小学数学奥林匹克竞赛题解(100题)
小学六年级数学奥林匹克竞赛题(含答案)
![小学六年级数学奥林匹克竞赛题(含答案)](https://img.taocdn.com/s3/m/e635e3b46529647d27285279.png)
小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛.结果不低于80分的人数比80分以下的人数的4倍还多2人.及格的人数比不低于80分的人数多22人.恰是不及格人数的6倍.求参赛的总人数?解:设不低于80分的为A人.则80分以下的人数是(A-2)/4.及格的就是A+22.不及格的就是A+(A-2)/4-(A+22)=(A-90)/4.而6*(A-90)/4=A+22.则A=314.80分以下的人数是(A-2)/4.也即是78.参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思.为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1.则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1.则原来应收入1x元.而现在增加了原来的五分之一.就应该再*(1+5/1).减缩后得到(1+1/5x)}如此计算后得到总收入.使方程左右相等甲乙在银行存款共9600元.如果两人分别取出自己存款的40%.再从甲存款中提120元给乙。
这时两人钱相等.求乙的存款答案取40%后.存款有9600×(1-40%)=5760(元)这时.乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖.如果增加10颗奶糖后.巧克力糖占总数的60%。
再增加30颗巧克力糖后.巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖.巧克力占总数的60%.说明此时奶糖占40%.巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力.巧克力占75%.奶糖占25%.巧克力是奶糖的3倍增加了3-1.5=1.5倍.说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球.小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6.我就比你多2个了。
小学数学奥林匹克竞赛试题及答案(五年级)
![小学数学奥林匹克竞赛试题及答案(五年级)](https://img.taocdn.com/s3/m/68d930f50d22590102020740be1e650e53eacf41.png)
小学数学奥林匹克竞赛试题及答案(五年级)小学数学奥林匹克竞赛试题及答案1.在下列算式中加一对括号后,算式的最大值是()。
7×9 + 12÷3 - 2A。
75.B。
147.C。
89.D。
90答案:B。
1472.已知三角形的内角和是180度。
一个五边形的内角和应是(。
)度。
A。
500.B。
540.C。
360.D。
480答案:D。
4803.甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数。
那么甲数是(。
)。
A。
1.75.B。
1.47.C。
1.45.D。
1.95答案:C。
1.454.一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元。
顾客应退回的瓶钱是(。
)元。
A。
0.8.B。
0.4.C。
0.6.D。
1.2答案:C。
0.65.两数相除得3余10,被除数、除数、商与余数之和是143,这两个数分别是(。
)和(。
)。
A。
30和100.B。
110和30.C。
100和34.D。
95和40答案:B。
110和306.今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁?A。
16.B。
11.C。
9.D。
10答案:C。
97.一个两位数除以250,余数是37,这样的两位数是(。
)。
A。
17.B。
38.C。
71.D。
91答案:D。
918.把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成(。
)段。
A。
13.B。
12.C。
14.D。
15答案:A。
139.把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积(。
)。
A。
12.B。
18.C。
10.D。
11答案:B。
1810.一昼夜钟面上的时针和分针重叠(。
)次。
A。
23.B。
12.C。
20.D。
13答案:C。
2011.某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台,求四月份比原计划超产多少台机器?A。
全国小学四年级奥林匹克数学竞赛试题及答案
![全国小学四年级奥林匹克数学竞赛试题及答案](https://img.taocdn.com/s3/m/d79ee8fa5ff7ba0d4a7302768e9951e79b896973.png)
全国小学四年级奥林匹克数学竞赛试题及答案在四年级奥赛之前,认真的去做一系列的试题卷也是一种高效率的。
带来了全国小学奥林匹克竞赛试题及参考答案,希望对你有帮助。
一、填空:(30分)1、300×48的积是一个( )位数,省略万后面的尾数约是( )。
(2分)2、过直线外一点可以画( )条直线与这条直线垂直,可以画( )条直线与这条直线平行,可以画( )条直线与这条直线相交。
(3分)3、在内填上“>”“<”或“=” 。
(3分)920÷23 38 210×10 21×100 19×560 20×5604、一个有余数的除法算式,商和除数都是25,要使余数最大,被除数是( )。
(2分)5、两个数相除商是7,余数是29,除数最小是( ),被除数最小是()。
(3分)6、括号里最大能填几?(3分)40×( )< 236 ( )×86< 290 51×( )<4037、根据运算定律填空。
(3分)28×15+15×72= 15 ×( )25×44= 25 ×( )5×86×20= 86 ×( )8、一个数四舍五入后是10万,这个数最大是( ),最小是( )。
(2分)9、钟面上11时,时针和分针成( );3时,时针和分针成( );5时,时针和分针成( )。
(填上“直角”、“锐角”、“钝角”) (3分)10、31 327≈32万,里最小能填( );(1分)7 1734594≈7亿,里最大能填( )。
(1分)11、如右图,∠1=∠2=∠3,∠1=( )°。
(2分)12、如右图,∠4=45°,∠5=( )°,∠6=( )°。
(2分)二、判断:(对的在后面括号里打“√”,错的打“×”,5分)1、[345-(87+28)]÷23=345-(87+28)÷23………( )2、一、十、百、千、万都是计数单位。
小学四年级数学奥林匹克竞赛题及分析
![小学四年级数学奥林匹克竞赛题及分析](https://img.taocdn.com/s3/m/dfa84bfa4bfe04a1b0717fd5360cba1aa8118caa.png)
小学四年级数学奥林匹克竞赛题及分析统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
三年级奥林匹克数学竞赛试题及答案
