镍系SBS加氢反应机理及加氢催化剂制备研究
镍基催化剂催化加氢研究进展
收稿日期:20201119基金项目:南京工程学院大学生科技创新基金项目(TB202002032)作者简介:杨梦晓(1998 ),女,本科生,主要研究方向为复合材料与工程;通讯作者:赵学娟(1987 ),女,博士,讲师,主要研究方向为负载型催化剂的开发及应用研究,E-mail:zhaoxj@㊂doi :10.16597/j.cnki.issn.1002154x.2021.02.007镍基催化剂催化加氢研究进展杨梦晓㊀邵爱文㊀刘子麒㊀刘玲珂㊀刘灏远㊀张家程㊀赵学娟∗(南京工程学院材料科学与工程学院,江苏南京211167)摘㊀要㊀镍基催化剂具有较高的热稳定性且对氢气有选择性,在催化领域有广泛的应用前景㊂本文首先介绍了镍基催化剂常见的制备方法,如共沉淀法㊁体积浸渍法㊁还原法㊁溶胶-凝胶法以及水热合成法,然后重点综述了镍基催化剂在顺酐加氢㊁芳香族加氢以及其他加氢领域的应用㊂关键词㊀镍㊀催化剂㊀制备方法㊀加氢中图分类号:O643㊀㊀㊀㊀文献标识码:AResearch Progress on Nickel-Based Catalysts for Catalytic HydrogenationYang Mengxiao㊀Shao Aiwen㊀Liu Ziqi ㊀Liu Lingke㊀Liu HaoyuanZhang Jiacheng㊀Zhao Xuejuan ∗(School of Materials Science and Engineering,Nanjing Institute of Technology,Jiangsu Nanjing 211167)Abstract ㊀Nickel-based catalysts have been widely applied to the field of catalysis due to their high thermalstability and selectivity to hydrogen.In this paper,the common preparation methods of nickel-based catalysts,such as coprecipitation,volume impregnation,reduction method,sol-gel method and hydrothermal synthesis are introduced.Then,the applications of nickel-based catalysts in hydrogenation of maleic anhydride,aromatic hydrogenation andother hydrogenation fields are reviewed.Keywords ㊀Ni㊀catalysts㊀preparation method㊀hydrogenation㊀㊀催化加氢是医药㊁炼油㊁精细化工及其他有机合成领域的核心技术,能节约能耗,减少环境污染,且具有显著的经济效益㊂在现代工业中,催化加氢技术的工业应用较晚,但其速度快㊁规模大,已经成为现代工业的重要组成部分㊂贵金属催化剂具有高效的催化活性和优良的选择性,在催化加氢领域中起着重要的作用,但贵金属资源有限㊁价格昂贵㊁无法大规模使用,因此用非贵金属催化剂代替贵金属催化剂已经成为必然趋势㊂由于镍基催化剂具有较高的热稳定性且对氢气有选择性[1],在非贵金属催化剂领域受到学者们的青睐,成为近几年广泛研究的对象㊂1㊀镍基催化剂的制备镍基催化剂在非贵金属催化领域占据了重要地位㊂目前,镍基催化剂的制备主要有共沉淀法㊁体积浸渍法㊁还原法㊁溶胶-凝胶法㊁水热合成法等㊂1.1㊀共沉淀法共沉淀法是一种应用较为广泛的催化剂制备方法,其主要流程是将催化剂载体和分散剂在去离子水中加热,再加入酸化的镍盐溶液和沉淀剂,进行老化㊁过滤㊁洗涤及烘干得到前驱体,将前驱体粉碎㊁煅烧㊁还原即可制得所需负载型催化剂[2]㊂其中分散剂的㊀2021,Vol.35,No.2㊀论文综述作用是保持反应体系的稳定性,常见沉淀剂有氢氧化物㊁草酸盐㊁硫化物和磷酸盐等㊂共沉淀法制备的催化剂具有更高的催化活性[3]和较高的选择性,但是缺点在于难以精确控制沉淀物的生成量㊂1.2㊀体积浸渍法利用体积浸渍法制备催化剂前首先需要确定载体的吸水率,得出使载体饱和溶解所需的去离子水的体积㊂具体过程是将镍盐溶于等体积的去离子水中,再将载体在溶液中浸渍并不断搅拌,接着干燥㊁焙烧㊁还原得到所需催化剂[4]㊂制备催化剂所需的载体主要有氧化铝类载体㊁硅胶类载体以及某些天然产物㊂体积浸渍法的缺点在于难以准确地确定载体的吸水率,使载体饱和溶解,但是具有原料消耗少,投入成本低的优点㊂1.3㊀还原法还原法又叫程序升温还原法,其主要制备流程为将相应的镍源㊁磷源与载体浸渍,后在空气中干燥㊁焙烧得