连铸坯横裂产生的原因
A105连铸坯表面横裂纹形成原因分析
A105连铸坯表面横裂纹形成原因分析(壹佰钢铁网推荐)连铸坯表面缺陷可分为纵裂纹、横裂纹、网状裂纹、皮下针孔和宏观夹杂,但主要缺陷是表面裂纹。
表面裂纹形成的一个主要原因是在结晶器弯月面区域钢水-结晶器壁-保护渣-坯壳之间不均衡凝固,它取决于钢水在结晶器中的凝固过程。
在二冷区,铸坯表面裂纹会继续扩展.它会导致轧材表面的微细裂纹,影响产品质量。
连铸坯裂纹的形成是一个非常复杂的过程,是传热、传质和应力相互作用的结果。
北京科技大学的学者应用配有能谱仪的场发射扫描电镜分析了A105钢中裂纹处及基体内残余元素Cu、As和Sn以及P含量.应用Thermo-Calc热力学计算软件计算了A105钢的主要析出相以及钢液中P含量随固相质量分数变化关系。
应用Gleeble 1500热模拟试验机对A105钢的高温热塑性进行了研究。
发现P偏析是该钢产生横裂的主要原因,残余元素Cu、As和Sn在晶界的偏聚加剧了裂纹的形成,矫直温度偏低加速了裂纹的扩展,而裂纹的形成可能与AlN的析出无关,因为析出的AlN很少。
(壹佰钢铁网推荐)。
铸坯表面横裂纹的形成机理
铸坯表面横裂纹的形成机理白进恩(河北钢铁集团敬业钢铁有限公司)摘要:对连铸中厚板坯表面横裂形成的机理进行分析, 并对工艺、设备、操作等进行技术攻关, 使铸坯表面质量得到改善, 基本解决了铸坯的表面裂纹缺陷。
1、 前言敬业集团1600 mm 板坯连铸机是一台直弧形连铸机,弧形半径9 m,冶金长度24 m ,其浇铸规格为220 mm ×1600mm ,年产板坯200万吨。
敬业钢铁中厚板板坯连铸机自2008年3月份投产以来, 由于工艺、设备及操作等原因, 铸坯合格率低。
2、 缺陷形貌连铸板坯常见的表面缺陷是横裂纹,横裂纹多出现在大面和边部,位于内弧面振痕波谷处,长度在20 mm 左右,有的长达30~50 mm ,裂纹一般深浅不一,多在2~8mm 。
通常情况下,表面横裂纹隐藏在铸坯皮下,不易直接观察到,通过铸坯的表面酸洗或火焰清理后才能显露出来,见图1。
近年来,随着技术管理水平的不断提高,铸坯的产量、品种和质量有所改善和提高,但是,裂纹一直得不到控制,产生数量可观的降级品。
2011年对工艺、操作及设备等进行技术攻关, 铸坯表面质量得到改善与控制。
轧制较厚规格钢材时,铸坏表面常出现横裂形成“山峰状”、“曲线状”或“M 形状”表面缺陷。
影响轧制板的表面质量, 增加钢板表面的修磨量和废品量。
图1 连铸板坯表面横向裂纹(经火焰清理)图2 钢板表面横裂实物图3、铸坯表面横裂纹形成机理结晶器振动的目的是防止初生坯壳与结晶器黏结漏钢,但不可避免地会在初生坯壳表面留下震动痕迹。
而铸坯横裂纹产生于振动痕迹的波谷处,振痕越深,横裂纹越严重。
裂纹的发生率还与振痕形貌有关,振痕越深,呈“沟槽”形,曲率半径越小,越容易发生横裂纹和角横裂。
连铸坯表面横裂起源于结晶器中振痕波谷处,最后在矫直过程中形成。
横裂形成具体分6个阶段:①靠结晶器壁生长正常的凝固组织,即细小等轴晶(坯壳晶、激冷层),其晶粒尺寸约500μm;②负滑脱凝壳向内运动,凝壳离开结晶器壁,温度达1 350℃;③导致表面晶粒异常长大,粗大化达到1mm~2mm;④在大晶粒晶界碳、氮化物析出,弱化的晶界产生微裂纹源;⑤在异常粗大的晶界上形成先共析相铁素体网,其强度是奥氏体的1/4,构成新的裂纹源;⑥在连铸坯矫直过程中微裂纹扩展成为裂纹。
连铸坯内部裂纹产生的主要原因及解决措施
