐标系【中考汇编】2018版中考数学真题汇编:3.2一次函数【中考汇编】2018版中考数学真题汇编:3.3二次函数【中考汇编】2018版中考数学真题汇编:3.4反比例函数【中考汇编】2018版中考数学真题汇编:4.1图形的初步认识【中考汇编】2018版中考数学真题汇编:4.2三角形【中考汇编】2018版中考数学真题汇编:4.3全等三角形【中考汇编】2018版中考数学真题汇编:4.4等腰三角形【中考汇编】2018版中考数学真题汇编:4.5多边形【中考汇编】2018版中考数学真题汇编:4.6矩形、菱形、正方形【中考汇编】2018版中考数学真题汇编:5.1圆的有关概念与性质【中考汇编】2018版中考数学真题汇编:5.2圆的有关计算【中考汇编】2018版中考数学真题汇编:5.3与圆有关的位置关系【中考汇编】2018版中考数学真题汇编:6.1视图与投影【中考汇编】2018版中考数学真题汇编:6.2轴对称、平移、旋转【中考汇编】2018版中考数学真题汇编:6.3图形的相似【中考汇编】2018版中考数学真题汇编:6.4锐角三角函数【中考汇编】2018版中考数学真题汇编:7.1统计【中考汇编】2018版中考数学真题汇编:7.2概率【中考汇编】2018版中考数学真题汇编专题(1)规律探索问题【中考汇编】2018版中考数学真题汇编专题(2)开放探究问题【中考汇编】2018版中考数学真题汇编专题(3)方案设计问题【中考汇编】2018版中考数学真题汇编专题(4)图表信息问题【中考汇编】2018版中考数学真题汇编专题(5)阅读理解问题【中考汇编】2018版中考数学真题汇编专题(6)运动变化问题第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)³3的结果是() A.-3 B.-2 C.2 D.3解析(-1)³3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6³1013元B.60³1011元C.6³10元D.6³10元解析6万亿=60 000³100 000 000=6³104³108=6³1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26³23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________.解析∵23=8,∴8的立方根是2.答案 211.(2015·浙江湖州,11,4分)计算:23³⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23 三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4³2-1. 解 原式=5+2³12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2³⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2³(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)³3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)³3=-2³3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为 ( )A .253.7³108B .25.37³109C .2.537 ³1010D .2.537 ³1011解析 253.7亿=253.7³10=2.537 ³10,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8³10-4.答案 8³10-13.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4³22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4³2-1-(2-1)0. 解 原式=3+4³12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3²x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3²2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·福建福州,6,3分)计算a·a-的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3²a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a 2b 2,故本选项正确;D.(a 2)3=a 6,故本选项错误.故选C. 答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是( )A .a ²a =aB .(x -2)(x +3)=x -6C .(x -2)2=x 2-4D .2a +3a =5a解析 A 中,a 2·a 4=a 6,∴A 错误;B 中,(x -2)(x +3)=x 2+x -6,∴B 错误;C 中,(x -2)2=x 2-4x +4,∴C 错误;D 中,2a +3a =(2+3)a =5a ,∴D 正确.故选D. 答案 D 二、填空题6.(2013·浙江台州,11,5分)计算:x 5÷x 3=________. 解析 根据同底数幂除法法则,∴x 5÷x 3=x 5-3=x 2. 答案 x 27.(2013·浙江义乌,12,4分)计算:3a ·a 2+a 3=________. 解析 3a ·a 2+a 3=3a 3+a 3=4a 3. 答案 4a 38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23³53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2³(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x+2x-1=(x-1)C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分 式A 组 2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x 可变形为( )A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·山东济南,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是 ( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A5.(2015·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析1a -1+a1-a =1-a a -1=-1. 答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n+n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________. 解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2²x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w=1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3²⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A. 答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1 B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2³a -1a +1 =1a -1,故选A.答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<b a <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析 m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________.解析 1a -1+a 1-a =1a -1-aa -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝ ⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x+2y =3³(-1)+2³3+2³(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )²a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ²x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)²x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5二次根式A组2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.6.