到前驱体,在400ħ~1000ħ的氢气气氛中还原数小时,即可得到负载型磷化镍催化剂[5]㊂常用的镍源[6]有硝酸镍(Ni(NO3)2㊃6H2O)㊁氯化镍(NiCl2)㊁氢氧化镍(Ni(OH)2)等,常用的磷源有磷酸氢二铵((NH4)2HPO4)㊁次磷酸铵(NH4H2PO2)㊁次磷酸钠(NaH2PO3)㊂还原法制备催化剂的流程比较简单,但是制备所需温度较高,且制备时间较长㊂1.4㊀溶胶-凝胶法溶胶-凝胶法虽是催化剂制备领域较新的制备技术,但其发展迅速,目前已得到广泛应用㊂其主要流程为:选择合适的有机溶剂,在溶剂中加入络合剂,将溶液滴入溶有硝酸镍的溶液中,搅拌形成溶胶,加热搅拌后干燥数小时形成凝胶,烘焙后研磨得到所需催化剂[7]㊂无水乙醇是常用的有机溶剂,其它还包括苯乙烯㊁三氯乙烯㊁三乙醇胺等㊂络合剂在制备过程中可以促进凝胶化,常见的有机酸络合剂[8]有葡萄糖酸㊁柠檬酸㊁EDTA(乙二胺四乙酸)㊁酒石酸㊂此方法的优点在于所需温度较低,反应容易进行,而且在形成凝胶时反应物容易混合均匀,但是制备成本较高,制备周期长,仍需不断改进㊂1.5㊀水热合成法水热合成法是利用高温高压的条件,使溶液中的化学组分发生反应的过程㊂主要制备流程为在一定量的硝酸水合物中滴加氨水至pH=11~12,搅拌完全后,在水热反应釜中加热数小时,待反应完成且反应釜冷却至室温,用去离子水过滤㊁洗涤至中性,烘干后得到所需催化剂[9]㊂水热合成法相对于其他制备方法优点在于可直接得到结晶粉末,省去了后续研磨带来的杂质影响,效率较高㊂但是制备过程中所需温度较高,对设备有一定的依赖性㊂除上述制备方法外,镍基催化剂的制备方法还有蒸氨法㊁液相还原法㊁热分解法等㊂2㊀镍基催化剂在加氢领域的应用目前非贵金属催化剂催化加氢反应的研究已取得一定进展,其中镍基催化剂因其高分散度和适宜的粒度而具有最佳的催化活性与稳定性㊂2.1㊀顺酐加氢顺酐是一种重要的有机合成中间体㊂顺酐加氢的本质上是对羰基(C=O)的加氢,顺酐结构中含有两个C=O,性质活泼,加氢活化能低,所需反应条件温和㊂夏晓丽[10]等通过蒸氨法制备了掺杂不同含量Mo的页硅酸镍金属-酸双功能催化剂MoNi-PS㊂研究表明,掺杂Mo能显著提高Ni的还原性,增加催化剂表面Ni0的数量,大幅提高对顺酐中C=C和C=O 的加氢活性㊂随着Mo含量的增加,γ-丁内酯(GBL)的收率先增加后减少;当Mo含量为3wt%时,加氢催化性能最好;当温度为160ħ时,3MoNi-PS的顺酐的加氢性能达到最高;在压强5MPa的H2环境下反应3h,对顺酐的转化率可达到100%㊂由此可见,添加合适的元素可使镍催化剂的加氢活性增大㊂除此之外,催化剂的结构对加氢催化性能也有明显影响㊂赵丽丽[11]分别制备了单斜向和四方相混合晶相氧化锆负载型镍催化剂,并研究了其对顺酐的加氢性能影响㊂结果表明,单斜相ZrO2催化剂表面氧空位呈现相对缺电子状态,能有效活化碳氧双键,有利于C=O的加氢,而四方相ZrO2负载镍催化剂表面氧空位具有较高的电荷密度,呈相对富电子性质,难以有效地活化C=O基团,因而四方相ZrO2负载镍催化剂几乎没有C=O加氢活性㊂梁二艳[12]等采用体积浸渍法制备了Ni/ZrO2催化剂,研究其催化顺酐液相加氢性能㊂结果表明,当甲醇热反应时间为2h 时,催化剂对C=O的加氢活性最高;反应时间为3h,反应压力5MPa,反应温度为210ħ时,对于顺酐的转化率达100%㊂毛洁[13]等采用沉积沉淀法制备蒙脱土负载镍催化剂(Ni/MMT),考察反应条件对于其加氢催化顺酐的影响,结果表明,以乙酸酐作溶㊀杨梦晓等.镍基催化剂催化加氢研究进展㊀2021,Vol.35,No.2剂时,对于顺酐的加氢性能最佳,反应温度100ħ㊁反应时间3h㊁氢气压力2MPa,顺酐转化率达95%㊂2.2㊀芳香族加氢镍基催化剂不仅在顺酐加氢反应中效果显著,在芳香族加氢反应中也有较高的催化活性㊂芳香族化合物通常是一类带离域键苯环的化合物,苯环本身存在p-π共轭,活化能相对较高㊂虽然镍基催化剂能在芳香族加氢反应中提高苯环脱去取代基的效率,但是易引发反应体系中的副反应,因而如何提高加氢的转化率和选择性便成为其主要的研究方向㊂梁伟[18]等采用液相还原法制备了硅柱撑蒙脱土负载型双金属催化剂Mo-Ni/SPC,并研究了其在苯酚加氢脱氧反应中的性能㊂结果表明,在3MPa和623K条件下,Mo-Ni/SPC催化剂表现出优异的催化性能,苯酚转化率为98%,环己烷选择性约95%㊂李晨芮[17]采用浸渍法和热分解法制备了负载型磷化镍催化剂,研究其对于苯酚的加氢脱氧性能,研究表明,硅含量的增加会使苯酚转化率逐渐升高,当反应时间5h,反应温度为300ħ时,苯酚转化率达到100%㊂在镍基催化剂中,镍本身的粒径和含量也是一个不可忽视的影响因素,对催化剂加氢性能有重要影响㊂王建强[14]等采用浸渍-沉淀法制备了Ni-Y/Al2O3催化剂㊂研究表明Ni含量小于30wt%时,对硝基