基因工程基础知识梳理(一)

合集下载

高三生物基因工程知识点梳理

高三生物基因工程知识点梳理

高三生物基因工程知识点梳理基因工程是现代生物学的重要分支之一,它通过操作生物体的基因来改变其遗传信息,进而影响其性状和功能。

高三生物学中,基因工程是一个重要的考点,理解并掌握相关的知识点对于提高学生的综合能力和应试能力具有重要意义。

一、基因工程的基本概念基因工程是一种人工改变生物体遗传信息的技术,它涉及到基因的克隆、重组、转移等操作,旨在创造新的基因组合来优化生物体的性状。

基因工程的应用领域广泛,包括农业、医学、环境保护等。

在农业领域,基因工程可以用于改良农作物,提高其产量、抗逆能力和品质;在医学领域,基因工程可以用于治疗疾病、生产药物和疫苗等;在环境保护领域,基因工程可以用于生物修复和污染治理。

二、基因工程的关键技术1. DNA克隆技术:DNA克隆是基因工程的基础技术之一,它可以扩增和复制特定的DNA片段。

常用的DNA克隆技术包括限制性内切酶切割、连接酶的作用和DNA插入载体等。

2. DNA重组技术:DNA重组是基因工程的核心技术,它可以将不同来源的DNA片段进行组合重组,形成具有新功能的DNA 序列。

常用的DNA重组技术包括PCR扩增、DNA连接、DNA杂交和转染等。

3. 基因转移技术:基因转移是基因工程的基本操作之一,它可以将目标基因导入到宿主细胞中。

常用的基因转移技术包括冷冻融化法、细胞转染法和基因枪法等。

三、基因工程在农业中的应用基因工程在农业领域的应用极为广泛,可以改良农作物的性状和品质,提高农作物的产量和抗逆能力。

常见的基因工程农产品包括转基因大豆、转基因玉米和转基因棉花等。

基因工程农产品的应用不仅能够满足人们对食物和纤维的需求,还可以提高农业可持续发展的水平,减少农药的使用量,保护环境资源。

四、基因工程在医学中的应用基因工程在医学领域的应用涉及到基因治疗、药物生产和疫苗制造等。

基因治疗是一种通过插入、修复或替换异常的基因来治疗疾病的方法,可以用于治疗遗传性疾病、癌症和免疫系统疾病等。

基因工程知识点总结

基因工程知识点总结

基因工程总结一.概念(1)原理:。

(2)优点:与杂交育种相比,;与诱变育种相比,。

(3)基因工程成功的原因:①成功拼接的原因:②成功表达的原因:二.基本工具1、两种酶:(1):作用特点:。

(2):E ·coli DNA 连接酶与T 4 DNA 连接酶的区别:2、一种运载体(1)条件:①;②;③具有特殊的标记基因(作用:)(2)种类:最常用;其他动植物病毒、三、操作程序(1):方法:①:不知道脱氧核苷酸序列②:已知目的基因两端一小段序列,便于③利用化学方法人工合成:知道全部序列,且基因比较小。

这种方法不需要模板。

(2)——基因工程的核心基因表达载体的组成:(3)生物种类常用方法受体细胞将目的基因插入到Ti 植物动物受精卵将含有目的基因的表+微生物原核细胞Ca 2处理细胞→感受态细胞→重组表达载体DNA 分子与感受态细胞混合→感受态细胞吸收DNA 分子质粒的T-DNA 上→农达载体提纯→取卵转化过程杆菌→导入植物细胞→整合到受体细胞染(受精卵)→显微注射→受精卵发育→获得色体的DNA 上→表达具有新性状的动物(4)①目的基因是否插入到转基因生物的染色体DNA 上:②是否转录:③是否翻译:④个体水平鉴定:抗虫、抗病接种实验易错点说明:1、切割目的基因和运载体的要求:用限制酶。

目的是:。

同种的含义是:同一种或相同两种,即单酶切或双酶切。

选择双酶切的原因是。

2、工具≠工具酶;运载体≠质粒。

3、启动子≠起始密码子,终止子≠终止密码子起始密码子和终止密码子位于mRNA上,分别控制翻译过程的启动和终止。

启动子:。

终止子:一段有特殊结构的DNA短片段,位于基因的尾端,作用是使转录过程停止。

4、基因探针的要求:①单链②有③5、农杆菌转化法中的“2”次导入:第一次:将含有目的基因的T—DNA的质粒导入农杆菌;第二次(非人工操作):将含有目的基因的T—DNA导入受体细胞并整合到植物细胞的染色体DNA上。

6、转化:。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结基因工程是现代生物技术的核心内容之一,在高中生物学习中占据着重要的地位。

下面我们就来详细总结一下高中生物基因工程的相关知识点。

一、基因工程的概念基因工程,又称为基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。

二、基因工程的基本工具1、“分子手术刀”——限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

2、“分子缝合针”——DNA 连接酶根据来源不同,DNA 连接酶分为两类:E·coli DNA 连接酶和T4DNA 连接酶。

E·coli DNA 连接酶只能将双链 DNA 片段互补的黏性末端之间的磷酸二酯键连接起来,而 T4DNA 连接酶既可以连接黏性末端,又可以连接平末端,但连接平末端的效率相对较低。

3、“分子运输车”——载体常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。

作为载体,需要具备以下条件:(1)能够在受体细胞中稳定保存并自我复制。

(2)具有一个或多个限制酶切点,以便与外源基因连接。

(3)具有标记基因,便于进行筛选。

三、基因工程的基本操作程序1、目的基因的获取(1)从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。

(2)利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。

(3)通过化学方法人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。

2、基因表达载体的构建(基因工程的核心)目的基因、启动子、终止子、标记基因等组成基因表达载体。

启动子是 RNA 聚合酶识别和结合的部位,驱动基因转录出 mRNA;终止子终止转录;标记基因用于鉴别和筛选含有目的基因的细胞。

基因工程知识点

基因工程知识点

基因工程各章知识点第一章绪论1.基因工程的首例操作实验三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用基因工程的诞生:72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌2.基因工程的基本概念基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。