(2015·江苏南京,12,3分)计算5³153的结果是________. 解析5³153=5³5=5. 答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析 原式=32-2=2 2. 答案 2 2 三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3³1tan 60°+|2-3|.解 -32+3³1tan 60°+|2-3|=-9+3³13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎝ ⎛⎭⎪⎫1+52-1-52=15³5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15³1³5=1.B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22³5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 ( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2错误;212=2³22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab²ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 1解析 原式=3³2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2. 解1x -y ÷⎝⎛⎭⎪⎫1y -1x =1x -y ²xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%³108 B.54-x=20%(108+x)C.54+x=20%³162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x2-1x+1=0的解是()A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x 的解x =________. 解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟; 第三种情况,乙达到5 cm 后,乙比甲高0.5 cm ,时间为17140分钟. 答案 35或3320或171408.(2015·湖北,13,3分)分式方程1x -5-10x 2-10x +25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22³2.3=50.6<71,∴x>22,∴22³2.3+(x-22)³(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·广东深圳,18,8分)解方程:x2x-3+53x-2=4.解去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x -2x +10x -15=24x -52x +24,即7x -20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5³20³(1+20%)³2 400y +2 400³(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意. 答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x +2=1的解是 ( )A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·浙江台州,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·浙江丽水,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·黑龙江齐齐哈尔,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46.∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x +70=3.答案 1 487x -1 487x +70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x -1-3x 2-1=0. 解 方程两边同乘x 2-1,得: x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1²x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94. 答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4³1³m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析 先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4³2³(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a³(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根。
精品学习全国各地2018年中考数学真题汇编 因式分解
2018年中考数学真题汇编:因式分解1.(2018安徽)下列分解因式正确的是()A.B.C. D.【答案】C2.(2018四川绵阳)因式分解:________。
【答案】y(x++2y)(x-2y)3.(2018浙江舟山)分解因式m2-3m=________。
【答案】m(m-3)4.(2018浙江绍兴)因式分解:4x2-y2=________。
【答案】(2x+y)(2x-y)5.因式分解: ________.【答案】6.分解因式:________.【答案】a(a+1)(a-1)7.分解因式:________.【答案】ab(a+b)(a-b)8.分解因式:=________.【答案】(4+x)(4-x)9.因式分解:________.【答案】10.分解因式:x3-9x=________ .【答案】x(x+3)(x-3)11.分解因式:________.【答案】12.因式分解:________.【答案】13.分解因式:________.【答案】14.分解因式:________.【答案】a(a-5)15.因式分解:________【答案】16.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.【答案】(1)解:如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数(2)解:设m= (其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)= =3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.。
【配套K12】[学习]各地2018年中考数学试卷分类汇编 整式与分解因式(含解析)
整式与分解因式一.选择题1. (2018·湖北随州·3 分)下列运算正确的是( )A .a 2•a 3=a 6B .a 3÷a ﹣3=1C .(a ﹣b )2=a 2﹣ab+b 2D .(﹣a 2)3=﹣a 6【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得. 【解答】解:A.a 2•a 3=a 5,此选项错误; B.a 3÷a ﹣3=a 6,此选项错误; C.(a ﹣b )2=a 2﹣2ab+b 2,此选项错误; D.(﹣a 2)3=﹣a 6,此选项正确; 故选:D .【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底 数幂的除法、幂的乘方的运算法则.2. (2018·湖北襄阳·3 分)下列运算正确的是( )A .a 2+a 2=2a 4B .a 6÷a 2=a 3C .(﹣a 3)2=a6 D .(ab )2=ab 2【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指 数不变;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把 所得的幂相乘;对各选项分析判断后利用排除法求解. 【解答】解:A.a 2+a 2=2a 2,故 A 错误; B.a 6÷a 2=a 4,故 B 错误; C.(﹣a 3)2=a 6,故 C 正确; D.(ab )2=a 2b 2,故 D 错误. 故选:C .【点评】本题考查合并同类项、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解 题的关键. 3. (2018·湖南郴州·3 分)下列运算正确的是()A .a 3•a 2=a 6B .a ﹣2=﹣21aC .