连铸坯内部裂纹产生的主要原因及解决措施李广艳【摘要】Two kinds of continuous casting billet produced by the 50 t EAF and converter steelmaking production lines in new two area had been researched and the reasons and types for the formation of internal cracks had been studied by SEM and EDAX. The quality of casting billet improved, macrostructure and hot upsetting percent of pass enhanced significantly through implementation of these measurements such as casting with stable casted velocity, reasonable matching between casting speed and water quantity, controlling with narrow temperature wave of molten steelin ladle and heightened the purity of molten steel.%以莱钢50 t电炉生产线及新二区转炉炼钢生产线生产的两种规格的连铸坯作为研究对象,分析了内部裂纹形成的原因,并采用扫描电镜和能谱分析了内部裂纹的类型。
通过采取恒拉速浇注、拉坯速度与水量合理匹配、实行中间包窄温度波动控制、提高钢水纯净度等措施,连铸坯的质量得到了明显改善,低倍和热顶锻合格率也有了显著提高。
【期刊名称】《山东冶金》【年(卷),期】2014(000)002【总页数】4页(P40-43)【关键词】连铸坯;内部裂纹;原因;措施【作者】李广艳【作者单位】莱芜钢铁集团有限公司技术中心,山东莱芜271104【正文语种】中文【中图分类】TG115.21 前言铸坯裂纹的形成是一个非常复杂的过程,是传热、传质和应力相互作用的结果。
连铸坯在凝固过程中形成裂纹的原因
连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。
在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。
而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。
二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。
连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。
铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。
3)结晶器锥度不合适。
4)结晶器振动不良。
5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。
6)支承辊对弧不准和变形。
2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。
2)钢水过热度高。
3)结晶器液面波动太大。
4)保护渣性能不良。
5)水口扩径。
6)二次冷却水分配不良,铸坯表面温度回升过大。
铸坯角横裂原因分析最终版(2)(1)
铸坯角横裂原因分析一、现象说明2011年元月13日炼钢厂1#连铸机生产Q345C 6炉,热送至1250线轧制(规格9.5/11.4/15.5X1010mm),其中送轧23卷,17卷因边部结疤待判,其余6块坯子从加热炉甩出运至新炼钢库房,另外新炼钢库房还有7块未送轧坯(其中2块换水口),目前炼钢厂对13支铸坯修边处理,待修完边后再送轧。
修完边送轧带钢未出现结疤缺陷;发至客户的6卷带钢经销售部业务员与客户沟通后,客户对缺陷部位进行修复处理,已制成螺旋管,但此批管为出口产品,剩下的11卷结疤带钢客户不再使用,以二级品入库。
二、缺陷相貌分析1、带钢缺陷相貌此次Q345C结疤缺陷与以往位置相反,在带钢工作侧较多,距边部约2.5-3.5cm。