![三年级奥林匹克数学竞赛试题及答案](https://img.taocdn.com/s3/m/216da0c66394dd88d0d233d4b14e852458fb39ba.png)
三年级奥林匹克数学竞赛试题及答案1、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。
03、同学们进行广播操比赛,全班正好排成相等的6行。
小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。
第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。
如果把这根木棒锯成相等的5段,一共要( )分钟。
【解析】把这根木棒锯成相等的5段,只需要锯4次,每次要2分钟,所以一共需要4×2=8分钟。
3年级数学奥林匹克竞赛题
![3年级数学奥林匹克竞赛题](https://img.taocdn.com/s3/m/c7236a381fd9ad51f01dc281e53a580216fc5022.png)
3年级数学奥林匹克竞赛题一、计算类1. 题目:计算1 + 2 + 3+…+ 98+99+100。
解析:我们可以使用等差数列求和公式:公式,这里公式(表示项数),公式(首项),公式(末项)。
所以公式。
2. 题目:9999+999+99+9。
解析:把每个数凑整,公式,公式,公式,公式。
则原式公式公式公式。
二、图形类1. 题目:一个长方形的长是12厘米,宽是8厘米,如果把长增加3厘米,宽增加2厘米,这个长方形的面积增加了多少平方厘米?解析:原来长方形的面积公式平方厘米。
长增加3厘米后变为公式厘米,宽增加2厘米后变为公式厘米。
新长方形的面积公式平方厘米。
面积增加了公式平方厘米。
2. 题目:有一个正方形花坛,边长为10米。
在它的四周铺一条宽为1米的小路,求小路的面积。
解析:大正方形的边长为公式米(因为小路宽1米,两边都要加)。
大正方形的面积公式平方米。
花坛的面积公式平方米。
小路的面积公式平方米。
三、逻辑推理类1. 题目:甲、乙、丙三人分别是医生、教师和警察。
已知甲比教师矮,丙比警察高,医生比乙矮。
那么甲、乙、丙三人分别是什么职业?解析:由“甲比教师矮”,可知甲不是教师;由“丙比警察高”,可知丙不是警察;由“医生比乙矮”,可知乙不是医生。
我们来整理信息,因为丙比警察高,所以丙的身高大于警察。
又因为医生比乙矮,所以乙的身高大于医生。
再结合甲比教师矮,我们可以列出身高的大致顺序:乙>医生,丙>警察,甲<教师。
所以丙是医生,乙是警察,甲是教师。
2. 题目:A、B、C、D四个小朋友进行乒乓球单循环比赛(每两个人都要赛一场)。
到现在为止,A已经赛了3场,B赛了2场,C赛了1场,D赛了几场?解析:A赛了3场,说明A和B、C、D都比赛过了。
C只赛了1场,那就是和A赛的。
B赛了2场,是和A、D赛的(因为C已经和A赛过了,所以B的另一场只能和D赛)。
所以D赛了2场,分别是和A、B。
小学数学奥林匹克试题及答案
![小学数学奥林匹克试题及答案](https://img.taocdn.com/s3/m/9518bfad50e79b89680203d8ce2f0066f53364f3.png)
小学数学奥林匹克试题及答案小学数学奥林匹克试题预赛(A)卷1.计算:$(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=\_\_\_\_\_\_\_\_\_\_\_$.2.计算:$\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{ 1}{6}+\dfrac{1}{7}=\_\_\_\_\_\_\_\_\_\_\_$.3.用两个3,一个1,一个2可组成种种不同的四位数,这些四位数共有$\_\_\_\_\_\_\_\_\_\_\_$个.4.在一本数学书的插图中,有100个平行四边形。
80个长方形。
40个菱形.这本书的插图中正方形最多有$\_\_\_\_\_\_\_\_\_\_\_$.5.如下图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,则图中阴影(三角形BFD)部分的面积为$\_\_\_\_\_\_\_\_\_\_\_$.6.在右上图中,三个圆的半径分别为1厘米、2厘米、3厘米,AB和CD垂直且过这三个圆的共有圆心O.图中阴影部分面积与非阴影部分的面积之比是$\_\_\_\_\_\_\_\_\_\_\_$.7.在下式的圆圈和方框中,分别填入适当的自然数,使等式成立.方框中应填$\_\_\_\_\_\_\_\_\_\_\_$.circ+7)\div 5-6\times 2=\square$$8.圆珠笔和铅笔的价格比是4:3.20支圆珠笔和21支铅笔共用71.5元,则圆珠笔的单价是每支$\_\_\_\_\_\_\_\_\_\_\_$元.9.将一个四位数的数字顺序颠倒过来,得到一个新的四位数.如果新数比原数大7992,那么所有符合这样条件的四位数中原数最大的是$\_\_\_\_\_\_\_\_\_\_\_$.10.两个带小数相乘,乘积四舍五入以后是22.5.已知这两个数都只有一位小数,且个位数字都是4,则这两个数的乘积四舍五入前是$\_\_\_\_\_\_\_\_\_\_\_$.11.下面三个正方形内的数有相同的规律,请你找出它们的规律,并填出B,C,然后确定A,那么A是$\_\_\_\_\_\_\_\_\_\_\_$.begin{matrix}9 & 1 \\2 &3 &。
小学数学奥林匹克竞赛真题集锦及解答
![小学数学奥林匹克竞赛真题集锦及解答](https://img.taocdn.com/s3/m/4e50a6396d85ec3a87c24028915f804d2b1687c4.png)
小学数学奥林匹克竞赛真题集锦及解答一、填空题1.三个连续偶数,中间这个数是m,则相邻两个数分别是___m-2____和___m+2_ __. 2.有一种三位数,它能同时被2、3、7整除,这样的三位数中,最大的一个是____966___,最小的一个是____126____.解题过程:2×3×7=42;求三位数中42的倍数126、168、 (966)3.小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是_____9____岁和____16____岁.解题过程:144=2×2×2×2×3×3;9、16=14.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,那么这个四位数是____1210___.5.2310的所有约数的和是__6912____.解题过程:2310=2×3×5×7×11;约数和=1+2×1+3×1+5×1+7×1+116.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有____11____个.解题过程:2008-10=1998;1998=2×33×37;约数个数=1+1×1+3×1+1=16个其中小于10的约数共有1,2,3,6,9;16-5=11个7.从1、2、3、…、1998、1999这些自然数中,最多可以取多少个数,才能使其中每两个数的差不等于4__ 1000 __.解题过程:1,5,9,13,……1997500个隔1个取1个,共取250个2,6,10,14,……1998500个隔1个取1个,共取250个3,7,11,15,……1999500个隔1个取1个,共取250个4,8,12,16,……1996499个隔1个取1个,共取250个8.