甲苯加氢的收率可达到50%以上㊂夏延洋[16]等采用溶胶-凝胶法和浸渍法制备了Ni/SiO2催化剂,研究其对于偏三甲苯的加氢脱烷基反应活性,结果表明,通过调整催化剂中还原镍的粒径可有效控制苯环加氢,在最佳反应条件下,10Ni/Si-2.0上偏三甲苯的转化率最高为29.4%,二甲苯的选择性为99.9%㊂王文静[15]等用化学还原法制得Ni-B催化剂,研究发现该催化剂是针对卤代芳胺和卤代硝基苯的特化型催化剂,既能保证活性,也能做到保护卤代基的目的,其脱卤率小于4%,优于其它Ni基催化剂㊂2.3㊀其它加氢王登豪[9]通过水热合成法制备了Cu-Ni/SiO2催化剂,通过调节铜镍摩尔比来调控其加氢性能,结果表明,在氢酯比为150㊁反应压力为2MPa㊁反应温度为200ħ㊁液时空速为0.5h-1的反应条件下,铜镍摩尔比为1ʒ1时催化剂Cu1Ni1/SiO2表现出了最佳的加氢催化性能,草酸二甲酯的转化率达到90%,且催化剂能稳定运行100h㊂钱潇奇[20]以层状页硅酸镍(Ni-PS-L)为前驱体,通过蒸氨和水热制备出结构稳定㊁粒子分布均匀的镍基催化剂,以传统方法制备成的镍基催化剂为对比,考察它们的5-羟甲基糠醛(5-HMF)加氢性能㊂结果表明,相比传统的镍基催化剂,蒸氨法和水热法制备得到的催化剂展现出更优异的5-HMF加氢性能,在373K㊁8h㊁1.5MPa H2的条件下,能得到100%的5-HMF转化率㊂3㊀结语镍基催化剂价格低廉,资源丰富,符合绿色可持续发展理念,在过去的几十年里,专家学者们对其进行了广泛的研究与探索㊂在催化加氢方面,镍基催化剂由于其价格低廉㊁催化效率高㊁具有良好的加氢活性等原因,已广泛应用于各种不饱和有机物的加氢反应㊂但是镍基催化剂在研究与应用中也存在一些问题,如催化剂在反应中容易产生积炭造成失活;高温下稳定性较差;催化剂的结构和性能之间的关系还需进一步深入研究;镍基催化剂催化加氢的反应机理研究不多等㊂参考文献[1]余海燕,李东魁,王娜.Fe-Ni双金属催化剂的研究进展[J].阴山学刊(自然科学版),2018,32(02):4952.[2]孙春晖,于海斌,陈永生等.高活性镍基加氢催化剂制备研究[J].无机盐工业,2017,49(03):7476. [3]张斌,张新波,许莉勇等.共沉淀法制备氧化铝负载铜催化剂及其在肉桂醛选择性加氢反应中的应用[J].过程工程学报,2012,12(04):690695.[4]刘飞.磷化镍催化剂的制备及其在糠醛选择性加氢反应中的应用[D].黑龙江大学,017.[5]李天敏,张君涛,申志兵等.负载型磷化镍催化剂的制备及其催化应用[J].工业催化,2019,27(09):1925.[6]于祺,牟玉强,佟铁鑫.还原法制备磷化镍催化剂的研究进展[J].精细石油化工进展,2019,20(06):4750.[7]Karaismailoglu M,Figen HE,Baykara SZ.Hydrogenproduction by catalytic methane decomposition over yttria doped nickel based catalysts.2019,44(20):99229929.[8]张成,万金泉,马邕文等.pH及络合剂对亚铁活化S2O2-8氧化去除活性艳蓝的影响研究[J].环境科学, 2012,33(03):871878.[9]王登豪,张传彩,朱远明等.高效稳定的铜镍催化剂在草酸二甲酯加氢的应用[J].化工学报,2017,68(07): 27392745+2957.(下转第53页)㊀胡榕华等.新工科背景下化工原理课程设计教学改革㊀2021,Vol.35,No.2高教学水平和教学质量的目的,本课程在雨课堂平台上建设了线上教学资源㊂目前,雨课堂的线上教学资源包括10个课程教学视频,每个视频5~10分钟,涵盖了课程设计任务书的解读㊁管道阻力计算㊁换热器设计㊁离心泵扬程计算及选型㊁转鼓真空过滤机计算及选型㊁吸收塔塔径及填料高度计算等课程设计内容㊂另外,我们还将针对化工原理课程设计所涉及的单元操作的知识点设置100道练习题,用于学生自测,以便学生温故知新㊂为了满足学生自主学习需求,我们将在学堂在线平台或校内平台上建设化工原理课程设计的线上课程,为线上线下混合式一流本科课程建设做好积累和改进㊂2.6㊀教学团队的改革化工原理课程设计水平与指导教师直接相关,教师的实践教学能力是提高课程设计环节教学质量的关键㊂大部分年轻教师基本都是从高校毕业就到学校从事本科教育,没有企业工作背景,工程实践经验不足,对工艺流程㊁设备结构㊁车间布置和管道布置等不熟悉㊂因此,年轻教师可以到企业进行挂职锻炼,参加实习实践基地建设及校企项目合作,解决实际工程问题和企业关心的实际问题㊂另外,我们可以从企业中选派具有工程设计经验的工程师或优秀校友作为兼职教师,共同开展课程设计,不断提升教师队伍的指导水平㊂3㊀结语针对化工原理课程设计的教学现状,以 实际应用,提升能力 为原则,我们进行新工科背景下化工原理课程设计实践课程的教学改革㊂课程设计选题来源于工程实际,教学中实施分层次的教学目标,开展专业课程思政教育,采用线上线下混合式教学,建立 平时成绩+设计作品+答辩 的过程性考核方式㊂通过以上的教学改革,更好地提升了学生的设计水平,提高了学生的工程实践能力和创新能力,进一步满足社会对应用型人才的需求㊂参考文献[1]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(03):1 6.