带钢(炉号、卷号等)形貌如下图所示:在Q345C带钢结疤部位制取金相试样观察,裂纹深度0.6mm,裂纹周围有大量高温点状氧化物,见图1、2。
用4%的硝酸酒精溶液腐蚀后发现,裂纹周围有明显脱碳现象,见图3。
说明裂纹在进加热炉之前已经形成,为炼钢原因造成结疤。
图1裂纹周围有大量的点状氧化物100X 图2 裂纹周围的点状氧化物1000X图3 裂纹周围有明显脱碳现象100X2、钢坯缺陷形貌对炼钢厂库存的Q345C钢坯详细检查,发现在钢坯内弧角部存在明显裂纹缺陷。
缺陷位置如下示意图所示。
为进一步查明钢坯角横裂纹的产生原因,制取钢坯角横裂纹部位的试样进行检验。
Q345C连铸工艺如下:2.1、低倍酸浸检验用1:1的工业盐酸加热后进行低倍酸浸检验,在窄面内弧边部有星状裂纹和网状裂纹,并且在窄面振痕处裂纹扩展,裂纹长度3~10mm;在宽面内弧边部裂纹与窄面振痕处裂纹相连,长度3~9mm,截面裂纹深度2~3mm。
窄面边部裂纹窄面边部振痕处裂纹宽面边部裂纹截面裂纹2.2 高倍金相检验制取角横裂部位的金相试样,观察发现,裂纹周围有大量点状氧化物,部分颗粒较大,裂纹穿晶或沿晶界扩展;表层氧化铁结构疏松,颜色深浅不一,表明成分上有差异,并且氧化铁内层也分布有大量的点状氧化物。
连铸板坯角部横向裂纹的形成原因与分析
、
连铸板 坯横向裂纹形成的原因
连铸坯 出现横向断裂是由于铸坯内部裂纹发生瞬时扩展开裂所致 ,
—
般来说 , 横向裂纹垂直于拉坯方向,分布在铸坯横向表面波谷 处, 通 常被认为是弯 曲、矫直或辊子压下的拉伸应力作用于脆弱的凝 固界面而 产生。对于连铸板坯来说,其横裂纹的分布的位置 、数量、大小不尽相
9 5 a ℃,且应使板坯中心温度与角部温度差别尽可能减小 ,可以有t 8 8 "  ̄
减 少横裂纹 ,尤其是角部横裂纹 。
4结晶器保护渣
同,状态各异 ,而且裂纹基本上呈现出不规则的条状或者线状 ,与钢板
的轧制 方向呈 3 到9 0 '的夹角。连铸坯裂 由应力、传热和传质等共
如果保护渣熔点过低 ,就会增强保护渣的流动 性,使得大量 的保 护渣流到连铸板坯和结晶器之间,填充了振动痕迹线 , 形成表面横 向裂 纹 的产生条件。另一方面 ,流到两者之间的保护渣受到传热的影响,熔 点 变高,使得下滑到坯 壳与铜板之间的液态渣变少,从而使坯壳与结晶
学 术 论 坛
连铸板坯角部横 向裂纹的形成原因与分析
何文 远
( 首钢 京唐 钢铁 联合 有 限责任公 司 ,河北 唐 l 【 1 0 6 3 0 0 0 )
c } i 笥 蜀 连铸板坯的质量和产量决定了 我国钢材事业的发展,经过理论和大量的实验分析, 造成连铸板坯产生横向裂纹的主要原因有两方面. 方面 是 其本身的化学成分含量,一方面是加 工工艺的影响。从这两方面入手, 提 高工艺要 求和原材料标准 ,可有效避免横向裂纹的产生。 饫镧嗣 ] 连铸板坯;横向裂纹; 化学成分; 加工工艺
微合金钢连铸坯角横裂产生原因
微 合 金 钢 连 铸 坯 角 横 裂 产 生原 因
在 连铸 过程 中 , 钢 液 由盛 钢 桶 经 中 间包 连 续
不 断地 注入 一个 或一 组水 冷铜制 结 晶器 。注入 结
处 的传热 速率 降低 , 造成 振 痕底 部 的树 枝 晶更 为
粗大 , 溶 质元 素富集 , 强度 较低 。 当带 液 芯成型 的
晶器 的钢液 受 到强 烈 冷 却后 , 迅 速形 成 一 定 形 状
铸 坯被拉 出结 晶器进 入 二 次 冷却 区 , 在弯 曲和 随
和坯壳厚度 的铸坯。同时结晶器振动引起弯月面
钢水周期性流动, 使坯壳发生折叠 , 形成振痕。横 裂一般产生于结 晶器 内, 与振痕共生 。振痕能产 生缺 口效应 , 造成应力集中。振痕深时 , 振痕波谷
2 0 0 6 , 4 1 ( 1 0 ) : 1 —1 O
5李太全 , 包燕平 , 等 .高级别管 线钢酸 溶铝的控 制 [ J ] .