黑板上写有从1开始的若干个连续的奇数:1,3,5,7,9,11,13…擦去其中的一个奇数以后,剩下的所有奇数之和为1998,那么擦去的奇数是____27____.解题过程:1+3+5+……+2n-1=n2;45×45=2025;2025-1998=279.一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位从左往右数数字是_____5____,商的个位数字是_____6____,余数是____5_____.解题过程:……3÷13=256410 256410……10.在小于5000的自然数中,能被11整除,并且数字和为13的数,共有____18____个.解题过程:能被11整除的条件是:奇数位数字和与偶数位数字和相差为11的倍数; 1位数不满足条件;2位数也不满足条件各位数字应相等,数字和不等于13;应为3或4位数;13=12+1;偶数位数字和=1,奇数位数字和=12时,共有14个;偶数位数字和=12,奇数位数字和=1时,共有4个;14+4=18个11.设n是一个四位数,它的9倍恰好是其反序数例如:123的反序数是321,则n=___1089___.解题过程:千位只能是1;个位只能是9;百位只能是0或1;如百位是1,则十位必须为0,但所得数1109不满足题意;如百位是0,则十位必须为8,得数1089满足题意12.555555的约数中,最大的三位数是___555____.解题过程:555555=3×5×11×37×91;3×5×37=55513.设a与b是两个不相等的自然数,如果它们的最小公倍数是72,那么a与b之和可以有____17____种不同的值.解题过程:72=2×2×2×3×3;a=72,b=1+3×1+2-1=12-1=11;a=36,b=8或24;a=24,b=9或18;a=18,b=8;a=9,b=8;11+6=1714.小明的两个衣服口袋中各有13张卡片,每张卡片上分别写着1,2,3,……,13.如果从这两个口袋中各拿出一张卡片来计算它们所写两数的乘积,可以得到许多不相等的乘积,那么,其中能被6整除的乘积共有____21____个.解题过程:6×1,2,3,……13 共13个;12×7,8,9,……13=6×14,16,18,……26 共7个;9×10=6×15 共1个; 13+7+1=21个15.一列数1,2,4,7,11,16,22,29,…这列数的组成规律是第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推.那么这列数左起第1992个数除以5的余数是____2_____.解题过程:a 2-a 1=1;a 3-a 2=2;……a n-1-a n -2=n-2;a n -a n-1=n-1;a n -a 1=1+2+3+……+n-1=nn-1/2;a n = nn-1/2+1;a 1992=1992×1992-1/2+1=996×1991+1=995+1×1990+1+116.两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_ 20或40 _. 解题过程:a 、b=5;5|a,5|b ;a=5,b=45或a=15,b=3517.将一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,得到的和恰好是某个自然数的平方,这个和是____121___.解题过程:和可能为两位数,也可能为三位数,但肯定是11的倍数,即11的平方. 18.100以内所有被5除余1的自然数的和是____970___.解题过程:1+6+11+16+……91+96=1+96×20÷2=97019.9个连续的自然数,它们都大于80,那么其中质数至多_____4____个.解题过程:9个连续的自然数,末尾可能是0-9,末尾是0、2、4、6、8的一定被2整除,末尾是5 的一定被5整除,每连续3个自然数中一定有一个是3的倍数,只有末尾是1、3、7、9的数可能是质数.于是质数只可能在这5个连续的奇数中,所以质数个数不能超过420.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是___961____.解题过程:自然数的因数都是成对出现的,比如1和本身是一对,出现奇数个因数的时候是因为其中有一对因数是相等的,即这个自然数是完全平方数.1000以内最大的完全平方数是 312=961,所以这个希望数是 96121.两个数的最大公约数是21,最小公倍数是126.这两个数的和是__105或147__. 解题过程:126=21×2×3;这两个数是42和63,或21和12622.甲数是36,甲乙两数的最小公倍数是288,最大公约数是4,乙数应该是____32____. 解题过程: 4 | 36 4×8=3236÷4=9 288÷4÷9=823.一个三位数能同时被2、5、7整除,这样的三位数按由小到大的顺序排成一列,中间的一个是___560____.解题过程:2×5×7=70;70×2,3,4,……13,14=140,210,280,……910,98024.有四个互不相等的自然数,最大数与最小数的差等于4,最小数与最大数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是____30____.解题过程:最小数、最大数均为奇数,中间有一个偶数,4个数和为11,分别为1、2、3、525.两个整数相除得商数是12和余数是26,被除数、除数、商数及余数的和等于454,除数是____30____.解题过程:设除数是X,则12X+26+X+12+26=454;X=3026.在1×2×3×…×100的积的尾部有____21___个连续的零.解题过程:尾数为5的共10个,尾数1个0的9个,2个0的1个,共21个027.有0、1、4、7、9五个数字,从中选出四个数组成一个四位数例如1409,把其中能被3整除的这样的四位数,从小到大排列起来,第5个数的末位数字是____9_____.解题过程:1047、1074、1407、1470、1704、1740、4017、4071、4107、4170……1479、1497、1749、1794……28.一些四位数,百位数字都是3,十位数字都是6,并且他们既能被2整除又能被3整除.甲是这样四位数中最大的,乙是最小的,则甲乙两数的千位数字和个位数字共四个数字的总和是____18____.解题过程:求36中能被3整除的偶数;甲为9366,乙为1362;9+6+1+2=1829.把自然数按由小到大的顺序排列起来组成一串数:1、2、3、…、9、10、11、12、…,把这串数中两位以上的数全部隔开成一位数字,组成第二串数:1、2、…、9、1、0、1、1、1、2、1、3、….则第一串数中100的个位数字0在第二串数中是第____192___个数.解题过程:1-9共9个,10-99共180个,100共3个30.某个质数与6、8、12、14之和都仍然是质数,一共有_____1____个满足上述条件的质数.解题过程:除2和5以外,其它质数的个位都是1,3,7,9;6,8,12,14都是偶数,加上唯一的偶数质数2和仍然是偶数,所以不是2;14加上任何尾数是1的质数,最后的尾数都是5,一定能被5整除;12加上任何尾数是3的质数,尾数也是5;8加上任何尾数是7的质数,尾数也是5;6加上任何尾数是9的质数,尾数也是5;所以,这个质数的末位一定不是1,3,7,9;只有5符合31.已知a与b的最大公约数是12,a与c的最小公倍数是300,b与c的最小公倍数也是300.那么满足上述条件的自然数a、b、c共有____30____组.