供体、载体、受体是基因工程的三大基本元件。

3.基因工程的基本操作过程a分离目的DNA片段:酶切、PCR扩增、化学合成等。

b重组:体外连接的DNA和载体DNA,形成重组DNA分子。

c转化:将重组DNA分子导入受体细胞并与之一起增殖。

d筛选:鉴定出获得了重组DNA分子的受体细胞。

e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。

第二章载体1.理解用PBR322和PUC18作载体的克隆外源基因的原理。

答案不确定PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。

Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。

专题一基因工程知识点归纳

专题一基因工程知识点归纳

专题一基因工程一【高考目标定位】1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作程序四个步骤;基因工程在农业和医疗等方面的应用;蛋白质工程的原理。

2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基因;利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。

二【课时安排】2课时三【考纲知识梳理】第1节DNA重组技术的基本工具教材梳理:知识点一基因工程的概念:基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。

注意:对本概念应从以下几个方面理解:知识点二基因工程的基本工具1.限制性核酸内切酶——“分子手术刀”(1)限制性内切酶的来源:主要是从原核生物中分离纯化来的。

(2)限制性内切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。

(3)限制性内切酶的切割方式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。

②沿着中心轴线切开DNA,切口是平末端。

2.DNA连接酶——“分子缝合针”(1)来源:大肠杆菌、T4噬菌体(2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。

(3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸二酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。

注意:比较有关的DNA酶(1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基(2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。

注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。

高中生物高考考点79 基因工程(一)-备战2022年高考生物考点一遍过

高中生物高考考点79 基因工程(一)-备战2022年高考生物考点一遍过

考点79 基因工程(一)高考频度:★★★☆☆ 难易程度:★★★☆☆1.基因工程的概念(1)供体:提供目的基因。

(2)操作环境:体外。

(3)操作水平:分子水平。

(4)原理:基因重组。

(5)受体:表达目的基因。

(6)本质:性状在受体体内的表达。

(7)优点:克服远缘杂交不亲和的障碍,定向改造生物的遗传性状。

2.DNA 重组技术的基本工具(1)限制性核酸内切酶(简称:限制酶)①来源:主要是从原核生物中分离纯化出来的。

②作用:识别特定的核苷酸序列并切开特定部位的两个核苷酸之间的磷酸二酯键。

③结果:产生黏性末端或平末端。

(2)DNA 连接酶①种类:按来源可分为E ·coli DNA 连接酶和T 4DNA 连接酶。

②作用:将双链DNA 片段“缝合”起来,恢复被限制酶切开的两个核苷酸之间的磷酸二酯键。

③DNA 连接酶和限制酶的关系(3)载体①种类:质粒、λ噬菌体的衍生物、动植物病毒等。

②质粒的特点⎩⎪⎨⎪⎧能自我复制有一个至多个限制酶切割位点有特殊的标记基因考向一 限制性核酸内切酶、DNA 连接酶等酶的作用1.如图为DNA分子在不同酶的作用下所发生的变化,图中依次表示限制酶、DNA聚合酶、DNA连接酶、解旋酶作用的正确顺序是A.①②③④B.①②④③C.①④②③D.①④③②【参考答案】C【试题解析】限制酶可在特定位点对DNA分子进行切割;DNA聚合酶在DNA分子复制时将脱氧核苷酸连接成脱氧核苷酸链;DNA连接酶可将限制酶切开的磷酸二酯键连接在一起;解旋酶的作用是将DNA 双链解开螺旋,为复制或转录提供模板。

解题技巧确定限制酶的种类(1)根据目的基因两端的限制酶切点确定限制酶的种类①应选择切点位于目的基因两端的限制酶,如图甲可选择PstⅠ。

②不能选择切点位于目的基因内部的限制酶,如图甲不能选择SmaⅠ。

③为避免目的基因和质粒的自身环化和随意连接,也可使用不同的限制酶切割目的基因和质粒,如图甲也可选择用PstⅠ和Eco RⅠ两种限制酶(但要确保质粒上也有这两种酶的切点)。

基因工程知识点总结

基因工程知识点总结

基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。

下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。

一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。

其实现的基本原理包括基因定位、基因克隆和基因传递。

1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。

常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。

2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。

常用的方法有限制酶切、连接酶切和DNA合成等。

3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。

常用的方法有基因枪、电穿孔和冷冻贮存等。

二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。

1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。

通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。

2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。

通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。

基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。

此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。

3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。

通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。

此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。

三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。

基因工程知识点总结

基因工程知识点总结

基因工程知识点总结基因工程,这个在现代生物学中熠熠生辉的领域,正以惊人的速度改变着我们的生活和对生命的认知。

它就像是一把神奇的钥匙,开启了无数未知的大门,为解决人类面临的诸多问题带来了前所未有的希望和可能。

一、基因工程的定义与基本原理基因工程,简单来说,就是按照人们的意愿,将一种生物的基因在体外进行切割、拼接和重组,然后导入另一种生物的细胞内,使之稳定遗传并表达出相应产物的技术。

其基本原理基于三个重要的步骤:首先是获取目的基因,这就像是在茫茫基因海洋中找到我们想要的那一颗珍珠;其次是构建基因表达载体,相当于给这颗珍珠打造一个合适的盒子,使其能够安全、有效地传递;最后是将重组 DNA 分子导入受体细胞,并使其在受体细胞中稳定存在和表达。