﹣D .(a+2)(a ﹣2)=a 2+4【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法 则、平方差公式分别计算得出答案. 【解答】解:A.a 3•a 2=a 5,故此选项错误;B.a ﹣2=21a,故此选项错误;C.3﹣2=,故此选项正确;D.(a+2)(a ﹣2)=a 2﹣4,故此选项错误. 故选:C .【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运 算、平方差公式,正确掌握相关运算法则是解题关键. 4.(2018•江苏宿迁•3 分)下列运算正确的是( )A. B.C.D.【答案】C【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计 算即可得.【详解】A. ,故 A 选项错误;B. a 2 与 a 1不是同类项,不能合并,故 B 选项错误;C. ,故 C 选项正确;D. ,故 D 选项错误,故选 C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟 练掌握有关的运算法则是解题的关键.5.(2018•江苏徐州•2 分)下列运算中,正确的是( ) A .x 3+x 3=x 6 B .x 3•x 9=x 27 C .(x 2)3=x5 D .x ÷x 2=x ﹣1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变 指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解. 【解答】解:A.应为 x 3+x 3=2x 3,故本选项错误; B.应为 x 3•x 9=x 12,故本选项错误; C.应为(x 2)3=x 6,故本选项错误; D.x÷x 2=x 1﹣2=x ﹣1,正确. 故选:D .【点评】本题主要考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方, 熟练掌握运算性质和法则是解题的关键.6.(2018•江苏无锡•3 分)下列运算正确的是( )A .a 2+a 3=a 5B .(a 2)3=a 5C .a 4﹣a 3=aD .a 4÷a 3=a【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析 判断后利用排除法求解.【解答】解:A.a 2.a 3不是同类项不能合并,故 A 错误;B.(a 2)3=a 6)x 5•x 5=x 10,故 B 错误;C.a 4.a 3不是同类项不能合并,故 C 错误; D.a 4÷a 3=a ,故 D 正确. 故选:D .【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解 题的关键. 7.(2018•山东东营市•3 分)下列运算正确的是( )A .﹣(x ﹣y )2=﹣x 2﹣2xy ﹣y 2B .a 2+a 2=a 4C .a 2•a 3=a 6D .(xy 2)2=x 2y 4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一 计算可得. 【解答】解:A.﹣(x ﹣y )2=﹣x 2+2xy ﹣y 2,此选项错误;B.a 2+a 2=2a 2,此选项错误; C.a 2•a 3=a 5,此选项错误; D.(xy 2)2=x 2y 4,此选项正确; 故选:D .【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同 底数幂的乘法、积的乘方与幂的乘方.8.(2018•山东聊城市•3 分)下列计算错误的是( ) A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5 D .﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法, 逐项判定即可.【解答】解:∵a 2÷a 0•a 2=a 4, ∴选项 A 不符合题意; ∵a 2÷(a 0•a 2)=1,∴选项 B 不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5, ∴选项 C 不符合题意; ∵﹣1.58÷(﹣1.5)7=1.5, ∴选项 D 符合题意. 故选:D .9.(2018•内蒙古包头市•3 分)如果 2x a+1y 与 x 2y b ﹣1 是同类项,那么a b的值是()A .12B .32C .1D .3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出 A.b 的值,然后 代入求值.【解答】解:∵2x a+1y 与 x 2y b ﹣1 是同类项, ∴a+1=2,b ﹣1=1, 解得 a=1,b=2. ∴a b =12. 故选:A .【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母 的指数也相同,是解答本题的关键.10.(2018•山东济宁市•3 分)下列运算正确的是( )A .a 8÷a 2 =a 4B .(a 2)2=a 4C .a 2•a 3=a 6D .a 2+a 2=2a 4【解答】解:A. a 8÷a 2 =a 6,故此选项错误;B. (a 2)2=a 4,故原题计算正确; C. a 2•a 3=a 5, 故 此 选 项 错 误 ;D. a 2+a 2=2a 2,故此选项错误; 故选:B . 11.(2018•山东济宁市•3 分)多项式4a ﹣a 3分解因式的结果是( ) A .a (4﹣a 2) B .a (2﹣a )(2+a ) C .a (a ﹣2)(a+2)D .a (2﹣a )2【解答】解:4a ﹣a 3= a (4﹣a 2)= a (2﹣a )(2+a )选:B . 12.(2018•临安•3 分)下列各式计算正确的是( )A .a 12÷a 6=a 2B .(x+y )2=x 2+y 2C.221=42x x x--+ 【分析】此类题目难度不大,可用验算法解答.【解答】解:A.a 12÷a 6 是同底数幂的除法,指数相减而不是相除,所以 a 12÷a 6=a 6,错误;B.(x+y )2 为完全平方公式,应该等于 x 2+y 2+2xy ,错误; C.2221=4(2)(2)2x x x x x x--=--+-+,错误; D.正确. 故选:D .【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键. 运算法则:①a m ÷a n =a m ﹣n ,②=(a ≥0,b >0).13.(2018•湖州•3 分)计算﹣3a •(2b ),正确的结果是( ) A. ﹣6ab B. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可. 详解:-3a •(2b )=-6ab ,故选:A . 点睛:此题考查单项式的乘法,关键是根据法则计算.14.(2018•金华、丽水•3 分)计算 3()a a -÷结果正确的是( )A.2aB. 2a -C. 3a -D. 4a -【解析】【解答】解:3()a a -÷3=a a -÷2=a -,故答案为:B 。
各地中考数学试卷分类汇编整式与分解因式(含解析)(2021年整理)
各地2018年中考数学试卷分类汇编整式与分解因式(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(各地2018年中考数学试卷分类汇编整式与分解因式(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为各地2018年中考数学试卷分类汇编整式与分解因式(含解析)的全部内容。
整式与分解因式一。
选择题1。
(2018·湖北随州·3 分)下列运算正确的是( )A.a2•a3=a6 B.a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2 D.(﹣a2)3=﹣a6【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得.【解答】解:A。
a2•a3=a5,此选项错误; B.a3÷a﹣3=a6,此选项错误; C。
(a﹣b)2=a2﹣2ab+b2,此选项错误; D。
(﹣a2)3=﹣a6,此选项正确;故选:D.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.2。
(2018·湖北襄阳·3 分)下列运算正确的是()A.a2+a2=2a4 B.a6÷a2=a3 C.(﹣a3)2=a6 D.(ab)2=ab2【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A.a2+a2=2a2,故A错误; B。
a6÷a2=a4,故B 错误; C.(﹣a3)2=a6,故C 正确; D.(ab)2=a2b2,故D 错误.故选:C.【点评】本题考查合并同类项、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解题的关键.3。
【九年级数学试题】2018年中考数学整式与因式分解试题解析分类汇编
2018年中考数学整式与因式分解试题解析分类汇编
整式与因式分解
一、选择题
1 (提因式法.