例如a=12,b=300,c =300,与a=300,b=12,c=300是不同的两个自然数组解题过程:∵a,b=12,∴a=12m,b=12nm,n=1或5或25,且m,n=1;∵a,c=300,b,c=300,∴c=25kk=1,2,3,4,6,12;当m=1,n=1时,a=12,b=12,c=25k当m=1,n=5时,a=12,b=60,c=25k当m=1,n=25时,a=12,b=300,c=25k当m=5,n=1时,a=60,b=12,c=25k当m=25,n=1时,a=300,b=12,c=25k故有30组32.从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是___1331___.解题过程:11×11×11=133133.在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3.继续这样求和,这样填写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是___1990___.解题过程:1,9,|8,9,7,6,3,9,2,1,3,4,7,1,|8,9,7,6,3,……398-2=396;396÷12=33;8+9+7+6+3+9+2+1+3+4+7+1=60;60×33+10=1990二、判断题1.两个连续整数中必有一个奇数一个偶数. √2.偶数的个位一定是0、2、4、6或8. √3.奇数的个位一定是1、3、5、7或9. √4.所有的正偶数均为合数. ×5.奇数与奇数的和或差是偶数. √6.偶数与奇数的和或差是奇数. √7.奇数与奇数的积是奇数. √8.奇数与偶数的积是偶数. √9.任何偶数的平方都能被4整除. √10.任何奇数的平方被8除都余1. √11.相邻偶数最大公约数为2,最小公倍数为它们乘积的一半. √12.任何一个自然数,不是质数就是合数. ×13.互质的两个数可以都不是质数. √14.如果两个数的积是它们的最小公倍数,这两个数一定是互质数. √三、计算题1.能不能将1505;21010写成10个连续自然数之和如果能,把它写出来;如果不能,说明理由.解题过程:S=n+n+1+n+2+n+3+n+4+n+5+n+6+n+7+n+8+n+9=10n+45一定是奇数1505=45+46+47+48+49+50+51+52+53+5421010是偶数,不能写成10个连续自然数之和2.1从1到3998这3998个自然数中,有多少个能被4整除2从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除解题过程:98÷4=999个 (2)2考虑个位,选法有10种;十位,选法有10种;百位选法有10种;选定之后个位、十位、百位数字之和除以4的余数有3种情况,余0、余1、余2、余3,对应这四种在千位上刚好有一种与之对应,共有1000个;1000-1=999个3.请将1,2,3,…,99,100这一百个自然数中既是奇数又是合数的自然数排成一行,使每两个相邻的数都不互质若一行写不下,可移至第二行接着写,若第二行仍写不下,可移至第三行接着写.解题过程:9,15,21,27,33,39,45,51,57,63,69,75,81,87,93,9915,25,35,55,65,85,9521,35,49,77,9133,55,77,9925,35,55,65,85,95;15,9,21,27,33,39,45,51,57,63,69,75,81,87,93,99;77,91,494.一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.解题过程:设这个数为n,除以9的余数r≤8,所以除以8得到的商q≥13-8=5,且q≤13n=8q+k=9p+r==>k=9p+r-8p=9p+r-8×13-r=9×p+r-104=4q=5,n=8×5+4=44q=6,n=8×6+4=52q=7,n=8×7+4=60q=8,n=8×8+4=68q=9,n=8×9+4=76q=10,n=8×10+4=84q=11,n=8×11+4=92q=12,n=8×12+4=100q=13,n=8×13+4=1085.有红、黄、蓝、绿四种颜色的卡片,每种颜色的卡片各有3张.相同颜色的卡片上写相同的自然数,不同颜色的卡片上写不同的自然数.老师把这12张卡片发给6名同学,每人得到两张颜色不同的卡片.然后老师让学生分别求出各自两张卡片上两个自然数的和.六名同学交上来的答案分别为:92、125、133、147、158、191.老师看完6名同学的答案后说,只有一名同学的答案错了.问:四种颜色卡片上所写各数中最小数是多少解题过程:设四张卡片上的数从小到大分别为A、B、C、D,则六位同学所计算的分别为A+B、A+C、A+D、B+C、B+D、C+D这6个和数,且最小的两个依次为A+B、A+C,最大的两个依次为C+D、B+D.A+B+C+D=A+C+B+D=A+D+B+C;而92+191=283=125+158,133+147=280≠283;所以,A+B=92,A+C=125,B+D=158,C+D=191;133、147中有一个不正确.若147是正确的,则B+C=147,A+D=283-147=136.C-B=A+C-A+B=125-92=33 ==> C=90,B=57,A=92-57=35,D=191-90=101若133是正确的,则A+D=133,B+C=283-133=150.C-B=A+C-A+B=125-92=33 ==> B=50,C=83,A=92-50=42,D=191-83=108所以,四种颜色卡片上所写各数中最小数是35或42.6.有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.说明理由解题过程:设这三个数字从小到大分别为A、B、C,显然,它们互不相等且都不等于0.则222×A+B+C=2886 ==> A+B+C=2886÷222=13百位数为1是最小的,另两个数分别为3和9;所以最小的三位数为7.求小于1001且与1001互质的所有自然数的和.解题过程:1001=7×11×131+2+…+1000=1+1000×1000÷2=5005007+14+21+…+994=7+994×142÷2=7107111+22+…+990=11+990×90÷2=4504513+26+…+988=13+988×76÷2=3803877+154+231+…+924=77+924×12÷2=600691+182+273+…+910=91+910×10÷2=5005143+286+429+…+858=143+858×6÷2=3003500500-71071-45045-38038+6006+5005+3003=3603608.三张卡片,在它们上面各写一个数字如图.从中抽出一张、二张、三张,按任意次序排列起来,可以得到不同的一位数、二位数、三位数.请你将其中的质数都写出来.解题过程:2、3、13、23、319.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,每一个数都是前两个数的和,也就是:1,1,2,3,5,8,13,21,34,55,…….问:这串数的前100个数是包括第100个数有多少个偶数解题过程:100÷3=33个 (1)10.从小到大写出5个质数,使后面的数都比前面的数大12.解题过程:5,17,29,41,5311.有15位同学,每位同学都有编号,它们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:1说得不对的两位同学,他们的编号是哪两个连续自然数2如果告诉你,1号写的数是五位数,请求出这个数.