二、获取目的基因的方法1、从基因文库中获取基因文库就像是一个巨大的基因仓库,里面存储着各种各样的基因。

我们可以根据已知的信息,从这个文库中筛选出我们需要的目的基因。

2、利用 PCR 技术扩增目的基因PCR 技术就像是一个基因的复印机,能够以极少量的基因片段为模板,快速大量地复制出我们想要的基因。

3、人工合成法如果已知目的基因的核苷酸序列,或者其氨基酸序列,我们可以通过化学方法直接人工合成目的基因。

三、基因表达载体的构建基因表达载体是基因工程的核心部分,它就像是一辆专门运输基因的列车,需要具备多个关键组件。

1、启动子启动子是基因表达的“开关”,它能够控制基因在何时何地开始表达。

2、终止子终止子则是基因表达的“刹车”,告诉基因在何处停止表达。

3、标记基因标记基因就像是一个个小标签,帮助我们筛选出成功导入目的基因的受体细胞。

4、目的基因这是我们最终想要表达的基因片段。

四、将目的基因导入受体细胞1、导入植物细胞(1)农杆菌转化法农杆菌就像是一个天然的基因运输工具,能够将其携带的基因转移到植物细胞中。

(2)基因枪法通过高速的微粒将目的基因直接打入植物细胞。

(3)花粉管通道法利用花粉管通道将目的基因导入植物的受精卵中。

基因工程高三知识点

基因工程高三知识点

基因工程高三知识点基因工程是现代生物学中的一项重要技术,通过改变生物体的遗传物质(DNA)来创造新的基因组合或改变生物体的性状。

在高中生物学课程中,学生需要掌握基因工程的基本原理、应用以及相关的伦理和社会问题。

以下是基因工程的一些高三知识点。

一、基因工程的基本原理基因工程是利用DNA技术改变生物体的遗传信息,主要包括以下几个步骤:1. DNA提取:从感兴趣的生物体中提取DNA,通常使用PCR 技术扩增目标DNA片段。