X 8 0工 业 实 践 各 炉 次 在 L F进 、 出站 钢 水 中
炼钢 , 2 0 0 9 , 2 5 ( 6 ) : 9—1 1 , 2 5 6杨利彬 , 焦兴 利 , 等. 3 0 0 t B O F—L F—R H冶炼过 程 X 8 0 管线钢氧含量控制[ J ] . 特殊钢 , 2 0 1 1 , 3 2 ( 6 ) : 4 0— 4 2 7李强 .王新华 , 等. X 8 0管线钢 L F—R H二 次精 炼过 程 夹杂物行为及控制 [ J ] . 特 殊钢 , 2 0 1 1 , 3 2 ( 4 ) : 2 6— 3 0 8姚奋发 , 李太全 , 等 .真空感应 炉冶炼 x 1 2 0管线钢脱氧 和脱硫试验 [ J ] .特殊钢 , 2 0 0 8 , 2 9 ( 4 ) : 2 5— 2 7
连铸坯表面裂纹形成及防止
h
17
3 铸坯表面横裂纹
3 铸坯表面横裂纹
3.1表面横裂纹特征
横裂纹可位于铸坯面部或棱边
横裂纹与振痕共生,深度2~4mm,可达7mm,裂纹深处生成 FeO。不易剥落,热轧板表面出现条状裂纹。振痕深,柱状晶 异常,形成元素的偏析层,轧制板上留下花纹状缺陷。
铸坯横裂纹常常被FeO覆盖,只有经过酸洗后,才能发现。
连铸坯表面裂纹 形成及防止
宋晔
h
1内容Βιβλιοθήκη 1 前言 2 铸坯表面纵裂纹 3 铸坯表面横裂纹 4 铸坯表面星形裂纹 5 结论
h
2
1.前言
连铸坯质量概念: ◆ 铸坯洁净度(夹杂物数量、类型、尺寸、 分布) ◆ 铸坯表面质量(表面裂纹、夹渣、气孔) ◆ 铸坯内部质量(内部裂纹、夹杂物,中 心疏松、缩孔、偏析) ◆ 铸坯形状缺陷(鼓肚、脱方)
h
18
3 铸坯表面横裂纹
3.2横裂纹产生原因 (1) 横裂纹产生于结晶器初始坯壳形成振痕的
波谷处,振痕越深,则横裂纹越严重,在波谷 处,由于: -奥氏体晶界析出沉淀物,产生晶间断裂 -沿振痕波谷S、P元素呈正偏析,降低了钢高 温强度。
这样,振痕波谷处,奥氏体晶界脆性增大,为裂 纹产生提供了条件。
(2) 拉速
拉速增加,纵裂纹指数增加(图2-4);
图2-4 拉速对纵h 裂纹的影响
12
2 铸坯表面纵裂纹
(3) 保护渣 液渣层厚度<10mm,纵裂纹增加(图2-5)。
图2-5 液渣层厚度h 对纵裂纹的影响
13
2 铸坯表面纵裂纹
(4) 结晶器液面波动 液面波动<±5mm,纵裂纹最少(图2-6);
15
2 铸坯表面纵裂纹
(2) 结晶器钢水流动的合理性
连铸坯发纹裂纹产生的原因
连铸坯发纹裂纹产生的原因连铸坯发纹裂纹是指在连铸过程中,坯料表面产生裂纹的现象。
这种现象在连铸过程中非常常见,如果没有正确的处理,会影响连铸坯的质量和后续加工工艺,甚至可能导致产量的降低。
连铸坯发纹裂纹的产生原因非常多样化,主要包括以下几个因素。
首先,连铸坯发纹裂纹的产生与坯料的化学成分有关。
在连铸过程中,如果坯料中含有不溶于钢液的硬质夹杂物,这些夹杂物会被硬质粒子剪切或滚动而产生裂纹。
此外,坯料中如果含有超过允许值的硫、磷等元素,会导致钢液的黏度增加,使连铸过程中液面波动较大,从而增加坯料表面的应力,进一步促进裂纹的发生。
其次,连铸坯发纹裂纹的产生与连铸工艺参数有关。
连铸过程中的拉速度、浇注速度、结晶器冷却剂的喷射速度等参数的过大或过小都会导致连铸坯表面产生应力,从而引发裂纹的产生。
此外,连铸过程中,如果坯料温度过低或结晶器冷却不均匀,也会导致坯料表面产生裂纹。
再次,连铸坯发纹裂纹的产生与结晶器的表面状况有关。
结晶器的表面状况会直接影响连铸坯表面的光滑度和均匀度。