写出解题过程解题过程:1如果15号说的不对,那么这个数不能被15整除,则它不能被3或者5之一整除,即3号或者5号说的不对,这与相邻编号两位同学说的不对矛盾故而这个数能被15整除,同时也能被3和5整除.同理,如果14号不对,那么它不能被2或者7整除,矛盾.即这个数能被14整除,也能被2和7整除;同理,如果12号不对,那么它不能被4整除,矛盾.即这个数能被4和12整除.那么这个数能被25=10整除.将2到15中能被整除这个数的数划去,发现编号相邻的只有8和9,即8号和9号说的不对.21号写的数为N.N能被2^2 3 5 7 11 13 = 60060整除,不能被2^3或者3^2整除;而又已知N是五位数,故N=60060.12.一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到一个商是a见短除式1.又知这个自然数被17除余4,所得的商被17除余15,紧后得到一个商是a的2倍见短除式2,求这个自然数.解题过程:N=8×8×8a+7+1+1=17×17×2a+15+4==> a=3==> N=1993。
小学数学奥林匹克竞赛试题及答案(四年级)
![小学数学奥林匹克竞赛试题及答案(四年级)](https://img.taocdn.com/s3/m/03971e0c011ca300a7c3900c.png)
小学数学奥林匹克竞赛试题及答案(四年级)选择正确的答案:1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)10000 8.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。
新人教版小学一年级数学奥林匹克竞赛题(102题)
![新人教版小学一年级数学奥林匹克竞赛题(102题)](https://img.taocdn.com/s3/m/41baf1efa300a6c30d229fc3.png)
新人教版小学一年级数学奥林匹克竞赛题(102题)小学一年级数学奥林匹克竞赛题(102题)1.哥哥4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁?3.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人?4.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?5.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?6.有8个皮球,如果男生每人发一个,就多2个,如果女生每人发一个,就少2个,男生有多少人,女生有多少人?7.老师给9个三好生每人发一朵花,还多出1朵红花,老师共有多少朵红花?8.有5个同学投沙包,老师如果发给每人2个沙包就差1个,老师共有多少个沙包?9.刚刚有9本书,爸爸又给他买了5本,小明借去2本,刚刚还有几本书?10.一队小学生,平前面有8个学生比他高竺嬗?个学生比他矮,这队小学生共有多少人?11.小林吃了8块饼干后,小林现在有4块饼干,小林原来有多少块饼干?12.哥哥送给弟弟5支铅笔后,还剩6支,哥哥原来有几支铅笔?13.第二中队有8名男同学,女同学的人数跟男同学同样多,第二中队共有多少名同学?14.大华和小刚每人有10画片,大华给小刚2后,小刚比大华多几?15.猫妈妈给小白5条鱼,给小花4条鱼,小白和小花共吃了6条,它们还有几条?16.同学们到体育馆借球,一班借了9只,二班借了6只。
体育馆的球共减少了几只?17.明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。
布袋里原来有多少个白皮球,多少个花皮球?18.芳芳做了14朵花,晶晶做了8朵花,芳芳给晶晶几朵花,两人的花就一样多?19.妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈一共买回几个蛋?20.草地上有10只羊,跑走了3只白山羊,又来了7只黑山羊,现在共有几只羊?21.冬冬有5支铅笔,南南有9支铅笔,冬冬再买几支就和南南的一样多?22.小平家距学校2千米,一次他上学走了1千米,想起忘带铅笔盒,又回家去取。
小学数学奥林匹克竞赛试题 及答案(四年级)
![小学数学奥林匹克竞赛试题 及答案(四年级)](https://img.taocdn.com/s3/m/42e47041f342336c1eb91a37f111f18583d00caf.png)
小学数学奥林匹克竞赛试题及答案(四年级)1.解题思路:根据第一个等式得到△=12,代入第二个等式得到□=5,代入第三个等式得到○=30.2.解题思路:通过暴力枚举,可得到可用的数为4、5、6、8、9、10,共6个。
3.解题思路:每场比赛淘汰一支队伍,100支队伍淘汰99场,得到答案为B。
4.解题思路:将100分成7份,最多的一份为18,那么最少的一份为8,所以答案为B。
5.解题思路:设每个小朋友分到x块,那么总共有3x块饼干,剩下的饼干数为24-8=16块,所以有3x=16+x,解得x=8,答案为C。
6.解题思路:设小明再考y次,那么总共考了4+y次,总分为89×4+y×100,平均分为(89×4+y×100)/(4+y),要使平均分达到94分,得到不等式89×4+y×100≥94×(4+y),解得y≥5,答案为A。
7.解题思路:甲乙丙胜的场数相同,且甲胜丁,那么甲乙丙三人胜的场数只能是2,丁胜的场数为1,答案为C。
8.解题思路:探险家需要6×4=24天的食物和水,每个搬运工人只能运4天的食物和水,那么至少需要6名搬运工人,答案为D。
9.解题思路:根据图中的数学关系得到以下等式:13-1=12,2-1=1,4-2=2,3-1=2,2-4=-2,3-4=-1求得差数之和为12+1+2+2-2-1=14,答案为A。
10.解题思路:每个纵队长度为4米,共有45个纵队,相邻两排间有44个间隔,所以队伍共长4×45+44=196米,答案为D。
11.解题思路:根据比例关系得到10只母鸡在30天内生蛋30个,所以30只母鸡在30天内生蛋90个,答案为B。
12.解题思路:每个正方形有4个顶点,所以共有C(20,4)个方案,但是每个正方形会被重复计算4次,所以答案为C(20,4)/4=22.答案为C。
年五年级奥数竞赛精选100题
![年五年级奥数竞赛精选100题](https://img.taocdn.com/s3/m/abb4924428ea81c758f578c4.png)
123456789101112 … 19941995199,6 则这
19、在一次国际象棋的比赛中, 每两个人都要赛一场, 胜者得 2 分,平局两人各得 1 分,负者得 0 分.现
有五位同学统计了全部选手的总分,分别是
551, 552, 553,554, 555,但只有一个统计是正确的,则共
有 ______选手参赛。
)
人。
15、一个水池安装有 A 、B、C、D、E 五根水管,有的专门放水,有的专门进水。如果
用两根水管同时工作,将空池注满所用的时间如下表所示。
A、B
只供学习与交流
C、D
E、A
D、E B、C
资料收集于网络,如有侵权 请联系网站删除
2
6
10
3
15
如果用一根水管进水,要尽快把空池注满,那么应选用哪一根水管?
5、龟兔赛跑,全程 5.2 千米。兔子每小时跑 20 千米,乌龟每小时跑了 8 米。乌龟不停地跑,兔子边 跑边玩,它先跑 1 分钟,然后玩 6 分钟,又跑 2 分钟,又玩 12 分钟,再跑 3 分钟,然后又玩 18 分钟……
这样如此继续,问谁先到达终点?早到几分钟?