分析提因式法的直接应用.观察原式ax﹣a,找到因式a,提出即可得出答案.
解答解ax﹣a=a(x﹣1).
点评考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提因式法,式法,能提因式先提因式,然后再考虑式法.要求灵活运用各种方法进行因式分解.该题是直接提因式法的运用.
16 (十字相乘法等.
分析首先将首尾两项分解因式,进而提取因式合并同类项得出即可.
解答解x2+3x(x﹣3)﹣9
=x2﹣9+3x(x﹣3)
=(x﹣3)(x+3)+3x(x﹣3)
=(x﹣3)(x+3+3x)
=(x﹣3)(4x+3).
故答案为(x﹣3)(4x+3).
点评此题主要考查了分组分解法分解因式,正确分组得出是解题关键.
20(2018 呼和浩特,第14题3分)把多项式6x2﹣9x2﹣3因式分解,最后结果为﹣(3x﹣)2 .
考点提因式法与式法的综合运用.
分析首先提取因式﹣,进而利用完全平方式分解因式得出即可.解答解6x2﹣9x2﹣3=﹣(2﹣6x+9x2)=﹣(3x﹣)2.
故答案为﹣(3x﹣)2.
点评此题主要考查了提取因式法和式法分解因式,熟练掌握完全。
1.3整式(第3部分)2018年中考数学试题分类汇编(word解析版)
【思路分析】根据整式的运算法则即可求出答案.
【解答过程】解:(A)原式=2x,故A错误;
(C)原式=x2﹣2x+1,故C错误;
(D)原式=﹣8a6,故D错误;
故选:B.
【总结归纳】本题考查整式的运算来自解题的关键是熟练运用整式的运算法则,本题属于基础题型.
B、a2+a2=2a2,此选项错误;
C、a6÷a2=a4,此选项错误;
D、(﹣2a2)3=﹣8a6,此选项正确;
故选:D.
【总结归纳】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方运算法则.
8.(2018年湖南省娄底市-第4题-3分)下列运算正确的是( )
2.(2018年广西桂林市-第5题-3分)用代数式表示:a的2倍与3的和.下列表示正确的是( )
A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)
【知识考点】列代数式.
【思路分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.
【解答过程】解:a的2倍就是:2a,
4.(2018年贵州省黔东南州/黔西南州/黔南州-第6题-3分)下列运算正确的是( )
A.3a2﹣2a2=a2B.﹣(2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a+1
【知识考点】幂的乘方与积的乘方;整式的加减;完全平方公式.
【思路分析】利用合并同类项对A进行判断;利用积的乘方对B进行判断;利用完全平方公式对C进行判断;利用取括号法则对D进行判断.
2018年中考数学解析分类汇编分类03 整式与因式分解(含解析)
03 整式与因式分解(含解析)一、选择题1.(4.00分)(2018•台州)计算11xx x+-,结果正确的是()A.1 B.x C.1xD.2xx+【考点】6B:分式的加减法.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=11xx+-=1故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2.(4.00分)(2018•温州)计算a6•a2的结果是()A.a3B.a4C.a8D.a12【考点】46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加进行计算.【解答】解:a6•a2=a8,故选:C.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法的计算法则.3.(4.00分)(2018•温州)若分式25xx-+的值为0,则x的值是()A.2 B.0 C.﹣2 D.﹣5【考点】63:分式的值为零的条件.【专题】513:分式.【分析】分式的值等于零时,分子等于零.【解答】解:由题意,得x+5=0,解得,x=﹣5.经检验,当x=﹣5时,25xx-+=0.故选:A.【点评】本题考查了分式的值为零的条件.注意,分式方程需要验根.4.(4分)(2018•重庆)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2【考点】33:代数式求值.【专题】11 :计算题;512:整式.【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.5.1.(2018•连云港)下列运算正确的是()A.x﹣2x=﹣x B.2x﹣y=﹣xy C.x2+x2=x4D.(x﹣l)2=x2﹣1【考点】4C:完全平方公式;35:合并同类项.【专题】11 :计算题.【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=2x﹣y,故B错误;(C )原式=2x 2,故C 错误;(D )原式=x 2﹣2x +1,故D 错误;故选:A .【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(2018•南京)计算a 3•(a 3)2的结果是( ) A .a 8 B .a 9 C .a 11 D .a 18【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法.【专题】11 :计算题.【分析】根据幂的乘方,即可解答.【解答】解:a 3•(a 3)2=a 9,故选:B .【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方公式. 7.(2018•南通)下列计算中,正确的是( )A .a 2•a 3=a 5B .(a 2)3=a 8C .a 3+a 2=a 5D .a 8÷a 4=a 2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】11 :计算题;512:整式.【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A 、a 2•a 3=a 5,此选项正确;B 、(a 2)3=a 6,此选项错误;C 、a 3、a 2不能合并,此选项错误;D 、a 8÷a 4=a 4,此选项错误;故选:A .【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.8.(2018•孝感)下列计算正确的是( )A .a ﹣2÷a 5=71a B .(a+b )2=a 2+b 2 C .D .(a 3)2=a 5【考点】78:二次根式的加减法;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式;6F :负整数指数幂.【专题】1 :常规题型.【分析】直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.【解答】解:A 、a ﹣2÷a 5=71a ,正确;B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、D 、(a 3)2=a 6,故此选项错误;故选:A .【点评】此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.9.(2018•宜昌)下列运算正确的是( )A .x 2+x 2=x 4B .x 3•x 2=x 6C .2x 4÷x 2=2x 2D .(3x )2=6x 2【考点】4I :整式的混合运算.【专题】512:整式.【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解:A 、x 2+x 2=2x 2,选项A 错误;B 、x 3•x 2=x 3+2=x 5,选项B 错误;C 、2x 4÷x 2=2x 4﹣2=2x 2,选项C 正确;D 、(3x )2=32•x 2=9x 2,选项D 错误.故选:C .【点评】本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.10.(2018•郴州)下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21a C .D .