[2]夏淑倩,王曼玲,程金萍等.践行OBE理念,开展化工类专业新工科建设[J].化工高等教育,2018(01):912,61.[3]陈桂,袁叶,胡扬剑等.应用型高校化工原理课程设计教学改革思考[J].化学工程与装备,2019(11):280281.[4]唐新德,刘宁,王津津等.基于OBE理念的化工原理课程设计教学改革探索[J].广州化工,2020,48(18): 146148.[5]陈婷,胥桂萍,姚振华等.新工科背景下‘化工原理实验“思政探索与实践[J].山东化工,2020,49(19):196197.[6]张健平.基于CDIO工程教育理念的化工原理课程设计教学改革与探索[J].西南科技大学高教研究,2018,34(02):5660.[7]王芳.化工原理课程设计教学改革探讨[J].化工时刊,2019,33(08):5152.ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ(上接第25页)[10]夏晓丽,谭静静,卫彩云等.钼改性页硅酸镍催化剂催化顺酐加氢性能[J].高等学校化学学报,2019,40(06): 12071215.[11]赵丽丽.二氧化锆负载镍催化剂催化顺酐选择加氢性能研究[D].山西大学,2019.[12]梁二艳,张因,赵丽丽等.甲醇热制备四方相ZrO2及其负载镍催化剂的顺酐加氢性能[J].化工学报,2017,68(06):23522358.[13]毛洁,王清,王慢慢等.蒙脱土负载镍催化顺酐加氢制备丁二酸酐[J].西华师范大学学报(自然科学版),2018, 39(03):247251.[14]王建强,董鹏.新型镍催化剂催化对硝基甲苯加氢的研究[J].云南化工,2017,44(09):2930. [15]王文静,严新焕,许丹倩等.Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺[J].催化学报, 2004,025(005):369372.[16]夏延洋,卜天同,王立成等.镍硅基催化剂上偏三甲苯的加氢脱烷基反应[J].高等学校化学学报,2016,37(12): 22152220.[17]李晨芮.负载型磷化镍催化剂对苯酚的加氢性能研究[D].郑州大学,2017.[18]梁伟,李保山.助剂Mo对硅柱撑蒙脱土负载镍催化剂结构及加氢脱氧性能的影响[J].工业催化,2017,25(06): 915.[19]马航,冯霄.固体催化剂常规制备方法的研究进展[J].现代化工,2013,33(10):3236.[20]钱潇奇.页硅酸镍催化剂用于5-羟甲基糠醛选择性加氢反应的研究[D].厦门大学,2019.。
SBS镍系选择性催化加氢机理的初步探索
反之 , 氢化 聚合物 中聚 1 丁烯结 构 的质量 分数则 一
g ;
收 稿 日期 :2 0 — 7 1 。 0 9 0 — 5
环 烷 酸 镍 ( 催 化 剂 )三 异 丁 基 铝 ( 催 化 剂 ) 主 ; 助 ; 环 己 烷 , 业 级 , 干 燥 后 其 含 水 量 小 于 1 工 经 2 均 为 中 国 石 油 化 工 股 份 有 限 公 司 北 京 燕 山 分 公 司
剂)nA) (i 4 反 应压 力 为 3MP ; 化 剂用 ,( 1nN ) / 为 ; a催 量 为 0 7g10g10 g干 胶 中含 N 的质 量 , . /0 ( 0 0 i 下 同)反 应温度 为 6 ; 5℃。 数均分 子量( 为 l l 对 M3 xO
的P B基 础 胶 进 行 加 氢 模 试 实 验 。 1 . 实验 步 骤 3
反应 , 一定 时 间后 取 样 。采 用 核磁 共 振 氢 谱( — H N ) MR 手段 对加 氢后 的试 样进行 定性分 析 。
2 结 果 与 讨 论
条件 方面 的报道 ,而对加 氢机理 方 面的研 究却较
少 。 实 验 在 进 行 加 氢 工 艺 条 件 研 究 的 同 时 , 加 本 对 氢机 理进行 了一些探 讨 。
苯 乙烯 一 丁二 烯一 乙 烯嵌 段 共 聚 物 ( S 以 苯 S ) B 聚 丁二 烯(B( P) 丁二烯 1 一 , 聚合物 与丁二 烯 1 一 4 , 聚 2
合 物 的 混 合 物 ) 成 弹 性 体 的 软 段 , 聚 苯 乙 烯 构 以
12 实 验 条 件 .