2. DNA剪切:利用限制酶切割目标DNA,产生特定的切口。

3. DNA连接:将DNA片段连接到载体DNA上,形成重组DNA。

4. DNA转化:将重组DNA导入目标细胞中,使其具有新的遗传特性。

5. PCR扩增:使用聚合酶链反应扩增目标DNA的数量。

二、基因工程的应用领域1. 农业领域:基因工程可以用于改良作物,包括提高抗病虫害能力、增加产量、提高品质等。

2. 医学领域:基因工程可以用于制备重组蛋白药物,如胰岛素、生长激素等。

3. 环境领域:基因工程可以用于环境修复,包括通过基因修复技术降解污染物。

4. 科研领域:基因工程可以用于基因功能研究、疾病模型建立等。

三、基因工程的风险与伦理问题1. 生物安全风险:基因工程可能导致基因剥离和转基因生物的释放,风险包括基因污染、基因流动等。

2. 伦理问题:基因工程涉及到修改生物的基因组,可能引发对自然与人类的伦理关切,如人类基因改造、人类克隆等。

四、国际和国内基因工程的监管措施1. 国际监管:1992年生物安全议定书规定,转基因生物的跨国转运需要进行风险评估和合格证明。

2. 国内监管:我国设立了生物安全管理委员会,建立了转基因食品的安全管理体系。

五、基因工程的前景与挑战基因工程作为一种重要的生物技术,将会继续在农业、医学、环境等领域发挥重要作用。

但同时也面临着风险与挑战,需要加强监管、推动科学研究和公众教育。

总结:基因工程作为现代生物学的重要分支,已经在农业、医学、环境等领域取得了巨大的进展和应用。

基因工程知识点全

基因工程知识点全

第一章基因工程概述1.什么是基因工程,基因工程的基本流程基因工程Genetic engineering原称遗传工程;从狭义上讲,基因工程是指将一种或多种生物体供体的基因与载体在体外进行拼接重组,然后转入另一种生物体受体内,使之按照人们的意愿遗传并表达出新的性状;因此,供体、受体和载体称为基因工程的三大要素;1.分离目的基因2.限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5.选择、筛选含目的基因的克隆6.培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件➢具有对受体细胞的可转移性或亲和性;➢具有与特定受体细胞相适应的复制位点或整合位点;➢具有多种单一的核酸内切酶识别切割位点;➢具有合适的筛选标记;➢分子量小,拷贝数多;➢具有安全性;2. 质粒载体有什么特征,有哪些主要类型1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建1删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量;一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定;2灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数3加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞;4在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头Polylinker,便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入;5根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件;4. 什么是人工染色体载体将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体5. 什么是穿梭载体人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体;6.入-噬菌体载体及构建-DNA为线状双链DNA分子,长度为,在分子两端各有12个碱基的单链互补粘性末端;➢1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点➢引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性➢灭活某些与裂解周期有关基因;➢使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现象的发生;➢加装选择标记,便于重组体的检测单链噬菌体DNA载体➢过定点诱变技术封闭重复的重要限制性酶切口;➢引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列lacZ’的乳糖操纵子片段lac、组氨酸操纵子片段his以及抗生素抗性基因等;➢将人工合成的多克隆位点接头片段插在 lacZ’标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体 DNA 的混浊噬菌斑呈蓝色;➢4在多克隆位点接头片段的两侧区域改为统一的 DNA 测序引物序列,使得重组 DNA 分子的单链形式经分离纯化后,可直接进行测序反应;8. II类限制性内切核酸酶的特点限制性核酸内切酶 Restriction endonucleases是一类能在特异位点上催化双链DNA 分子的断裂,产生相应的限制性片段的核酸水解酶;➢识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成的特定序列靶序列;➢识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构;➢切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称可形成粘性末端或平末端的DNA分子;同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶;同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶Isocandamers:识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶;9.甲基化酶Ⅱ类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识别序列内使某位碱基甲基化,从而封闭该酶切口;甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口➢甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内切酶的切割;➢甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点;连接酶连接作用的特点:①DNA连接酶需要一条DNA链的3’末端有一个游离的羟基-OH,另一条DNA链的5’末端有一个磷酸基-P的情况下,只有在这种情况下,才能发挥连接DNA分子的作用;②只有当3’-OH和5’-P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键;③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是双螺旋DNA分子的一部分;④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口nick,而不能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口gap;⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连接反应时,还需要提供一种能源分子NAD+或ATP11.大肠杆菌 DNA聚合酶和Klenow大片段各有什么作用DNA聚合酶作用的特点:➢要有底物4种dNTP为前体催化合成DNA;➢接受模板指导;➢需要有引物3’羟基的存在;➢不能起始合成新的DNA链;➢催化dNTP加到生长中的DNA链3’-OH末端;➢催化DNA的合成方向是5’→3’;Klenow酶的基本性质:➢大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个氨基酸残基片段,即Klenow酶;分子量为76kDa;➢Klenow酶仍拥有5’→3’的DNA聚合酶活性和5’→3’的核酸外切酶活性,但失去了5’→3’的核酸外切酶活性;Klenow酶的基本用途:➢修复由限制性核酸内切酶造成的 3’凹端,使之成为平头末端;➢以含有同位素的脱氧核苷酸为底物,对DNA片段进行标记;➢用于催化 cDNA 第二链的合成;➢用于双脱氧末端终止法测定 DNA 的序列;聚合酶T4-DNA聚合酶酶的基本特性:➢有3’→5’的核酸外切酶活性和5’→3’的DNA聚合酶活性;➢在无dNTP时,可以从任何3’-OH端外切;➢在只有一种dNTP时,外切至互补核苷酸;➢在四种dNTP均存在时,聚合活性占主导地位;T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的3’粘性末端13. 影响连接效率的因素有:➢温度最主要的因素离子浓度➢ATP的浓度 10μM - 1μM➢连接酶浓度平末端较粘性末端要求高➢反应时间通常连接过夜➢插入片段和载体片段的摩尔比➢DNA末端性质➢DNA片段的大小14.如何将不同DNA分子末端进行连接1.相同粘性末端的连接如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA分子 2.平头末端的连接T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用;3.不用粘性末端的连接3’端的粘性末端用T4-DNA聚合酶切平5’端的粘性末端用klenow酶补平,或者用S1核酸酶切平最后用T4-DNA连接酶进行平末端连接15. 碱性磷酸酶有什么作用1.该酶用于载体 DNA的5’末端除磷操作,以提高重组效率;2.用于外源DNA片段的5’端除磷,则可有效防止外源 DNA 片段之间的连接;16. 末端脱氧核苷酸转移酶有哪些作用➢给载体或目的DNA加上互补的同聚物尾;➢DNA片段3’末端的同位素标记;17. 2、细菌转化的步骤:∙感受态的形成;感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、切割及加工;感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质如细菌溶素的合成,使细菌胞壁部分溶解,局部暴露出细胞膜上的 DNA 结合蛋白和核酸酶等;∙转化因子的结合;受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA结构特异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上;∙转化因子的吸收;双链 DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中;∙整合复合物前体的形成;进入受体细胞的单链 DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,并将其引导至受体菌染色体DNA处;∙转化因子单链DNA的整合;供体单链DNA片段通过同源重组,置换受体染色体DNA的同源区域,形成异源杂合双链 DNA结构;+诱导转化原理:①在0℃的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态;②Ca2+能与加入的DNA分子结合,形成抗DNA酶DNase的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上;当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道;③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细胞,可以提高DNA的转化效率;∙但该法要求条件高,对外界污染物极为敏感,通常很少采用;介导细菌的原生质体转化∙PEG是乙二醇的多聚物, 存在不同分子量的多聚体,它可改变各类细胞的膜结构, 使两细胞相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两细胞的胞质沟通成为可能,从而造成细胞之间发生融合;20.电穿孔法是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法;P52 接合转化,入噬菌体感染未归纳21.转化率的影响因素.载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同;载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体; 插入片段大小:对质粒载体而言,插入片段越大,转化效率越低;重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响22.转化细胞的扩增转化细胞的扩增操作:指转化完成之后细胞的短时间培养;在实验时,扩增操作往往与转化操作偶联在一起,如:∙Ca2+诱导转化后的37℃培养一个小时∙原生质体转化后的再生过程∙λ噬菌体转染后的30℃培养等,均属扩增操作扩增操作的目的∙增殖转化细胞,使得有足够数量的转化细胞用于筛选程序;∙扩增和表达载体分子上的标记基因,便于筛选;∙表达外源基因,便于筛选和鉴定;23.抗药性筛选法这是利用载体DNA分子上的抗药性选择标记进行的筛选方法;抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcr将外源DNA片段插在BamHI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcs抗药性筛选法的基本操作:先将转化液涂布含有Ap的平板再将Ap平板上的转化子影印至含有Tc的平板上在Ap平板上生长,但在Tc平板上不长的转化子即为重组子 P56抗药性标记插入失活选择法∙经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子;为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选;如果外源基因插入在载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性重组子;24. 什么是蓝白斑筛选法这种方法是根据组织化学的原理来筛选重组体;主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷X-gal平板上形成浅蓝色的噬菌斑;外源基因插人lac或lac基因部分被取代后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 X-gal平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑;筛选法利用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR,通过对PCR产物的电泳分析,确定目的基因是否插入到载体中;由于在载体DNA分子中,外源DNA插入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子;第三章基因工程的常规技术1. 探针有哪些类型探针标记有哪些方法类型:同源或部分同源探针cDNA探针人工合成的寡核苷酸探针标记方法:①5’端标记法②反转录标记法③缺刻前移标记法④ABC标记法4.什么是ABC荧光显色酶标记法ABC 标记法;∙A为Avidin生物素抗性蛋白,每个Avidin分子可结合3 - 4个生物素分子;∙B为Biotin生物素,每个Biotin分子可结合2个Avidin分子;∙C为Complex,首先将Biotin共价结合在探针分子上,荧光胺标记在Avidin上,两者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光;如果将某一生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术5.亚克隆法∙亚克隆:是将克隆片段进一步片段化后再次进行的克隆;∙一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子;此时,该重组分子中的无关DNA区域以被大量删除;6. 菌落嗜菌斑原位杂交的基本原理、流程∙该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落;∙操作步骤:∙①菌落生长∙②转移到NC膜上∙③DNA释放和变性∙变成单链DNA:∙ 10%SDS NaOH∙④中和 Tris-HCl pH∙⑤固定 80 ℃ 120’∙⑥杂交包括预杂交,加探针DNA杂交∙⑦放射自显影∙⑧对照比较,选出重组克隆7.鸟枪法∙鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的 DNA 片段,分别连接到载体 DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子;鸟枪法制备目的基因的主要步骤∙①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端;原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达100Kb以上;全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切:片段长度可控,含有粘性末端,目的基因完整;∙②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体;∙③重组DNA分子导入受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞;∙④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法筛选模型的建立;∙⑤目的基因的定位利用鸟枪法获得的期望重组子只是含有目的基因的 DNA 片段,必须通过次级克隆或插入灭活,在已克隆的 DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列;法酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因;这种方法以目的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA,即cDNA,然后在DNA聚合酶的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA克隆; 的分离纯化绝大多数的真核生物mRNA在其3’端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱即可分离10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;过程:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火复性:模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍;11. 什么是基因组文库其构建方法是怎样的是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库;基因组文库构建的一般步骤①载体的选择和制备;②高纯度、大分子量基因组 DNA 的提取;③基因组 DNA 的部分酶切与分级分离;④载体与DNA片段的连接;⑤转化或侵染宿主细胞;⑥筛选鉴定基因组及保存;12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA文库应具备下列条件:∙重组克隆的总数不宜过大,以减轻筛选工作的压力∙载体的装载量最好大于基因的长度,避免基因被分隔克隆;∙克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序;∙克隆片段易于从载体分子上完整卸下;∙重组克隆能稳定保存、扩增、筛选;基因文库的构建通常采用鸟枪法和cDNA法13.外源DNA片段的切割原则片段之间要有一定的重叠序列片段大小要均一文库构建的步骤∙细胞总RNA的提取和mRNA的分离∙第一链cDNA合成∙第二链cDNA合成∙双链cDNA的分级分离∙双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖∙重组体的筛选与鉴定第四章基因在大肠杆菌、酵母的高效表达1. 启动子∙启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20~300个碱基,是控制基因转录的重要调控元件;在一定条件下mRNA的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达;∙启动子的特征:①序列特异性②方向性③位置特性④种属特异性2.启动子类型∙组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异;∙组织特异启动子:又称器官特异性启动子;在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性;∙诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平;目前已经分离了光诱导表达基因启动子、热诱导表达基因启动子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子等;3.终止子终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA的一部分,并形成特殊的二级结构,由此终止基因的转录;序列SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从起始密码子处开始5.密码子不同生物对密码子的偏爱性1.生物体基因组中的碱基含量2.密码子与反密码子的相互作用的自由能3.细胞内tRNA的含量6. 密码子偏爱性对外源基因表达的影响∙由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择;一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:∙外源基因全合成∙同步表达相关tRNA编码基因7. 包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体8. 包涵体的形成机理∙①折叠状态的蛋白质集聚作用;∙②非折叠状态的蛋白质集聚作用∙③蛋白折叠中间体的集聚作用;9. 包涵体的分离检测∙包涵体的分离主要包括菌体破碎、离心收集以及清洗三大操作步骤;10. 分泌型目的蛋白表达系统的构建∙包括大肠杆菌在内的绝大多数革兰氏阴性菌不能将蛋白质直接分泌到胞外,但有些革兰氏阴性菌能将细菌的抗菌蛋白细菌素分泌到培养基中,这一过程严格依赖于细菌素释放蛋白,它激活定位于内膜上的磷酸酯酶A,导致细菌内外膜的通透性增大∙因此,只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞;此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌;11融合蛋白表达质粒的构建原则:∙受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化;。