如果结晶器表面存在磨损、凹凸不平等缺陷,会导致连铸坯表面产生过多的应力,从而引发裂纹的产生。
此外,连铸坯发纹裂纹的产生还与连铸辊的形状和磨损程度有关。
连铸辊的形状不合理或磨损过度会导致钢坯的厚度不均匀,在拉伸过程中产生裂纹。
在连铸工艺中,如果连铸辊的温度过高或过低,也会导致连铸坯的拉伸和表面温度不均匀,从而引发裂纹的产生。
最后,连铸坯发纹裂纹的产生还与工艺操作和设备维护有关。
操作不当会导致坯料表面的应力增加,设备维护不到位会降低连铸过程的稳定性,从而增加坯料发纹裂纹的风险。
为了减少连铸坯发纹裂纹的发生,可以采取以下措施:1.优化坯料的化学成分,减少夹杂物的含量,控制硫、磷等元素的含量。
2.合理调整连铸工艺参数,包括拉速度、浇注速度、结晶器冷却剂的喷射速度等,以减小坯料表面的应力。
3.对结晶器进行检修和维护,保持其表面的光滑度和均匀度。
高强微合金钢连铸板坯角部横裂纹形成机理及控制技术研究
高强微合金钢连铸板坯角部横裂纹是一种常见的缺陷,其形成机理涉及多个因素。
理解这些因素并采取相应的控制技术对于改善板坯质量至关重要。
以下是可能涉及到的一些因素和控制技术:形成机理:1. 温度梯度:过大的温度梯度容易导致板坯表面和内部的温度差异过大,从而引发横裂纹。
2. 结晶器振动:过大的结晶器振动可能导致板坯结晶不均匀,增加裂纹的发生概率。
3. 结晶器冷却水流量分布:不均匀的冷却水流量分布可能导致板坯冷却不均匀,加剧横裂纹的发生。
4. 结晶器冷却水温度:过低的冷却水温度可能导致板坯冷却过快,增加内部应力,导致横裂纹。
5. 板坯浇注速度:过高的浇注速度可能导致板坯表面快速凝固,增加内部应力。
6. 结晶器润滑液体位:不合适的润滑液体位可能导致板坯表面和内部的润滑不均匀,影响结晶和冷却。
控制技术:1. 优化结晶器设计:合理设计结晶器,包括结晶器的振动控制系统、冷却水流量分布系统等,以确保结晶过程均匀。
2. 温度梯度控制:通过控制板坯表面和内部的温度梯度,减小不均匀的温度分布。
3. 控制板坯浇注速度:调整浇注速度,避免过快导致板坯表面过早凝固。
4. 优化结晶器冷却水系统:调整冷却水流量分布,确保均匀冷却。
5. 温度在线监测:使用温度在线监测系统,实时了解板坯的温度情况,及时调整工艺参数。
6. 结晶器振动控制:控制结晶器振动,避免过大的振动影响板坯结晶均匀性。
7. 冷却水温度控制:调整冷却水温度,防止过低的温度引发板坯内部应力。
8. 板坯表面润滑控制:控制润滑液体位,确保板坯表面润滑均匀。
综合运用上述控制技术,可以有效减少高强微合金钢连铸板坯角部横裂纹的发生,提高板坯的质量。
这些控制技术需要根据具体情况进行合理调整和组合,同时,科学可行的实验和模拟也是研究和改进的重要手段。
连铸板坯角部横裂产生的原因及应对措施
铸坯角部横裂产生的原因及应对措施板坯可以在表面上观察到纵向裂纹,在尾部观察到中线裂纹。
要了解板坯中的角裂纹及孔隙,必须用沿板坯边部进行火焰切割处理,切割出50mm宽,2〜3mm深的槽。
在检查板坯的裂纹时,在高强低合金钢(HSLA)、包晶钢、中碳钢中发现了角部横裂,但是在低碳铝镇静钢中却很少发现裂纹。
包晶钢含有Nb,因此,角裂的百分比极高。
虽然在板坯的疏松边发现了角部横裂,但板坯中的大多数裂纹出现在板坯的固定边。
几乎板坯中所有的角部横裂纹与振动痕迹方向一致。
在出厂前,必须对板坯中的角裂纹和针孔进行处理。
处理板坯中出现的裂纹将增加产品成本,降低生产能力,耽误产品出厂日期。
经过火焰切割后的板坯样品送到米塔尔研究实验室进行分析,以便确定其中角部横裂纹的发生原因。