(a+2)(a ﹣2)=a 2+4【考点】46:同底数幂的乘法;4F :平方差公式;6F :负整数指数幂;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.【解答】解:A 、a 3•a 2=a 5,故此选项错误;B 、a ﹣2=21a ,故此选项错误;C 、D 、(a+2)(a ﹣2)=a 2﹣4,故此选项错误.故选:C .【点评】此题主要考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.1 1.(2018•衡阳)下面运算结果为a 6的是( ) A .a 3+a 3 B .a 8÷a 2 C .a 2•a 3 D .(﹣a 2)3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】11 :计算题;512:整式.【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【解答】解:A 、a 3+a 3=2a 3,此选项不符合题意;B 、a 8÷a 2=a 6,此选项符合题意;C 、a 2•a 3=a 5,此选项不符合题意;D 、(﹣a 2)3=﹣a 6,此选项不符合题意;故选:B .【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.12.(2018•娄底)下列运算正确的是( )A .a 2•a 5=a 10B .(3a 3)2=6a 6C.(a+b)2=a2+b2D.(a+2)(a﹣3)=a2﹣a﹣6【考点】4I:整式的混合运算.【专题】11 :计算题;512:整式.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=a7,不符合题意;B、原式=9a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a2﹣a﹣6,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2018•邵阳)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)【考点】55:提公因式法与公式法的综合运用.【专题】1 :常规题型.【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【解答】解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.14.(3.00分)(2018•哈尔滨)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;4C:完全平方公式.【专题】1 :常规题型.【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;D 、m•m 2=m 3,故此选项错误;故选:B .【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.15.(3分)(2018•恩施州)下列计算正确的是( )A .a 4+a 5=a 9B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 2【考点】4A :单项式乘多项式;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式.【专题】11 :计算题.【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A 、a 4与a 5不是同类项,不能合并,故本选项错误;B 、(2a 2b 3)2=4a 4b 6,故本选项正确;C 、﹣2a (a+3)=﹣2a 2﹣6a ,故本选项错误;D 、(2a ﹣b )2=4a 2﹣4ab+b 2,故本选项错误;故选:B .【点评】本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.16.(3分)(2018•黄冈)下列运算结果正确的是( )A .3a 3•2a 2=6a 6B .(﹣2a )2=﹣4a 2C .tan45°=2D .cos30°=2 【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.【解答】解:A 、原式=6a 5,故本选项错误;C、原式=1,故本选项错误;D、原式=2,故本选项正确.故选:D.【点评】考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.17.(3分)(2018•黄石)下列计算中,结果是a7的是()A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a4【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.【解答】解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=1a;故选:B.【点评】本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.18.(3.00分)(2018•随州)下列运算正确的是()A.a2•a3=a6 B.a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2D.(﹣a2)3=﹣a6【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式;6F:负整数指数幂.【专题】11 :计算题;512:整式.【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得.【解答】解:A、a2•a3=a5,此选项错误;C、(a﹣b)2=a2﹣2ab+b2,此选项错误;D、(﹣a2)3=﹣a6,此选项正确;故选:D.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.19.(3.00分)(2018•聊城)下列计算错误的是()A.a2÷a0•a2=a4B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【考点】46:同底数幂的乘法;48:同底数幂的除法;6E:零指数幂.【专题】17 :推理填空题.【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.20.(3分)(2018•青岛)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a6【考点】49:单项式乘单项式;47:幂的乘方与积的乘方.【专题】1 :常规题型.【分析】直接利用幂的乘方运算法则化简,再利用单项式乘以单项式、合并同类项法则计算得出答案.【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.【点评】此题主要考查了幂的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.21.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y5【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【专题】11 :计算题.【分析】根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.【解答】解:2y3+y3=3y3,A错误;y2•y3=y5,B错误;(3y2)3=27y6,C错误;y3÷y﹣2=y3﹣(﹣2)=y5,故选:D.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.22.(3.00分)(2018•广西)下列运算正确的是()A.a(a+1)=a2+1 B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a3【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4A:单项式乘多项式.【专题】11 :计算题.【分析】根据单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方的运算法则,分别对每一项进行分析即可得出答案.