基因工程基础知识梳理(一)

基因工程基础知识梳理(一)

基因工程基础知识梳理(一)一、DNA重组技术的基本工具基因工程又叫_______,指按照人们的愿望,进行严格的设计,通过体外DNA 重组和_______等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

其操作水平是在_______上进行设计和施工,操作环境是在生物体外。

1.限制性核酸内切酶——“分子手术刀”(1)主要来源:_____生物。

(2)特点:能够识别DNA特定的_______,切开两个核苷酸之间的_____。

(3)DNA末端:限制酶切割DNA产生的DNA末端有两种形式:_____和_____。

2.DNA连接酶——“分子缝合针”(1)作用:将双链___“缝合”起来,恢复被限制酶切开的两个核苷酸之间的_____。

(2)种类①E·coli DNA连接酶:只能缝合DNA的______。

②T4DNA连接酶:即可缝合DNA的黏性末端,又可缝合双链DNA的_____。

3.基因进入受体细胞的载体——“分子运输车”(1)载体的种类①质粒:是一种裸露、结构简单、独立于细菌拟核DNA之外,并具有_____能力的_____。

②_____的衍生物。

③动植物病毒。

(2)质粒载体的特点①能够在细胞内_______。

②具有一个或多个_______,便于供外源DNA片段插入其中。

③具有特殊的_______,供重组DNA的鉴定和选择。

(3)质粒载体的处理:真正被用作载体的质粒,都必须在天然质粒的基础上进行__________。

二、基因工程的基本操作程序1.目的基因的获取(1)目的基因:指编码蛋白质的_____。

(2)获取目的基因的方法①从基因文库中获取目的基因a.基因文库的含义:将含有某种生物不同基因的许多_____,导入_____的群体中储存,各个受体菌分别含有这种生物的不同基因,称为基因文库。

b.基因文库和种类(ⅰ)基因组文库:含有一种生物的_____基因(ⅱ)部分基因文库:含有一种生物的_____基因c.目的基因的获取依据:(ⅰ)基因的_____序列;(ⅱ)基因的功能;(ⅲ)基因在染色体上的位置;(ⅳ)基因的_____产物mRNA;(ⅴ)基因的翻译产物蛋白质。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程1、基因工程:通过诱导、控制、修饰和组装酶分子改造生物的技术手段,即基因工程。

2、基因是什么:基因是DNA(deoxyribonucleic acid)在调控生物表达的功能单位,它是细胞在传递遗传信息的实体,也是遗传的核心物质。

它决定着生物体的各种性状特征。

3、基因的分类:基因可以按照性质和功能分为结构基因、调控基因和其他基因。

4、基因工程改造方法:基因工程技术有多种,包括基因重组技术、克隆技术、突变技术、转基因技术和增幅技术等。

二、基因工程在实验室中应用1、基因工程在实验室中的应用:基因工程技术在实验室中的应用大大提高了有关生命科学研究的准确性和灵敏度,广泛应用于药物研发、蛋白质检测、临床诊断等领域。