6、把自然数 1、2、3、4...... 的前几项顺次写下得到一个多位数 至少有十位,并且是 9 的倍数,那么它最少有几位数?
12345678910111213.....已知这个多位数
7、有一群小孩,他们中任意 5 个孩子的年龄之和比 50 少,所有孩子的年龄之和是 202,这群孩子至少有
几人?
8、甲乙两同学按先后顺序摆多米诺骨牌,要求摆成正方形,由于每人手里一次只能拿
10 块,故每次
每人摆 10 块。现已知最后一次甲仍然摆了 10 块,而乙不足 10 块,如果他们一共摆了 3000 多块,那么他
小学二年级数学奥林匹克竞赛题(附答案)
![小学二年级数学奥林匹克竞赛题(附答案)](https://img.taocdn.com/s3/m/1099ed0a2e60ddccda38376baf1ffc4ffe47e2a3.png)
小学二年级数学奥林匹克竞赛题(附答案)小学二年级数学奥林匹克竞赛题(附答案)1、用0、1、2、3能组成多少个不同的三位数?18个2、小华参加数学竞赛,共有10道赛题。
规定答对一题给十分,答错一题扣五分。
小华十题全部答完,得了85分。
小华答对了几题?(10×10-85)÷(10+5)=1题10-1=9题3、2,3,5,8,12,( 20 ),( 32 )4、1,3,7,15,(31 ),63,( 127 )5、1,5,2,10,3,15,4,( 20 ),( 5)6、○、△、☆分别代表什么数?(1)、○+○+○=18(2)、△+○=14(3)、☆+☆+☆+☆=20○=( 6) △=(8 ) ☆=( 5 )7、△+○=9 △+△+○+○+○=25△=( 2) ○=(7 )8、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?35÷4=8……3 丁丁9、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?56+128=184(元)10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?5分钟11.修花坛要用94块砖,?第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算)94-(36+38)=20(块)94-36-38=20(块)12.王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米?20-5=15(米)13.食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵?60-56+30=34(棵)14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元?41-3×6=23(元)15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本?89-25-38=27(本)16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵?126+126÷3=16817、1+2+3+4+5+6+7+8+9+10=( 55 )18、11+12+13+14+15+16+17+18+19=( 145 )19、按规律填数。
小学奥林匹克竞赛数学试卷
![小学奥林匹克竞赛数学试卷](https://img.taocdn.com/s3/m/30631d426ad97f192279168884868762caaebb95.png)
一、选择题(每题5分,共50分)1. 下列哪个数既是奇数又是质数?A. 4B. 9C. 15D. 172. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 16厘米B. 24厘米C. 32厘米D. 40厘米3. 小明有3个苹果,小红有5个苹果,他们一共有多少个苹果?A. 7个B. 8个C. 9个D. 10个4. 下列哪个图形是轴对称图形?A. 正方形B. 等边三角形C. 长方形D. 梯形5. 小华有一些红色和蓝色的球,红色球的数量是蓝色球的2倍,如果红色球有24个,那么蓝色球有多少个?A. 12个B. 16个C. 18个D. 20个6. 小明从1数到100,一共数了多少个数字?A. 99个B. 100个C. 101个D. 102个7. 下列哪个数是三位数?A. 25B. 250C. 2500D. 10008. 一个圆柱的底面半径是3厘米,高是5厘米,它的体积是多少立方厘米?A. 45πB. 90πC. 150πD. 180π9. 下列哪个数既是偶数又是3的倍数?A. 6B. 9C. 12D. 1510. 小刚有一些糖果,他吃掉了1/4,还剩下18颗,他原来有多少颗糖果?A. 24颗B. 30颗C. 36颗D. 42颗二、填空题(每题5分,共50分)11. 6 + 7 = ________,8 - 4 = ________,9 × 5 = ________,50 ÷ 5 =________。
12. 2 × 3 × 4 = ________,4 × 4 × 4 = ________,5 × 5 × 5 =________。
13. 一个正方形的边长是5厘米,它的周长是 ________ 厘米,面积是 ________ 平方厘米。
14. 一个长方形的面积是60平方厘米,长是10厘米,宽是 ________ 厘米。
小学数学奥林匹克竞赛裂项法(含答案)
![小学数学奥林匹克竞赛裂项法(含答案)](https://img.taocdn.com/s3/m/e18a37edf90f76c661371a78.png)
裂项法(一)同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。
(一)阅读思考例如1314112-=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:111111 1111n nnn nnn n n nn n n n-+=++-+ =+-+=+()()()()即11111 n n n n-+=+()或11111 n n n n ()+=-+下面利用这个等式,巧妙地计算一些分数求和的问题。
【典型例题】例1. 计算:119851986119861987119871988119941995⨯+⨯+⨯++⨯……+⨯+⨯+1 199519961 1996199711997分析与解答:1 1985198611985119861 1986198711986119871 1987198811987119881 199419951199411995⨯=-⨯=-⨯=-⨯=-……11995199611995119961199619971199611997⨯=-⨯=- 上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。
11985198611986198711987198811995199611996199711997⨯+⨯+⨯++⨯+⨯+… =-+-+-++-+-+=119851198611986119871198711988119951199611996119971199711985…… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。