为减少角部横裂纹,米塔尔公司LazaroCardenas(MSLC)的操作人员、维修人员、技术人员组成了一支精干的团队,以降低板坯角部横裂纹的发生。
裂纹起因当铸流表面遭受到热力应变、机械力应变或相变时,若该应变量超过了铸件材料的最大应变值,板坯就会发生横裂。
在下列条件下板坯可能产生裂纹:(1)铸流表面温度下降至低延展区以下,拉伸应变导致铸件产生裂纹。
(2)结晶器上热收缩应变引起板坯内部热断裂,产生裂纹。
(3)结晶器上或结晶器附近所施加的外力引起表面热拉裂。
产品的延展性低是出现裂纹的主要原因。
影响板坯横裂的因素还包括化学作用。
减小温差,降低震动是避免板坯裂隙发生的主要措施。
角部裂分析对板坯切削样本(削痕深度2〜3mm)进行化学成分分析的结果如表1。
在这种钢中发现了严重的角部裂纹,主要原因是该种钢的Nb、V和C含量高,特别是C对包晶钢非常敏感。
理论上讲,Nb(C,N)在1090°C开始析出,当温度下降,析出量快速增长,当温度降低到900C时主要析出物为V(C,N),温度进一步下降到800C时,晶间继续析出。
众所周知,在温度降低过程中,Nb基及V基析出物沿奥氏体晶粒边界析出。
连铸坯主要表面缺陷类型
连铸坯主要表面缺陷类型
连铸坯主要表面缺陷有:深振痕、凹陷、裂纹等。
1、深振痕
连铸坯的振痕有凹陷形振痕、钩形振痕两种类型。
连铸坯振痕较浅时,一般不会对最终成品产生影响;振痕较深时,在振痕波谷处,由于受到的冷却强度较弱,铸坯皮下晶粒粗大,就可能成为连铸坯横向裂纹的根源。
影响振痕深度的因素主要有润滑方式、钢种成分、保护渣性能、结晶器振动模式等。
减小结晶器内钢液初始凝固坯壳的弯曲变形程度可以降低连铸坯的振痕深度。
2、表面凹陷缺陷
连铸坯的表面凹陷有横向凹陷和纵向凹陷两种类型。
横向凹陷的形成与结晶器内液位上升有关,当液位波动峰值超过渣圈时,带动渣圈下移,此时形成横向凹陷。
纵向凹陷是结晶器上部锥度太小和刚性的角部转动,使小偏离角凹陷形成,由于结晶器下部锥度太大,结晶器压向坯壳使凹陷增加,从而在宽面出现偏离角凹陷。
降低结晶器冷却强度,提高结晶器内凝固坯壳所受冷却强度的周向均匀性,防止结晶器液位波动过大,可以消除铸坯的表面凹陷缺陷。
3、表面裂纹缺陷
表面裂纹主要有横向裂纹、纵向裂纹、星型裂纹等。
结晶器内初始凝固坯壳厚度不均匀,在坯壳薄弱处产生应力集中,会产生纵向裂纹。
表面横裂纹一般出现在振痕波谷处。
星型裂纹一般在铸坯表面去除氧化铁皮或渣膜后才会发现,与铸坯表面吸收了结晶器的Cu,同时铸坯表面Fe的选择性氧化,使残存元素(Cu、Sn 等)残留,沿晶界渗透形成星型裂纹。
保证结晶器内初始凝固坯壳厚度的均匀性是控制纵向裂纹的关键。
控制横向裂纹的关键是降低铸坯振痕深度,避免铸坯在低温脆性区弯曲或矫直。
控制星型裂纹的关键是结晶器内壁状态是否良好,铸坯温度控制是否合理。
西城板坯角部横裂纹产生原因及控制措施
西城板坯角部横裂纹产生原因及控制措施文章结合无锡西城特种船用板有限公司炼钢厂实际生产中出现的板坯角部横裂纹产生的因素进行排查、分析,并采取控制措施,使缺陷得到有效控制。
标签:板坯;角部横裂;烂边;Q235B无锡西城特种船用板有限公司炼钢厂(以下简称西城炼钢厂)板坯连铸一直生产规格2001250~1400mm的Q235B板坯,受钢板价格上涨的影响,2016年4月12日开始批量生产大规格2001600mm的Q235B板坯,并且为提高产能,拉速由0.85m/min,提高到0.95~1.00m/min,板坯经轧制后存在烂边现象,而中板厂为了与炼钢厂产能匹配,希望生产边部不需处理便可销售的毛边板,而烂边将造成毛边板无法生产。