2、基因芯片:基因芯片是一种微小的电子设备,它可以通过在芯片上安装的特定探针来检测特定基因的表达情况或者其他特征。

这种技术可以用来快速检测病毒、细菌等多种病原体,也可以用来研究和监测人体疾病的进展情况。

3、基因测序:DNA测序技术是利用数字技术对准确确定和分析DNA序列的一种技术。

它可以用来检测基因组DNA的结构、查找靶基因和生物多样性、研究基因变异和肿瘤等。

4、基因合成:基因合成技术是以整合DNA的方式制造新的蛋白质的技术,它是把细菌、哺乳动物等常用基因以指定的比例混合在一起。

三、基因工程的发展1、基因工程的发展趋势:基因工程的发展将继续走向优化、分析和精细化。

将进一步提升对生命系统的认识,并能更好地利用基因信息提高生物系统的性能。

2、基因工程的应用场景:基因工程可用于转基因作物的研发、制药新药研发、生物燃料的生物柴油等方面的开发应用,还可以进行生命科学的深入研究,探索新的生物机理。

3、基因工程的未来发展:基因工程技术将在药物研发、医疗诊断、育种良种、食品检测、农药残留和农作物耐药性等方面获得更大的应用,发挥更大的作用,更好地促进人类健康。

基因工程笔记总结

基因工程笔记总结

基因工程笔记总结一、基因工程的概念。

基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

又称为DNA重组技术。

(一)基因工程的理论基础。

1. DNA是遗传物质。

- 肺炎双球菌的转化实验和噬菌体侵染细菌的实验证明了DNA是遗传物质,这为基因工程中对DNA的操作提供了理论依据。

2. DNA双螺旋结构和中心法则的确立。

- 沃森和克里克构建的DNA双螺旋结构模型,阐明了DNA的结构特点,为DNA的切割、连接等操作提供了可能。

- 中心法则揭示了遗传信息的传递规律,使得人们能够理解基因表达的过程,从而在基因工程中对目的基因的表达进行调控。

3. 遗传密码的破译。

- 遗传密码的破译使得人们能够根据蛋白质的氨基酸序列推测出相应的DNA序列,反之亦然,这有助于在基因工程中准确获取目的基因并预测其表达产物。

二、基因工程的基本工具。

1. “分子手术刀”——限制性核酸内切酶(限制酶)- 来源:主要从原核生物中分离纯化而来。

- 作用:识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

例如,EcoRI限制酶识别的序列是 - GAATTC -,在G和A之间切开。

- 结果:产生黏性末端(如EcoRI产生的是黏性末端)或平末端。

2. “分子缝合针”——DNA连接酶。

- 类型。

- E.coli DNA连接酶:来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间连接起来。

- T4 DNA连接酶:来源于T4噬菌体,既可以连接黏性末端,也可以连接平末端。

- 作用:恢复被限制酶切开的两个核苷酸之间的磷酸二酯键。

3. “分子运输车”——载体。

- 种类。

- 质粒:是一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的双链环状DNA分子,是基因工程最常用的载体。

- λ噬菌体的衍生物:经过改造后可作为基因工程的载体。

基因工程基础知识

基因工程基础知识

第一章基因工程第一节基因工程概述由于基因工程是在DNA分子水平上进行操作,因此又叫做重组DNA技术。

二.基因工程的基本工具(一)“分子手术刀”——限制性核酸内切酶(简称限制酶)1.来源:主要是从原核生物中分离纯化出来的。

2.功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

3.结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。

(二)“分子针线”——DNA连接酶1.分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类2.功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。

★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接;T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。

(三)“分子运输车”——载体1.载体具备的条件:①能在受体细胞中复制并稳定保存;②具有一至多个限制酶切割位点,供外源DNA片段插入;③具有标记基因,供重组DNA的鉴定和选择。

2.基因工程常用的载体有:质粒、噬菌体和动、植物病毒等。

最早应用的载体是质粒,它是细菌细胞中的一种很小的双链环状DNA分子。

三.基因工程的基本过程(一) 获得目的基因(目的基因的获取)1.获取方法主要有两种:①从自然界中已有的物种中分离出来,如可从基因文库中获取。

②用人工的方法合成。

★获得原核细胞的目的基因可采取直接分离,获取真核细胞的目的基因一般是人工合成。

★人工合成目的基因的常用方法有反转录法和化学合成法。

2.利用PCR技术扩增目的基因(1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。

(2)目的:获取大量的目的基因(3)原理:DNA双链复制(4)过程:第一步:加热至90~95℃DNA解链为单链;第二步:冷却到55~60℃,引物与两条单链DNA结合;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始进行互补链的合成。

高中生物22基因工程(一)基因的结构和基因工程的基本工具-知识讲解

高中生物22基因工程(一)基因的结构和基因工程的基本工具-知识讲解

基因工程(一)基因的结构和基因工程的基本工具编稿:闫敏敏审稿:宋辰霞【学习目标】1、了解基因工程的诞生及概念。

2、知道基因的结构。

3、简述DNA重组技术所需三种基本工具及其应用(重点、难点)。

【要点梳理】要点一、基因工程概述要点二、基因工程的诞生【高清课程:基因工程(一)基因的结构和基因工程的基本工具 369163 基因工程的诞生】1.遗传基础理论的重大突破艾弗里、赫尔希、蔡斯等人证明DNA是遗传物质1953年,沃森和克里克提出DNA双螺旋结构1958年,梅塞尔森和斯塔尔证明DNA的半保留复制1963~1967年,尼伦伯格、马太、霍拉纳破译遗传密码中心法则的提出和完善指出遗传信息在大分子间的传递2.技术发明使基因工程的实施成为可能技术上三大发明:⑴基因转移载体的发现——1967年,T.F.Roth(罗思)&D.R.Helinski(海林斯基)发现质粒的自我复制能力,并能够在细菌之间转移。

⑵工具酶的发现——1972年, H.C. Smith 、W.Arber & D.Nathans从流感嗜血杆菌中分离得到限制性内切酶;1970年,逆转录酶的发现使真核细胞的基因制备成为可能;此后,多种限制酶和连接酶被发现。

⑶DNA体外重组的实现—1972年,美国 Berg 第一次构建出了体外重组DNA分子。

重组DNA表达实验的成功—1973年,H.Boyer & S.Cohen选用仅含单一EcoRI酶切位点的载体质粒pSC101,使之与非洲爪蟾核糖体蛋白基因的DNA片段重组。