例2. 计算:1111211231123100+++++++++++…… 公式的变式11221+++=⨯-…n n n ()当n 分别取1,2,3,……,100时,就有112121122231123234112342451121002100101=⨯+=⨯++=⨯+++=⨯+++=⨯ (1)11121123112100212223234299100210010121121231341991001100101211212131314199110011001101211101++++++++++=⨯+⨯+⨯++⨯+⨯=⨯⨯+⨯+⨯++⨯+⨯=⨯-+-+-++-+-=⨯-……………()()() =⨯==2100101200101199101例3. 设符号( )、< >代表不同的自然数,问算式1611=+<>()中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,1611=+<>()就变成1611-=<>(),与前面提到的等式11111n n n n -+=+()相联系,便可找到一组解,即1617142=+ 另外一种方法设n x y 、、都是自然数,且x y ≠,当111n x y=+时,利用上面的变加为减的想法,得算式x n nx y-=1。
第四届全国小学“数学奥林匹克之星”邀请赛竞赛试题(港版)(含答案)
![第四届全国小学“数学奥林匹克之星”邀请赛竞赛试题(港版)(含答案)](https://img.taocdn.com/s3/m/f42076fe700abb68a982fb20.png)
第四届全国小学“数学奥林匹克之星”邀请赛竞赛试题六年级试卷1. 123456+234567+345678+456789+567901+679012+790123+901234=( ). 2. (621126 +7172004 +458947 )×(7172004 +458947 +378207 )-(621126 +7172004 +458947 +378207 )×(7172004 +458947 )= ( ).3. 红、黄、蓝、白颜色的四面小旗,每次升起一面、两面、三面、四面所表示的信号不同,并且旗的上下顺序不同所表示的信号也不同,一共可以组成多少个不同的信号?4. 一副中国象棋,黑方有1 将、2 车、2 马、2 炮、2 士、2 象、5 卒共16个子,红方有1 帅、2 车、2 马、2 炮、2 士、2 相、5 兵共16个子.把全副棋子放在一个盒子内,至少要取出____个棋子来,才能保证有3个同样的子(例如3个车或3个炮等,但2 象1 相不是3个同样的子,2 卒1 兵也不是3个同样的子).5. 一桶农药,第一次倒出2/7然后倒回桶内120克,第二次倒出桶中剩下农药的3/8,第三次倒出320克,桶中还剩下80克,原来桶中有农药____克.6. 有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分追上丙.那么甲出发后需用____分钟才能追上乙.7. 某种商品,以减去定价的5%卖出,可得5250元的利润;以减去定价的2成5卖出,就会亏损1750元.这个物品的购入价是______元.8. 用1—6六个数字任意写出一个真分数,已知参加写的人中总有4个人写出的真分数一样大.那么,至少有_____人参加写. 密封线学校:年 级: 姓 名: 成绩:9.有一高楼,每上一层楼需2分钟,每下一层楼需1分30秒,小明家住底层,他从底层于12点25分开始上楼送信给住最高层的王老师,交信时用了1分钟,立即返回底层家中,此时时间是13点15分,这座高楼一共有_____层.10.育才小学六年级共有学生99人,每3人分成一个小组做游戏.在这33个小组中,只有1名男生的共5个小组,有2名或3名女生的共18个小组,有3名男生和有3名女生的小组同样多,六年级共有男生_____名.11.1,2,3,4,5,6每一个使用一次组成一个六位数abcdef,使得三位数abc,bcd,cde,def能依次被4,5,3,11整除.这个六位数是 .12.如图,ABCD是长方形,其中AB=8,AE=6,ED=3.并且F是线段BE的中点,G是线段FC的中点.三角形DFG(阴影部分)的面积是 .13.乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。
小学六年级数学奥林匹克竞赛题解析
![小学六年级数学奥林匹克竞赛题解析](https://img.taocdn.com/s3/m/5da64b918662caaedd3383c4bb4cf7ec4afeb617.png)
小学六年小学六年级数级数学奥林匹克竞赛题解析工程问题1.甲乙两个甲乙两个水管水管单独开,单独开,注满一池水,注满一池水,注满一池水,分别需要分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?管丙,问水池注满还是要多少小时?解:解:1/20+1/16=9/80表示甲乙的工作效率表示甲乙的工作效率9/80×9/80×55=45/80表示5小时后进水量小时后进水量1-45/80=35/80表示还要的进水量表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满小时注满答:5小时后还要35小时就能将水池注满。
小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此作,由于彼此施工施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的要求两队合作的天数天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x 天,则甲独做时间为(16-x )天)天1/20*(16-x )+7/100*x =1 x =10 答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?乙单独做完这件工作要多少小时? 解:解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量小时的工作量 (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥林匹克竞赛题解(100题)1. 计算1.23452 + 0.76552 +2.469× 0.7655=__________。
【答案】4【解析】注意到2.469=2×1.2345原式= (1.2345+0.7655)2 = 2 2= 42. 用3、4、5、7四张卡片可以组成24个不同的四位数,这24个四位数的平均数是__________。
【答案】5277.25 【解析】(3+4+5+7)×6×1111÷24=5277.253. A 、B 两数都恰含有质因数3和5,它们的最大公因数是75。
已知A 数有12个因数,B数有10个因数,那么A 、B 两数的和等于_________。
【答案】2550【解析】最大公因数75=3×52因为A 数有12个因数,所以A 数为33×52=675。
因为B 有10个因数,所以B 数为3×54=1875。
因此,A 、B 两数的和为675+1875=2550。
4. 将自然数1、2、3……依次写下来组成一个数:12345678910111213……,如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是_______。
【答案】36【解析】 被72整除,一定被4、8、9整除.因为要被4整除,末两位数只能是56,12,16,20,24,28,32,36,……123456,虽能被4整除,但不能被9整除,这是因它的各位数字之和不是9的倍数。
123……1112,各位数字之和是51,也不能被9整除。
1……1516,1……2324,1……3132因为这些数的末三位数不能被8整除,所以这些数也不能被8整除。
当写到36时,末三位数536能被8整除,各位数字之和是:45+10+45+20+45+7×3+(1+2+3+4+5+6)=163能被9整除,因此,写到36时,恰好是第一次能被72整除。
5. 只有一个约数的自然数叫做单位数,就是“1”。
有且只有两个约数的自然数叫质数(也叫素数),如2,3,5,7……。
有两个以上的约数的自然数叫做合数。
有且只有3个约数的自然数有什么特点?请你写出小于300的所有且只有3个约数的合数,这些数的平均数是__________。