【解答】解:A 、a (a +1)=a 2+a ,故本选项错误;B 、(a 2)3=a 6,故本选项错误;C 、不是同类项不能合并,故本选项错误;D 、a 5÷a 2=a 3,故本选项正确.故选:D .【点评】此题考查了单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方,熟练掌握运算法则是解题的关键.23.(3.00分)(2018•达州)平面直角坐标系中,点P 的坐标为(m ,n ),则向量OP 可以用点P 的坐标表示为OP =(m ,n );已知1OA =(x 1,y 1),2OA =(x 2,y 2),若x 1x 2+y 1y 2=0,则1OA 与2OA 互相垂直.下面四组向量:①1OB =(3,﹣9),2OB =(1,﹣13); ②1OC =(2,π0),2OC =(2﹣1,﹣1);③1OD =(cos30°,tan45°),2OD =(sin30°,tan45°);④1OE =2,2OE =2,2). 其中互相垂直的组有( )A .1组B .2组C .3组D .4组【考点】6E :零指数幂;6F :负整数指数幂;LM :*平面向量;T7:解直角三角形.【专题】5 :特定专题.【分析】根据两个向量垂直的判定方法一一判断即可;【解答】解:①∵3×1+(﹣9)×(﹣13)=6≠0,∴1OB 与2OB 不垂直.②∵2×2﹣1+π0×(﹣1)=0,∴1OC 与2OC 垂直.③∵cos30°×sin30°+tan45°×tan45°≠0,∴1OD 于2OD 不垂直.④∵0≠, ∴1OE 与2OE 不垂直.故选:A .【点评】本题考查平面向量、零指数幂、特殊角的三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(3分)(2018•泸州)下列计算,结果等于a 4的是( ) A .a +3a B .a 5﹣a C .(a 2)2 D .a 8÷a 2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A 、a +3a=4a ,错误;B 、a 5和a 不是同类项,不能合并,故此选项错误;C 、(a 2)2=a 4,正确;D 、a 8÷a 2=a 6,错误;故选:C .【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.25.(3分)(2018•绵阳)(﹣2018)0的值是( )A.﹣2018 B.2018 C.0 D.1【考点】6E:零指数幂.【专题】1 :常规题型.【分析】根据零指数幂的意义即可求解.【解答】解:(﹣2018)0=1.故选:D.【点评】本题考查了零指数幂的意义,掌握a0=1(a≠0)是解题的关键.26.(3分)(2018•绵阳)下列运算正确的是()A.a2•a3=a6 B.a3+a2=a5 C.(a2)4=a8D.a3﹣a2=a【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【专题】1 :常规题型.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【点评】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.27.(3分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5D.a﹣2=﹣a2【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;6F:负整数指数幂.【专题】11 :计算题.【分析】根据积的乘方,幂的乘方,负指数幂的定义一一判断即可解决问题;【解答】解:A 、a 3•a 2=a 5,正确,故本选项符合题意;B 、(a 3)2=a 6,故本选项不符合题意;C 、不是同类项不能合并,故本选项不符合题意;D 、a ﹣2=21a,故本选项不符合题意, 故选:A .【点评】本题考查积的乘方,幂的乘方,负指数幂的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.28.(4分)(2018•永州)下列运算正确的是( )A .m 2+2m 3=3m 5B .m 2•m 3=m 6C .(﹣m )3=﹣m 3D .(mn )3=mn 3【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【专题】11 :计算题;512:整式.【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【解答】解:A 、m 2与2m 3不是同类项,不能合并,此选项错误;B 、m 2•m 3=m 5,此选项错误;C 、(﹣m )3=﹣m 3,此选项正确;D 、(mn )3=m 3n 3,此选项错误;故选:C .【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方.29.(3分)(2018•湘潭)下列计算正确的是( )A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】1 :常规题型.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、x2+x3,无法计算,故此选项错误;B、x2•x3=x5,正确;C、(﹣x2)3=﹣x6,故此选项错误;D、x6÷x2=x4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.30.(4.00分)(2018•湘西州)下列运算中,正确的是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【专题】11 :计算题.【分析】根据合并同类项的法则,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、2a﹣a=a,错误;C、(a+b)2=a2+2ab+b2,错误;D、2a+3b=2a+3b,错误;故选:A.【点评】此题主要考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.31.(4分)(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【考点】6B:分式的加减法;6G:列代数式(分式).【专题】12 :应用题.【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=2ba×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.32.(3分)(2018•台湾)已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小绵购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A.16元B.27元C.30元D.48元【考点】A:质因数分解.【专题】1 :常规题型.【分析】直接利用小绵购买笔记本的花费为36元,得出笔记本的单价,进而得出小勤购买笔记本的花费.【解答】解:∵某文具店贩售的笔记本每本售价均相等且超过10元,小绵购买笔记本的花费为36元,∴笔记本的单价为:36÷3=12(元)或36÷2=18(元)或36元;故小勤购买笔记本的花费为:12或18或36的倍数,只有选项48符合题意.故选:D.【点评】此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.33.(3分)(2018•台湾)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?()A.﹣25 B.﹣19 C.5 D.171【考点】A8:解一元二次方程﹣因式分解法.3【专题】11 :计算题.【分析】先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值.【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x﹣3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).34.(3分)(2018•南充)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a2【考点】4I:整式的混合运算.【专题】11 :计算题.