重组的DNA转入大肠杆菌DNA中,转录出相应的mRNA。

3.技术进一步推动基因工程的发展:⑴第一例转基因动物和转基因植物问世1980 年,科学家通过显微注射培育出世界第一个转基因小鼠。

1983年,科学家采用农杆菌转化法,培育出世界上第一例转基因烟草。

⑵PCR技术的发明1988年,美 K.Mullis发明PCR技术,使基因工程进一步发展。

基因工程知识点

基因工程知识点

基因工程知识点基因工程是一门关于生物基因的科学与技术,涉及到生物学、遗传学、分子生物学等多个学科领域。

通过对基因进行分析、修改和重组,基因工程可以改变生物体的遗传信息,从而创造出具有特定性状的新生物体或改良已有的生物体。

1. DNA的复制与修饰基因工程的第一步是对目标基因进行复制和修饰。

在DNA复制中,科学家可以使用聚合酶链反应(PCR)技术来大量复制目标基因。

然后,可以采用限制性内切酶来切割DNA片段,以便进行进一步的修改。

2. DNA的重组与合成基因工程的核心是对DNA分子进行重组和合成,以构建具有特定性状的基因组。

这可以通过DNA重组技术来实现。

该技术利用限制性内切酶将具有相同限制酶切位点的两个DNA分子进行剪切,并通过DNA连接酶将两个分子连接起来形成新的DNA分子。

3. 基因的转导与表达一旦目标基因经过修饰和重组,下一步是将其转导至宿主生物体。

这可以通过多种方法实现,其中最常用的是利用载体。

载体是一种能够稳定传递外源DNA到宿主细胞的工具,例如质粒、病毒等。

一旦外源基因进入宿主细胞,它们将会以不同的方式表达出来,例如转录成RNA、翻译成蛋白质等。

4. 基因工程在医学上的应用基因工程在医学领域有着广泛的应用。

例如,通过基因工程技术,可以合成大量的重组人胰岛素,用于治疗糖尿病。

另外,基因工程还可以用于生产重组疫苗,如乙型肝炎疫苗和人乳头瘤病毒疫苗等。

此外,基因工程还有助于研究遗传病的发病机制,并可能为这些疾病的治疗提供新的策略。

5. 基因工程在农业上的应用基因工程技术在农业领域的应用也非常广泛。

通过基因工程改良作物的抗虫性、抗病性和耐逆性,可以提高农作物的产量和品质,减少农药的使用。

例如,将一些具有抗虫性的基因导入到作物中,可以提高作物抵抗虫害的能力,从而减少农药的使用量。

总结基因工程作为一门复杂而又有前景的学科,为科学家们提供了许多改变生物体的机会。

通过对基因的分析、修改和重组,基因工程可以为人类的健康、农业的发展甚至整个生态环境带来深远的影响。

高中基因工程总结的知识点

高中基因工程总结的知识点

高中基因工程总结的知识点
一、基因工程
1、什么是基因工程
基因工程是指将一种生物体的基因插入另一种生物体,从而改变另一种生物体的性状,利用它们来改造和改变生物物种的一种技术。

2、基因工程的意义
基因工程可以帮助人们改善现有的农作物品种,以便获得更高的产量;同时也能够生产药物,如胰岛素,以治疗糖尿病等疾病。

3、基因工程的基本步骤
(1)获取基因序列:科学家首先获取目标基因的结构特征,以
及基因的排列顺序;
(2)构建基因组:科学家将基因拆分为多个碱基对,构建基因组;
(3)转化:将基因注入受体生物体,使之获得新的基因;
(4)表达:把插入的基因转录成mRNA,再转录成蛋白质,从而在受体生物体内表达出新的基因。

二、遗传工程
1、什么是遗传工程
遗传工程是通过改变某一物种的基因组结构而获得意想不到的
新突变,并利用这些突变来改良物种的一种技术。

2、遗传工程的意义
遗传工程可以帮助人们改良农作物品种,提高农作物的生长效率;
同时也可以用于育种,改良家禽种类,以提高食品的品质。

3、遗传工程的基本步骤
(1)获取基因:科学家首先获取和研究目标物种中的基因;
(2)基因分离:将基因拆分为多个碱基对,构建基因组;
(3)基因转移:将基因转移到另一物种中,进行基因转换;
(4)效果评估:使用遗传分析和实验测试,评估遗传工程所产生的效果。

基因工程知识点全

基因工程知识点全

第一章基因工程概述1、什么就是基因工程,基因工程得基本流程?基因工程(Genetic engineering)原称遗传工程。

从狭义上讲,基因工程就是指将一种或多种生物体(供体)得基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们得意愿遗传并表达出新得性状。

因此,供体、受体与载体称为基因工程得三大要素。

1、分离目得基因2、限制酶切目得基因与载体3、目得基因与载体DNA在体外连接4、将重组DNA分子转入合适得宿主细胞,进行扩增培养5、选择、筛选含目得基因得克隆6、培养、观察目得基因得表达第二章基因工程得载体与工具酶1、基因工程载体必须满足哪些基本条件?➢具有对受体细胞得可转移性或亲与性。

➢具有与特定受体细胞相适应得复制位点或整合位点。

➢具有多种单一得核酸内切酶识别切割位点。

➢具有合适得筛选标记。

➢分子量小,拷贝数多。

➢具有安全性。

2、质粒载体有什么特征,有哪些主要类型?1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1、克隆质粒2、测序质粒3、整合质粒4、穿梭质粒5、探针质粒6、表达质粒3、质粒得构建(1)删除不必要得 DNA 区域,尽量缩小质粒得分子量,以提高外源 DNA 片段得装载量。

一般来说,大于20Kb 得质粒很难导入受体细胞,而且极不稳定。

(2)灭活某些质粒得编码基因,如促进质粒在细菌种间转移得 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验得安全,同时灭活那些对质粒复制产生负调控效应得基因,提高质粒得拷贝数(3)加入易于识别得选择标记基因,最好就是双重或多重标记,便于检测含有重组质粒得受体细胞。

(4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点得 DNA序列,即多克隆接头(Polylinker),便于多种外源基因得重组,同时删除重复得酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因得准确插入。