经过跟踪、分析,判断中板烂边为板坯角部横裂纹造成,随即采取了一系列的措施,使板坯角部横裂纹得到控制,基本满足毛边板的生产要求。
1 西城炼钢厂板坯连铸机主要参数2 角部横裂轧制后及酸蚀后形貌图1为角部横裂,经中板厂轧制后的形貌,中板厂判定为烂边。
图2、图3是轧后中板缺陷部位的金相图片,裂纹处有明显脱碳,脱碳层深约0.29 mm,也说明该缺陷来源于板坯的原始缺陷;而后检查所生产的板坯,角部存在横裂纹。
3 板坯角部横裂纹形貌经过对板坯的检验发现,角部横裂纹基本分布在振痕里,裂纹宽0.5~1mm,向内扩展5~15mm,严重的达到20mm,而轻微的仅为发纹。
但这些缺陷,无论大小,经过加热炉加热,均会氧化脱碳,造成裂纹内大量氧化物夹杂,无法经轧制焊合,而产生烂边缺陷。
4 角部横裂纹产生的影响因素普遍认为,连铸坯多数的表面缺陷起源于结晶器。
经观察,角部横裂纹均出现在振痕里,说明该缺陷与结晶器内坯壳的状态有关;通过对漏钢后板坯角部的检验,反推裂纹出现的位置发现,角部横裂纹自矫直段6段开始出现,表明该裂纹在矫直时出现。
故西城炼钢厂主要围绕结晶器内坯壳的状态及矫直进行影响因素的排查。
4.1 振动参数的影响振动参数影响板坯在结晶器里的脱模情况,而主要影响因素为负滑脱时间tN。
连铸板坯裂纹的可能原因
连铸板坯裂纹的可能原因连铸板坯裂纹是指在连铸过程中,板坯表面或内部出现的裂纹现象。
这种裂纹严重影响了板坯的质量,降低了产品的使用价值,因此了解连铸板坯裂纹的可能原因对于解决该问题具有重要意义。
以下将分析连铸板坯裂纹的可能原因。
连铸板坯裂纹的产生与原材料的质量有关。
原材料中的夹杂物、气孔、硫化物等缺陷会导致板坯的非均匀性和应力集中,从而引发裂纹的产生。
此外,原材料的成分控制也是影响板坯质量的重要因素,过高或过低的含碳量、硫含量等都会增加板坯的脆性,易于产生裂纹。
连铸板坯裂纹的形成与连铸过程中的温度控制有关。
连铸过程中,板坯的冷却速度快,温度梯度大,容易产生应力集中,从而引发裂纹。
在连铸过程中,合理控制板坯的冷却速度和温度梯度,避免过快的冷却或温度梯度过大,能够有效减少裂纹的产生。
第三,连铸板坯裂纹的产生与连铸工艺参数的控制有关。
连铸工艺参数包括浇注速度、结晶器冷却水量、结晶器摇摆频率等。
不合理的工艺参数控制会导致板坯内部应力过大,从而引发裂纹的产生。
例如,过高的浇注速度会使板坯的温度梯度增大,易于产生裂纹;过大的结晶器冷却水量会使结晶器内部的冷却速度过快,也会导致板坯的裂纹。
连铸板坯裂纹的产生还与连铸设备的磨损和维护有关。
设备的磨损会导致连铸过程中的应力不均匀分布,从而引发裂纹。
因此,定期对连铸设备进行检修和维护,保持设备的正常运行状态,对于减少连铸板坯裂纹的产生具有重要作用。
连铸板坯裂纹的产生还与操作人员的技术水平和操作方法有关。
不规范的操作会增加板坯的应力,使其易于产生裂纹。
因此,提高操作人员的技术水平,加强对连铸操作的培训和管理,能够有效减少连铸板坯裂纹的产生。
连铸板坯裂纹的产生与多种因素有关,其中包括原材料质量、连铸过程中的温度控制、连铸工艺参数的控制、设备的磨损和维护以及操作人员的技术水平和操作方法等。
只有全面考虑这些因素,并采取相应的措施,才能有效减少连铸板坯裂纹的产生,提高产品的质量和使用价值。
连铸坯角部皮下横裂纹成因分析及控制技术
连铸坯角部皮下横裂纹成因分析及控制技术连铸坯角部皮下横裂纹是指在连铸坯的角部,表面下出现沿着壁厚方向的裂纹,给后续加工和使用带来不良影响。