以 环 烷 酸 镍 为 催 化 剂 ( 异 丁 基 铝 为 助 催 化 三
等 的 耐 老 化 性 能 较 差 ,进 而 限制 了 S S 某 些 特 B 在
镍催化剂催化加氢机理
镍催化剂催化加氢机理
镍催化剂是电子转移型催化剂,在催化加氢反应中起着重要作用。
它
可以催化烃类分子与氢气发生反应,生成相应的烃基化产物。
其反应
机理主要分为两种类型:裂解还原型机理和氢解加成型机理。
下面将
详细介绍这两种机理及其特点。
裂解还原型机理
在裂解还原型机理中,烃分子首先被吸附在催化剂表面,然后发生裂
解反应,将分子分为较小的分子段。
这些分子段再与吸附在催化剂表
面的氢分子相遇并发生反应,催化产物被生成。
这种机理主要适用于
低温下的催化加氢反应。
氢解加成型机理
在氢解加成型机理中,烃分子被吸附在催化剂表面,然后被逐渐加氢,逐渐产生烃基化产物。
这种机理主要适用于高温下的催化加氢反应。
总体而言,镍催化剂是一种非常有效的催化剂。
它不仅可以催化加氢
反应,生成相应的烃基化产品,而且还有着较高的选择性和稳定性,
使得它成为了各个领域中必不可少的催化剂。
需要注意的是,镍催化剂在催化反应时也会存在一些问题,例如催化剂的失活、选择性下降、副反应增多等。
因此,为了保证催化剂的有效性,要注意选择适当的反应条件和催化剂充分活化。
同时,在催化反应的过程中,还需进行剖析机理,为进一步改进催化剂提供依据。
镍催化剂催化加氢的机理探究
镍催化剂催化加氢的机理探究镍催化剂催化加氢的机理探究在化学领域中,催化剂的使用极为广泛,而镍催化剂作为一种重要的催化剂,具有在加氢反应中的广泛应用。
本文将深入探究镍催化剂催化加氢的机理,并分享我对这一主题的观点和理解。
我们来了解一下加氢反应的基本原理。
1. 加氢反应的基本原理加氢反应是指将氢气与有机化合物在催化剂的作用下发生反应,将有机化合物中的双键或多键转化为单键的过程。
这种反应在化学工业中具有广泛的应用,常见的加氢反应包括饱和烃的制备、不饱和化合物的加氢脱氢、氢化物的还原和环代谢等。
2. 镍催化剂的特点与应用镍催化剂具有许多独特的特点,例如催化性能高、催化活性可调节、易得性好等。
镍催化剂在许多加氢反应中都表现出优秀的催化活性和选择性。
镍催化剂还具有较低的成本和环境友好性,因此被广泛应用于工业生产中的加氢反应。
3. 镍催化剂催化加氢的机理镍催化剂催化加氢的机理涉及多个步骤,以下为具体内容:3.1 吸附和激活氢气镍催化剂首先通过吸附氢气使其激活。
在催化剂表面,氢气分子会与表面的镍原子形成键合,从而使氢气中的化学键变得更容易断裂。
3.2 吸附和激活有机化合物在催化剂表面,有机化合物分子与镍原子形成键合,吸附在催化剂表面,从而使有机化合物中的双键或多键易于断裂。
3.3 反应步骤在催化剂表面上,吸附的氢气和有机化合物发生反应,产生中间体。
这些中间体随后发生反应,断裂原有的化学键,生成新的化学键,最终得到目标产物。
4. 我对镍催化剂催化加氢机理的观点和理解镍催化剂催化加氢的机理是一个复杂的过程,涉及多个步骤和反应中间体的生成。
我认为,在研究镍催化剂催化加氢机理时,需要综合考虑各个因素的影响,如镍催化剂的结构、活性位点的形成以及反应条件等。
镍催化剂的催化性能也受到催化剂的负载、助剂的添加等因素的影响。
总结:镍催化剂催化加氢是一种重要的反应,具有广泛的应用前景。
在镍催化剂催化加氢的机理探究中,深入理解反应的步骤和中间体生成的机制对于提高催化剂的活性和选择性具有重要意义。
镍系苯加氢催化剂的应用研究
氢催化剂 , 可降低镍含量 , 改善镍 的分散度 , 提高镍 使用 率 , 可有效 地避 免反 应过 于剧烈 的状况 , 同时进
一
步 降低 成本 。针对 采用 二次 浸渍 法制备 的镍催 化
剂, 笔 者考 察 了活化 条 件 及 反应 条 件 对 镍催 化 剂 的 性能 影 响 , 考察 了最适 宜 的工艺 条件 。
镍 系苯 加 氢催 化 剂 的应 用 研 究
施 翔 宇
( 南化集团研究院 , 江苏南京 2 1 0 0 4 8 ) 摘要 : 采用二 次浸 渍法 制备镍催 化剂 , 并在 不 同反应条 件下 对镍 系苯加 氢催化 剂 的性 能进行 了考 察。结果表明 , 在 反应压力 0 . 6~ 0 . 8 MP a 、 液苯空速 0 . 8~1 . 0 h ~、 反应入 口温度约 1 4 0℃ 、 氢 与苯物质 的量 比 6~ 8的条件下 , 该催 化剂体现出 良好的性能 。 关键词 : 镍 苯加氢 催化剂 应用 研究 中图分类号 :T Q 2 3 1 文献标识码 : A 文章编号 : 1 0 0 6— 7 9 0 6 ( 2 0 1 3 ) 0 2— 0 0 0 5— 0 3
性 是镍 的 2— 3倍 , 但 使用 廉价 的镍做 催化 剂在 工业 生产 上更具 有经 济 性 J 。 因此 , 为 了克 服 镍 催 化剂
苯加 氢 是 一个 相 对 较复 杂 的反 应 , 在 反 应条 件
下, 4 、 / ]+ 3 H 2 立 <>+ 2 1 5 . 6 9 k J / m o l
苯 加氢 反应 是 典 型 的有 机 催 化 反应 , 无 论 在理 论 研究 还 是 在 工 业 生 产 上 , 都 具 有 十 分 重 要 的价 值 … 。苯 加氢 生 产 环 己 烷 的工 艺 一 般 分 为 气 相 和 液 相 2种 工艺路 线 J 。 由于气 相加 氢反应 较 液相加 氢 反应 完全 , 对设 备 的要求 相 对 较 低 且 转 化 率相 对 较高 , 所 以气 相 加 氢工 艺 最 为 常 见 。苯 加 氢 制 环 己
一种镍基加氢催化剂的制备方法[发明专利]
专利名称:一种镍基加氢催化剂的制备方法专利类型:发明专利
发明人:陶凌云,蒋文军,徐艳群
申请号:CN201910074351.X
申请日:20190125
公开号:CN109876812A
公开日:
20190614
专利内容由知识产权出版社提供