(5)根据外源基因克隆得不同要求,分别加装特殊得基因表达调控元件。

基因工程基础知识复习归纳

基因工程基础知识复习归纳

基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体〔供体〕的基因与载体在体外进展拼接重组,然后转入另一种生物体〔受体/宿主〕内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。

2.基因工程概念的开展:遗传工程→DNA重组技术→分子/基因克隆〔Molecular/Gene→基因工程→基因操作。

应用领域以“基因工程〞、“DNA重组〞为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因〔供体〕:外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子〔克隆载体、表达载体〕。

宿主〔受体〕:,能摄取外源DNA、并能使其稳定维持的细胞〔组织、器官或个体〕。

4.基因工程的根本步骤〔切、接、转、增、检〔大肠杆菌是中心角色〕〔1〕目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,别离出带有目的基因的DNA片断。

〔2〕重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记〔抗菌素抗性〕的载体分子上。

〔3〕重组体的转化:将重组体〔载体〕转入适当的受体细胞中。

〔4〕克隆鉴定:摘要转化成功的细胞克隆〔含有目的基因〕。

〔5〕目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。

第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。

限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因工程基础知识梳理(一)
一、DNA重组技术的基本工具
基因工程又叫_______,指按照人们的愿望,进行严格的设计,通过体外DNA 重组和_______等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

其操作水平是在_______上进行设计和施工,操作环境是在生物体外。

1.限制性核酸内切酶——“分子手术刀”
(1)主要来源:_____生物。

(2)特点:能够识别DNA特定的_______,切开两个核苷酸之间的_____。

(3)DNA末端:限制酶切割DNA产生的DNA末端有两种形式:_____和_____。

2.DNA连接酶——“分子缝合针”
(1)作用:将双链___“缝合”起来,恢复被限制酶切开的两个核苷酸之间的_____。

(2)种类
①E·coli DNA连接酶:只能缝合DNA的______。

②T4DNA连接酶:即可缝合DNA的黏性末端,又可缝合双链DNA的_____。

3.基因进入受体细胞的载体——“分子运输车”
(1)载体的种类
①质粒:是一种裸露、结构简单、独立于细菌拟核DNA之外,并具有_____能力的_____。

②_____的衍生物。

③动植物病毒。

(2)质粒载体的特点
①能够在细胞内_______。

②具有一个或多个_______,便于供外源DNA片段插入其中。

③具有特殊的_______,供重组DNA的鉴定和选择。

(3)质粒载体的处理:真正被用作载体的质粒,都必须在天然质粒的基础上进行__________。

二、基因工程的基本操作程序
1.目的基因的获取
(1)目的基因:指编码蛋白质的_____。

(2)获取目的基因的方法
①从基因文库中获取目的基因
a.基因文库的含义:将含有某种生物不同基因的许多_____,导入_____的群体中储存,各个受体菌分别含有这种生物的不同基因,称为基因文库。

b.基因文库和种类
(ⅰ)基因组文库:含有一种生物的_____基因
(ⅱ)部分基因文库:含有一种生物的_____基因
c.目的基因的获取依据:
(ⅰ)基因的_____序列;
(ⅱ)基因的功能;
(ⅲ)基因在染色体上的位置;
(ⅳ)基因的_____产物mRNA;
(ⅴ)基因的翻译产物蛋白质。

②利用PCR技术扩增目的基因
a.PCR的含义:是一项在生物体外_____特定DNA片段的核酸合成技术。

b.条件:已知基因的_____。

c.过程:目的基因受热形成_____,与引物结合,在_____的作用下延伸形成DNA。

d.方式:指数扩增=2n(n为扩增循环的次数)
③人工合成法:若基因较小、_____序列已知,可以人工合成。

2.基因表达载体的构建
(1)表达载体的组成:目的基因+_____+终止子+标记基因。

(2)表达载体的功能
①使目的基因在受体细胞中稳定存在,并且_____给下一代。

②使目的基因_____和发挥作用。

(3)启动子:位于基因的_____,它是_____识别和结合的部位,驱动基因转录产生mRNA。

(4)终止子:位于基因的尾端,终止_____。

(5)标记基因:_____是否含有目的基因。

3.将目的基因导入受体细胞
转化的含义:目的基因进入受体细胞内,并在受体细胞内维持_____的过程。

(1)将目的基因导入植物细胞方法:
①农杆菌转化法
a.农杆菌特点:易感染_____植物和裸子植物,对大多数单子叶植物没有感染能力;Ti质粒的_____可转移至受体细胞,并整合到受体细胞的染色体DNA上。

b.转化过程:目的基因插入_____→农杆菌→导入植物细胞→稳定维持和表达
②基因枪法。

③花粉管通道法。

(2)将目的基因导入动物细胞
①方法:_____注射技术。

②操作程序:目的基因表达载体提纯→取卵(受精卵)→显微注射→_____→新性状的动物。

(3)将目的基因导入微生物细胞
①原核生物特点:繁殖快、多为_____、遗传物质少。

②转化:_____处理细胞→感受态细胞→表达载体与感受态细胞混合→_____细胞吸收DNA分子。

4.目的基因的检测与鉴定
(1)检测
①方法:采用__________技术,抗原-抗体杂交技术。

②内容:
a.检测转基因生物的_____上的目的基因。

b.检测目的基因是否转录出了mRNA。

c.检测目的基因是否翻译成蛋白质。

(2)鉴定:_____鉴定、抗病鉴定等。

【答案】
一、基因重组技术转基因DNA分子水平
1.原核核苷酸序列磷酸二酯键黏性末端平末端
2.DNA片段磷酸二酯键黏性末端平末端
3.自我复制双链环状DNA分子λ噬菌体自我复制限制酶切割位点遗传标记基因人工改造
二、1.结构基因DNA片段受体菌所有一部分核苷酸转录复制核苷酸序列单链DNA DNA聚合酶核苷酸
2.启动子终止子遗传表达首端RNA聚合酶mRNA的转录鉴别受体细胞
3.稳定和表达双子叶T-DNA Ti-质粒的T-DNA上显微移植到雌性动物体内单细胞用Ca2+促感受态
4.DNA分子杂交染色体DNA抗虫。

相关文档
最新文档