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:﹣a4b÷a2b=﹣a2,故选项A错误,(a﹣b)2=a2﹣2ab+b2,故选项B错误,a2•a3=a5,故选项C错误,﹣3a2+2a2=﹣a2,故选项D正确,故选:D.【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.35.(5分)(2018•新疆)下列计算正确的是()A.a2•a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=3【考点】4B:多项式乘多项式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.36.(3分)(2018•内江)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1 D.a3÷a=a2【考点】4C:完全平方公式;35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【解答】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.【点评】本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.37.(4.00分)(2018•遂宁)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a2【考点】1J:科学记数法—表示较小的数;35:合并同类项;47:幂的乘方与积的乘方;4F:平方差公式.【专题】1 :常规题型.【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】解:A、x2+3x2=3x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项错误;故选:C.【点评】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键.38.(4分)(2018•安徽)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)【考点】55:提公因式法与公式法的综合运用.【专题】1 :常规题型.【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.39.(4分)(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【考点】32:列代数式.【专题】123:增长率问题.【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.【点评】考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.40.(4分)(2018•安徽)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b3【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】17 :推理填空题.【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.41.(3分)(2018•白银)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.【专题】11 :计算题;512:整式.【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.42.(4分)(2018•安徽)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b3【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】17 :推理填空题.【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.43.(3分)(2018•白银)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.【专题】11 :计算题;512:整式.【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.44.(3分)(2018•广州)下列计算正确的是( )A .(a +b )2=a 2+b 2B .a 2+2a 2=3a 4C .x 2y ÷1y=x 2(y ≠0) D .(﹣2x 2)3=﹣8x 6 【考点】6B :分式的加减法;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式.【专题】11 :计算题.【分析】根据相关的运算法则即可求出答案.【解答】解:(A )原式=a 2+2ab +b 2,故A 错误;(B )原式=3a 2,故B 错误;(C )原式=x 2y 2,故C 错误;故选:D .【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.45.(4分)(2018•淄博)若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9【考点】35:合并同类项;42:单项式.【专题】11 :计算题.【分析】首先可判断单项式12m a b -与212n a b 是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.【解答】解:∵单项式12m a b -与212n a b 的和仍是单项式, ∴单项式12m a b -与212n a b 是同类项, ∴m -1=2,n =2,∴m =3,n =2,∴n m =8.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.46.(3分)(2018•陕西)下列计算正确的是( )A .2242a a a =B .()326a a -=- C .222363a a a -= D .()2224a a -=- 【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;4C :完全平方公式.【专题】11:计算题;512:整式.【分析】根据同底数幂相乘、幂的乘方、合并同类项法则及完全平方公式逐一计算可得.【解答】解:A 、224a a a = ,此选项错误;B 、()326a a -=-,此选项正确; C 、222363a a a -=-,此选项错误;D 、()22244a a a -=-+,此选项错误;故选:B .【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂相乘、幂的乘方、合并同类项法则及完全平方公式.47.(3分)(2018•成都)下列计算正确的是( ) A .x 2+x 2=x 4 B .()222x y x y -=- C .()326x y x y = D .()235x x x -= 【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C :完全平方公式.【专题】11 :计算题.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x 2+x 2=2x 2,A 错误;。
2018年中考数学真题分类汇编第一期专题3整式与因式分解试题含解析20190125373
2018年中考数学真题分类汇编第一期专题3整式与因式分解试题含解析20190125373D项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.5. (2018•山东枣庄•3分)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.6. (2018•四川凉州•3分)下列运算正确的是()A.a3•a4=a12B.a6÷a3=a2C.2a﹣3a=﹣a D.(2018•四川凉州•a﹣2)2=a2﹣4【分析】根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.【解答】解:A、应为a3•a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a﹣3a=﹣a,正确;D、应为(a﹣2)2=a2﹣4a+4,故本选项错误.故选:C.【点评】本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.7. (2018•山东滨州•3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.8. (2018•江苏盐城•3分)下列运算正确的是()A. B. C.D.8.【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用【解析】【解答】解:A、,故A不符合题意;B、,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故答案为:C【分析】根据合并同类项法则、同底数幂的乘除法则即可。