摘要:本发明公开一种镍基加氢催化剂的制备方法,其特征在于,包括以下步骤:步骤一:取可溶性镍盐加去离子水配成第一溶液;取沉淀剂加去离子水配成第二溶液;取硅溶胶,向硅溶胶加去离子水稀释配置成硅溶胶溶液;步骤二:搅拌步骤一制得的硅溶胶溶液,同时取步骤一制得的第一溶液与第二溶液加入硅溶胶溶液中;步骤三:取步骤二制得的硅溶胶溶液升温至90~110℃蒸发水分,并同时对其进行搅拌,使载有镍的硅溶胶析出;步骤四:将载镍硅溶胶沉淀用去离子水洗涤至游离阴离子小于0.03%(w/w),然后在依次烘干、焙烧,得到催化剂前驱体;步骤五:取步骤四制得的催化剂前驱体还原制得加氢催化剂;该催化剂用于醛加氢制醇。
申请人:武汉聚川科技有限公司
地址:430000 湖北省武汉市东湖新技术开发区关山大道1号光谷软件园A3栋5层CK98
国籍:CN
代理机构:武汉智嘉联合知识产权代理事务所(普通合伙)
代理人:黄君军
更多信息请下载全文后查看。
镍基催化剂的苯加氢性能研究的开题报告
镍基催化剂的苯加氢性能研究的开题报告一、研究背景与意义苯加氢是一个重要的有机化学反应,广泛应用于医药、香料和化工等领域。
目前苯加氢的催化剂主要有三种:贵金属催化剂、铁基催化剂和镍基催化剂。
贵金属催化剂催化效率高,但成本昂贵,难以大规模应用;铁基催化剂催化效率较低,而镍基催化剂具有催化活性高、稳定性好、成本低等优点,成为一种重要的苯加氢催化剂。
本研究旨在探究镍基催化剂的苯加氢性能,分析其优缺点,并寻找改进其性能的途径。
二、研究目标和内容本研究的主要目标是探究镍基催化剂在苯加氢反应中的催化效果和性能特征,包括活性、选择性、稳定性等,同时分析其优缺点。
具体内容包括:1. 选取合适的镍基催化剂;2. 构建苯加氢反应实验体系,改变反应条件,探究反应对催化剂性能的影响;3. 分析镍基催化剂在苯加氢反应中的活性、选择性及稳定性,比较其与贵金属催化剂和铁基催化剂的效果;4. 建立镍基催化剂苯加氢反应的动力学模型,定量评价其催化机理;5. 探究可以改进镍基催化剂苯加氢性能的方法。
三、研究方法和步骤1. 镍基催化剂的制备和表征:采用物理和化学方法制备和表征镍基催化剂,如XRD、TEM、EDS等。
2. 苯加氢反应实验:根据文献和实验条件,选择合适的实验条件,设计苯加氢反应实验,记录反应数据,如反应产率、选择性等。
3. 催化剂性能分析:根据实验结果,分析镍基催化剂在苯加氢反应中的活性、选择性、稳定性,并比较其与贵金属催化剂和铁基催化剂的效果。
4. 动力学模型建立:根据实验数据,建立镍基催化剂苯加氢反应的动力学模型,并分析反应机理。
5. 性能改进研究:根据研究结果和文献资料,探究可以改进镍基催化剂苯加氢性能的方法。
四、论文结构本研究论文主要分为以下部分:1. 绪论:介绍苯加氢反应和三种催化剂的优缺点,阐述本研究目标、意义和研究框架。
2. 实验方法:详细介绍镍基催化剂的制备和表征方法、苯加氢反应实验方法和数据记录方法。
3. 结果与分析:详细介绍实验结果,分析镍基催化剂在苯加氢反应中的活性、选择性、稳定性,并比较其与贵金属催化剂和铁基催化剂的效果,建立反应动力学模型。
探讨镍作为催化剂的氢化反应机理与原理
探讨镍作为催化剂的氢化反应机理与原理The hydrogenation reaction mechanism and principles of nickel as a catalyst have been extensively studied in the field of catalysis. Nickel is known for its excellent catalytic activity in hydrogenation reactions, particularly in the hydrogenation of unsaturated organic compounds.The mechanism of hydrogenation on nickel catalysts involves several steps. Firstly, the unsaturated organic compound adsorbs onto the surface of the nickel catalyst. This adsorption occurs through weak chemical bonds between the carbon-carbon double or triple bond and the nickel surface. The adsorbed molecule then undergoes dissociation of the double or triple bond, forming adsorbed hydrogen atoms on the catalyst surface.The next step is the diffusion of hydrogen atoms across the catalyst surface to reach the adsorbed molecule. This diffusion process is facilitated by the presence of defects or vacancies on the nickel surface. Once the hydrogen atoms reach the adsorbed molecule, they react with the carbon atoms, breaking the double or triple bond and forming a saturated compound. Finally, the product desorbs from the catalyst surface, releasing the hydrogen molecule.The principles underlying the excellent catalytic activity of nickel in hydrogenation reactions