【答案】7195【解析】 通过枚举选筛得,小于300的有且只有3个约数的全部合数是:4,9,25,49,121,169,289.通过找这些数的约数时发现,这些数不仅有且只有三个约数,而且还具有一个重要的特点:即这三个约数除1和它本身以外,还有一个约数是一个质数,这个质数的平方就是它所对应的合数本身。
其平均值为:6. 我们把像3和5、33和35这样的两个数都叫做两个连续的奇数。
已知自然数1111155555是两个连续奇数的乘积。
那么这两个连续奇数的和是________。
【答案】66668【解析】 根据两个连数奇数的乘积1111155555的个位上的数字是5,可知这两个奇数的个位上的数分别是3和5或5和7。
1111155555=3×5×11111×6667(分解) =(3×11111)×(5×6667)(组合) =33333×33335可见:这样的两个连续奇数的和为:33333+33335=66668。
7. 小明看一本故事书,第一天看了全书的61,第二天看了24页,第三天看的页数是前两天看的总数的150%,这时还有全书的41没有看,那么这本书一共有 页。
【答案】180【解析】61×150%=4124×150%=36(页) 即第三天看了全书的41又36(页),于是问题可解:(24+36)÷(1-61-41-41)=180(页)8. 将一批苹果装箱,如果装42箱,还剩下这批苹果的70%,如果装85箱,还剩1540个苹果,这批苹果共有 个。
【答案】3920 【解析】(箱)(个)9. 张先生向商店订购某一商品,每件定价100元,共订购60件。
张先生对商店经理说:“如果你肯减价,每减价1元,我就多订购3件”,商店经理算了一下,如果减价4%,由于张先生多订购,仍可获得原来一样多的总利润。
这件商品的成本是_______元。
【答案】76【解析】100×4%×3+60=72(件) 设这件商品的成本是x 元。
(100-x )×60=(96-x )×72 x =7610. 如图,有一个长方形路线图。
某住在A 处,他要去C 处。
可以先步行3分钟到E ,再乘车到C;也可以先步行8分钟到D ,再乘车到C 。
已知步行速度是乘车速度的110,两种方案到达C 处相差_______分钟。
【答案】4.5【解析】如图,将AE 段步行移到BE '段步行。
因此两种方案相差的时间转化为从B 步行到E '再乘车到C 与从A 步行到D 所相差的时'(8-3)-(8-3)×110=4.5(分)。
11. 甲、乙两人在相距100米的直跑道上来回慢跑,甲每秒钟跑2.6米,乙每秒钟跑2.4米。
他们分别在直跑道两端同时出发,慢跑了30分钟,在这段时间内两人相遇_______次。
【答案】45【解析】(2.6+2.4)×(60×30)÷100÷2=45(次)。
12. 如图,E 、F 分别是梯形ABCD 的下底BC 和腰CD 上的点,DF=FC ,并且甲、乙、丙三个三角形面积相等。
已知梯形ABCD 的面积是36平方厘米,那么图中阴影部分的面积是_______平方厘米。
【答案】14.4【解析】因为DF=FC,且S 乙=S 丙,所以四边形AECD 是平行四边形,S 阴=S 乙=S 丙=36÷5×2=14.4(平方厘米)。
13. 计算:__________【答案】105104【解析】原式14. 1,这个数是 。
【答案】【解析】情形一,如果该数大于1,3774-11=⎪⎭⎫ ⎝⎛÷ 情形二,如果该数小于1,1177411=⎪⎭⎫ ⎝⎛+÷ 15. 若A ,1A ,2A 都是质数,则A=_______。
( 1A 是指十位数字为1,个位数字为A 的两位数)【答案】3【解析】一位的质数只有2、3、5、7,要满足1A 和2A 都是质数,只有A=316.从1到2004这2004个正整数中,共有个数与四位数8866相加时,至少发生一次进位。
【答案】1940【解析】不发生进位,个位和十位可以是0、1、2、3,百位和千位可以是0、1。
对于1~2004之间的数,满足这样的条件的数有,,。
17.已知三个素数的积为它们的和的5倍,则它们分别是|、______、______。
【答案】2、5、7【解析】,所以必然有一个素数是5。
则,所以,,。
18.甲乙两个盒子共装了400多个球,如果甲给乙个,甲比乙少;如果乙给甲个,乙比甲少,则原来甲盒中有________个球,乙盒中有________个球。
【答案】227,221【解析】甲给乙x个球后,甲的球数与乙的球数之比是13:19,所以总球数必然是32的倍数。
乙给甲x个球后,乙的球数与甲的球数之比是11:17,所以总球数必然是28的倍数。
32和28的最小公倍数是。
又总球数为400多个,所以应为448。
所以。
甲有,乙有19.能被12和18整除,但不能被15和16整除的三位数共有_______个。
【答案】15【解析】12和18的最小公倍数是36,三位数中36的倍数有25个。
36与15的最小公倍数是180,三位数中180的倍数有5个,36与16的最小公倍数是144,三位数中144的倍数有6个,36、15和16的最小公倍数是720,三位数中720的倍数有1个。
所以满足条件的三位数有25-5-6+1 = 15个20.有一种电器,质量检测表明,其中10%可使用1000小时,30%可使用1200小时,40%可使用1500小时,20%可使用2000小时,这种电器平均可使用_______小时。
【答案】1460【解析】1000×10%+1200×30%×+1500×40%+2000×20%=146021.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点__________分。
【答案】55【解析设当前时刻是9点x分。
则5分钟后时针的位置为,所以x = 5522.甲乙相距300千米,一辆汽车从甲地到乙地,如果车速提高20%,可提前1小时到达,如果原速行驶a千米后,再将速度提高25%,也可提前1小时到达。
a是__________千米。
【答案】50【解析】原来车速为5,车速提高后为6,则原来所用时间为6小时,现在所用时间为5小时。
即原车速为50千米每小时。
提高25%后为62.5千米/每小时。
,所以 a = 5023. 朝阳小学五年级共有学生135人参加植树造林活动。
计划每个男生植树5棵,每个女生植树4棵,而实际上有的男生没有去,其他同学都按计划完成了自己的植树任务,同学们一共植树__________棵。
【答案】540【解析】的男生没有去相当于男生都去了但每人植树4棵。
故共植树24. 如右图,四边形ABCD 的面积是16平方厘米,其中AD=CD ,DE=BE ,AE=2厘米,那么四边形BCDE 的面积是__________平方厘米。
【答案】12【解析】作DF ⊥BC 于F ,又因为DE=BE ,所以四边形DEBF 是正方形;所以可得DE=DF ,又因为DA=DC ,所以RT △DAE ≌RT △DCF ,则这两个全等三角形的面积相等,所以正方形DEBF 的面积=四边形ABCD 的面积=16平方厘米,所以可得出正方形的边长是4厘米;又因为三角形ADE 的面积是2×4÷2=4平方厘米,据此可得四边形BCDE 的面积是16-4=12平方厘米。
25. 计算:=--172913059220935____________。
【答案】17292【解析】原式=EA172922319137462319137232695191371231972231375=⨯⨯⨯=⨯⨯⨯--=⨯⨯-⨯⨯-⨯⨯26. 乘积9199991999999999个个⨯的各位数字之和是__________。
【答案】17991【解析】9199991999999999个个⨯ =⎪⎪⎭⎫ ⎝⎛⨯100019990199991999-个个=919990199991999999000999个个个- =100089990199891998个个 所以,各位数字和是9×1998+8+1=17991。