全国各地2018届中考数学真题汇编 因式分解
2018年中考数学真题汇编:因式分解1.(2018安徽)下列分解因式正确的是()A.B.C. D.【答案】C2.(2018四川绵阳)因式分解:________。
【答案】y(x++2y)(x-2y)3.(2018浙江舟山)分解因式m2-3m=________。
【答案】m(m-3)4.(2018浙江绍兴)因式分解:4x2-y2=________。
【答案】(2x+y)(2x-y)5.因式分解: ________.【答案】6.分解因式:________.【答案】a(a+1)(a-1)7.分解因式:________.【答案】ab(a+b)(a-b)8.分解因式:=________.【答案】(4+x)(4-x)9.因式分解:________.【答案】10.分解因式:x3-9x=________ .【答案】x(x+3)(x-3)11.分解因式:________.【答案】12.因式分解:________.【答案】13.分解因式:________.【答案】14.分解因式:________.【答案】a(a-5)15.因式分解:________【答案】16.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.【答案】(1)解:如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数(2)解:设m= (其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)= =3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.。
【推荐】2018年全国各地中考数学真题汇编:因式分解
2018年中考数学真题汇编:因式分解1.(2018安徽)下列分解因式正确的是()A.B.C. D.【答案】C2.(2018四川绵阳)因式分解:________。
【答案】y(x++2y)(x-2y)3.(2018浙江舟山)分解因式m2-3m=________。
【答案】m(m-3)4.(2018浙江绍兴)因式分解:4x2-y2=________。
【答案】(2x+y)(2x-y)5.因式分解: ________.【答案】6.分解因式:________.【答案】a(a+1)(a-1)7.分解因式:________.【答案】ab(a+b)(a-b)8.分解因式:=________.【答案】(4+x)(4-x)9.因式分解:________.【答案】10.分解因式:x3-9x=________ .【答案】x(x+3)(x-3)11.分解因式:________.【答案】12.因式分解:________.【答案】13.分解因式:________.【答案】14.分解因式:________.【答案】a(a-5)15.因式分解:________【答案】16.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.【答案】(1)解:如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数(2)解:设m= (其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)= =3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.。
2018年中考数学解析版试卷分类汇编专题2:整式与因式分解
整式与因式分解
一、选择题
1. (2014•安徽省,第2题4分)x2•x3=()
A.x5B.x6C.x8D.x9
考点:同底数幂的乘法.
分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.
故选A.
点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.
2. (2014•安徽省,第4题4分)下列四个多项式中,能因式分解的是()
A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y
考点:因式分解的意义
分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;
B、是完全平方公式的形式,故B能分解因式;
故选:B.
点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.
3. (2014•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()
A.﹣6 B.6C.﹣2或6 D.﹣2或30
考点:代数式求值.
分析:方程两边同时乘以2,再化出2x2﹣4x求值.
解答:解:x2﹣2x﹣3=0
2×(x2﹣2x﹣3)=0
2×(x2﹣2x)﹣6=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式与因式分解
一.选择题
1.(2015上海,第2题4分)当a >0时,下列关于幂的运算正确的是……( )
A 、a 0=1;
B 、a -1=-a ;
C 、(-a )2=-a 2;
D 、2211a
a
. 【答案】A .
【解析】除了0以外,任何数的0次都等于1,因为a >0,所以,a 0=1 2. (2015•山东莱芜,第2题3分)下列计算结果正确的是( )
A .
B .
C .
D .
【答案】C
【解析】 试题分析:根据积的乘方,把各个因式分别乘方,可知
,故错误; 根据同底数幂相乘,底数不变,指数相加,可知,故错误; 根据及乘方的性质,可知,故正确; 根据
,cos 60°=,可知,故错误.
故选C
考点:幂的运算 3.(2015•淄博第2题,4分)下列式子中正确的是( ) A . ()﹣2=﹣9 B . (﹣2)3=﹣6 C . =﹣2 D . (﹣3)0=1
考点: 二次根式的性质与化简;有理数的乘方;零指数幂;负整数指数幂..
分析: 根据二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂逐一运算,判断即可.
解答:
解:A 、=9,故本项错误;
B、(﹣2)3=﹣8,故本项错误;
C、,故本项错误;
D、(﹣3)0=1,故本项正确,
故选:D.
点评:本题考查了二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂,熟练掌握运算法则是解题的关键.
4.(2015威海,第7题4分)
【答案】:C
【解析】A项是积的乘方,其结果应该是乘方的积,所以错;B项是同类项的加法,应系数相加,字母和字母的指数不变,C项是是同底数幂相除,应该底数不变,指数相减,所以对;D项是平方差公式,其结果应该先提取-,所以也错。
只有C正确。
【备考指导】这类问题一定要熟悉基本概念、基本法则,并能加以灵活运用。
5. (2015•四川南充,第2题3分)下列运算正确的是()
(A)3x-2x=x(B)(C)(D)
【答案】A
【解析】
试题分析:同底数幂的相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减.A、正确;B、原式=6 ;
C、原式=4 ;
D、原式=3.
考点:单项式的乘除法计算.
6.(2015•四川资阳,第3题3分)下列运算结果为a6的是
A.a2+a3 B.a2•a3 C.(-a2)3 D.a8÷a2
考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..
分析:根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.
解答:解:A、a3÷a2不能合并,故A错误;。