can be attributed to several factors. Firstly, nickel has a high surface area, providing ample active sites for the adsorption and reaction of molecules. Additionally, nickel has a favorable electronic structure, allowing for efficient transfer of electrons during the reaction process.Moreover, nickel catalysts can be easily modified or alloyed with other metals to enhance their catalytic performance. For example, the addition of small amounts of noble metals, such as platinum or palladium, can significantly improve the selectivity and activity of nickel catalysts in hydrogenation reactions.In conclusion, the mechanism of hydrogenation on nickel catalysts involves the adsorption, dissociation, diffusion, and reaction of hydrogen atoms with unsaturated organic compounds. The excellent catalytic activity of nickel can be attributed to its high surface area, favorable electronic structure, and the possibility of alloying with other metals. Further research in this field is crucial for the development of more efficient and selective nickel catalysts for hydrogenation reactions.现在用中文回答:镍作为催化剂在氢化反应的机理和原理方面已经得到了广泛研究。
镍系SBS加氢反应机理及加氢催化剂制备研究
ELA啪MERICS 弹性体,2010—04—25,20(2):32~35 CHlNA
镍系SBS加氢反应机理及加氢催化剂制备研究*
贺小进,李伟,梁爱民,陈建军,王爱东,胡保利,石建文,陈淑明
(中国石化股份有限公司北京燕山分公司研究院锂系部,北京102500)
摘要:对镍系SKS催化加氢机理进行了探讨,对催化剂制备工艺进行了优化。当催化剂组分质 量浓度为2~4 g/L。陈化温度为50~70℃,门(A1)/n(Ni)为3~6时催化剂活性最高。向待加氢胶液中 加入一定量破杂剂A可使催化剂活性及稳定性有一定程度提高。用该法制备的催化剂有较好的稳定 性,常温下放置一个月其催化活性几乎没有变化。
G—C+HNi(R7CO()>——,H—C—C—Ni(R’C00)
H_LLNi(R,C00)+H。一
Sloan等‘81首次提出了以镍盐(乙酰丙酮镍、 醇镍和酚镍)和三烷基铝为催化剂对不饱和烯烃 化合物加氢,其反应机理如下:
R3Al+M)(,l—一R2AlX+RMX.一1
RMK一1+H2一RH+HM x,l—l CI =If+HMKl一H-rC_Mk
常温下放置一个月其催化活性几乎没有变化。
参考文献:
C13 Giovanni Dozzi.Salatore Cucinella and Alessandro Mazzei. Process for hydrogenating olefinie compounds[P'].Italy Pa— tent:1602145,1978—03—12.
装\雠蛹疑
反应时间/rain (c)催化剂用量为0.079Ni/100 g聚合物
图1 n(AI)/n{Ni)对加氢效果的影响
由图l可知,在各种不同催化剂用量下n(A1)/ n(Ni)对加氢催化剂的活性有一定影响,且有一最 佳范围。当催化剂用量为0.04"--0.07 g Ni/lOO g 聚合物时n(A1)/n(Ni)比为3~6的效果均较好。 3结论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. , 水 质 量 分 数 小 于 2 1~ , 州 化 工 96 含 × 0 锦 厂; 氮气 、 气 : 量 分数 大 于 9。 9 , 京 普 氢 质 9 9 9 6北 / o
莱 克斯公 司 。 12 实验步 骤 .
向高纯氮 抽排 后 的陈 化 釜 中加 入 一 定 量 Ni 溶液 , 后在搅 拌下加 入 一定 量 Al 然 溶液 , 一定 在 温 度下 陈化 一 定 时 间 后 加 入 到 用 氮气 抽 排 后 含 S S胶 液 的预混 釜 中 , 拌 均匀 后 用胶 液 泵 打人 B 搅
・3 ・ 3
滇 宝等认 为 S S加氢 催化 体 系 属宏 观 “ 相 ”微 B 均 ,
观 非均相 , 陈化 液 在 He Ne 光束 路 中呈 现“ — 激 丁 达 尔” 象 , 一 种 胶 体 体 系 , 通 过顺 磁 共 振 现 是 并 仪确 定 了 在该 体 系 中确 实 存 在 着 0价 和 + 1价
B UK R公 司 的 D X40 R E R 0MHz型 仪 器 , 剂 为 溶
C C 。测试 温度 为 2 , T D I, 5℃ 用 MS定标 。
1 实验 部 分
1 1 原材 料 ,
2 结 果 与讨 论
2 1 加氢 反应机理 探讨 .
,
S S胶液 : 量 分 数 为 1 , 对 分 子 质 量 B 质 0/ 相 9 6
为 6 5 0 , 对 分 子质 量 分 布小 于 1 1 自制 ; . ×1 相 ., 环烷 酸镍 ( 简称 Ni和三异 丁基铝 ( ) 简称 AI : 度 )浓 分别 为 0 1mo/ 、 . 7mo/ , 业 级 , 京 燕 . lL 0 0 lL 工 北 化公 司 合 成 橡 胶 厂 ; 己 烷 : 量 分 数 不 小 于 环 质
剂各有其特点 , 了解在 已工业化的产 品中茂钛 据 及镍 系催化剂 用量几乎 各 占一 半 l。 _ 2 ] 国 内在镍 系催 化剂 用 于 S S加 氢 方 面 曾 做 B 过大 量 工 作 , 普遍 催 化剂 用 量 偏 大 、 定 性不 但 稳 好, 加氢反 应效率 相对较低 。为解 决 以上 问题 , 作 者从 催化 活性 机 理研 究 人 手 , 催 化 剂制 备工 艺 对 及加 氢工艺条 件进 行 了优 化 , 催化 剂 活性 及 稳 使 定性 、 加氢反应 效率均 有较大 幅度提 高 。
种 不 同的看法 , 的认为 活性 中心 为 0 镍 , 的 有 价 有 认 为是 +l 价镍 , 也有 的认为是 0价及 +1价镍 的 混合 物 , 并且 二 者 在反 应 体 系 中是 共存 的 。陈
*中 国石 油 化工 总公 司 项 E( 90 7 l4 9 2 )
第 2 期
贺 小 进 , . 系 S S加 氢 反 应 机 理 及 加 氢 催 化 剂 制 备 研 究 等 镍 B
填料塔 ( 或反 应釜 ) , 一定 温 度 一定 氢压 下进 中 在 行加氢 反应 , 按要 求 取 样 。胶 样 用无 水 乙醇 凝 聚
后在 4 0℃真空烘 箱 中干燥至恒 重 。
1 3 分析 方法 .
加氢度 采用碘 量 法r 测定 , 采 用 核 磁共 振 3 并
仪 (H —NMR) 行 校 验 , 进 核磁 共 振 仪 采 用 瑞 士
氢化 苯 乙烯 一 丁二 烯 一 乙烯 三 嵌段 共 聚物 苯 ( E S 保持 了苯 乙烯一 S B) 丁二 烯 一 乙烯 三嵌 段 共 苯 聚物 ( B ) S S 的热 塑性 和 高弹 性 , 有优 异 的耐 热 、 具
氧及抵 御紫外 线 照射 等性 能 , 应用 范 围 不断 扩 其
收 稿 日期 :0 9 】 4 2 0 —1 一0
对 Ni 系催化剂 用于 S S加氢 反应 机 理有 几 B
作者简介 : 贺小进( 92一 , , 16 )男 陕西蒲城人 , 高级工 程师 , 篇 硕士, 长期从 事高分 子合成研究 工作 , 已发表论文 2 0余 获专利 7 项。
,
( 中国石化股份有限公司 北京燕山分公司研究 院锂系部 , 京 1催 化 加 氢 机理 进 行 了探 讨 , B 对催 化 剂 制 备 工 艺进 行 了优 化 。 当催 化 剂 组 分 质
量 浓度 为 2 ~4g L 陈 化 温度 为 5  ̄ 7 /, 0 0℃ ,( )n Ni为 3 6时催 化 剂 活 性 最 高 。向 待 加 氢胶 液 中 n A1/ ( ) ~
研 究 ・开 发
弹C1- MI 性,—L(E5 体04,) C H 0A22 2 2 :3 I E03S N2 . A 05 R  ̄
镍 系 S S加 氢 反 应 机 理 及 加 氢 催 化 剂 制 备 研 究 * B
贺小进 , 李 伟, 梁爱 民, 陈建军 , 王爱 东, 胡保利 , 石建 文 , 陈淑 明
加入一定量破 杂剂 A可使催化剂活性及稳 定性 有一定程度提 高。用该法制备 的催化 剂有较好 的稳 定 性, 常温下放置一个月其催化活性几乎没有 变化 。
关 键词 : 氢 催化 剂 ; 加 陈化 ; 活性 中心 中 图分 类 号 : 3. TQ3 4 2 文献标识码: A 文章 编 号 :053 7 (0 0 0—020 10— 14 2 1 )20 3 —4
大, 价值 也远高 于 S S属 第二代 热塑性 弹性体 。 B , S S加氢催化 剂分非 均相和均 相 。非 均相催 B 化 剂用 于 S S加 氢 时 需 高 温 、 压 、 催 化剂 用 B 高 高 量, 且加氢选 择性较 差 。均 相催化剂 用量少 、 反应
条件 温和 、 氢选择性好 l , 加 1 主要 包括茂钛 及镍 系 ] 等 , 中茂 钛催 化 剂 活性 最高 , 合成 复杂 、 格 其 但 价 较贵 ; 系催化 剂 活性 相对 较低 , 合成 简 单 、 镍 但 价 格便 宜 、 料易得 , 原 最终产 品纯净 度 高 。2种催 化