其成因主要是由于连铸坯角部的凝固不均和加工应力引起的塑性变形,以及连铸坯冷却过程中内部温度差异不均等因素所导致的应力集中,最终引发了横向裂纹。
下面我们将从成因分析和控制技术两个方面来详细探讨连铸坯角部皮下横裂纹的产生和控制。
成因分析:(1)凝固不均连铸坯角部是整个坯料最后凝固的部分,由于连铸速度、温度、流动状态等因素的影响,角部的冷却过程相对于其他部位更加缓慢,导致角部凝固不均。
这种不均匀的凝固会产生不同的晶粒结构和应力分布,引起其在加工或使用过程中的应力集中,从而导致横向裂纹的产生。
(2)塑性变形在连铸坯的制造过程中,角部处于连铸机的曲折位置,通过弯曲和拉伸的变形,在坯料内部引起应力;同时,原材料的变化或连铸工艺的变化等因素也会产生影响,使得角部在制造和后续加工的过程中发生塑性变形。
虽然这种塑性变形可能在加工中得到修复,但也会在其之后的冷却过程中因应力集中而导致横向裂纹的产生。
(3)温度梯度连铸坯在冷却过程中,由于内部温度差异不均,在坯料内部产生了较大的应力集中。
角部与其他部位相比,由于特殊的位置和几何形状,冷却速度更慢,温度梯度更大,因而在冷却过程中容易引发横向裂纹,特别是在角部最薄的部位。
控制技术:(1)冷却方式连铸坯制造过程中,冷却方式的选择对坯料的质量产生着极大的影响。
在钢坯角部应采取有针对性的冷却方式,例如采用喷水冷却,在整个冷却过程中,保持冷却速度的均匀性,避免角部冷却不均导致的坯料内部温度差异和应力集中。
(2)钢质控制钢坯的铸造是一个复杂的过程,不仅需要控制好铸造温度、连铸速度等因素,还需要控制钢水中的气体含量、非金属夹杂物含量等,以确保将钢坯制造出高质量、低损耗的产品。
(3)加工工艺经过精细的加工,可以在大程度上修复连铸坯中存在的缺陷,对控制连铸坯角部皮下横裂纹能起到至关重要的作用。
微合金化钢连铸板坯角横裂纹的影响因素
微合金化钢连铸板坯角横裂纹的影响因素
微合金化钢连铸板坯角横裂纹的影响因素
微合金化钢连铸板坯角横裂纹是在钢材连铸过程中出现的不良现象,在检查情
况严重时可能影响最终产品的质量。
目前,为研究微合金化钢连铸板坯角横裂纹的影响因素,研究人员正在大力开展新的研究工作。
从技术和技术条件的角度看,微合金化钢连铸板坯角横裂纹的影响因素中,较
为重要的包括合金配比、钢水温度和吹气速度等。
首先,合金配比如果不适当,不仅影响板坯的均匀度,还会使微合金的累积量增加,从而使终产品品质低。
其次,钢水温度也会对微合金化钢连铸板坯角横裂纹产生重大影响,一般来说,如果钢水温度过高,微合金化钢连铸板坯容易出现角横裂纹;反之,如果钢水温度过低,则可能导致板坯表面均匀度较差。
最后,对于吹气速度方面,它一般不能太低,过低的吹气速度会导致板坯表面不光滑,这又会影响产品的品质。
此外,工艺条件也是影响微合金化钢连铸板坯角横裂纹出现的重要因素。
比如,反铸技术、复合铸造技术、数控技术等技术,它们都是现代连铸技术中重要发展方向,但它们都会影响板坯形状,进而也会影响角横裂纹的出现状况。
喷浆温度控制也同样会对角横裂纹产生积极的影响,此外,还有连铸技术的运行状态,比如机器的负荷状态、内部压力变化等,都会直接影响微合金化钢连铸板坯角横裂纹的形成。
综上所述,微合金化钢连铸板坯角横裂纹的影响因素主要有技术条件和工艺条
件两方面,其中包括合金配比、钢水温度、吹气速度、反铸技术、复合铸造技术和数控技术等,喷浆温度控制也是影响角横裂纹出现的重要因素,此外,连铸技术的运行状态也是影响其形成的因素之一。
连铸板坯裂纹的可能原因
连铸板坯裂纹的可能原因连铸板坯裂纹是指在连铸过程中板坯表面或内部出现的裂纹现象。
连铸板坯是制造板材的重要中间产品,其质量直接关系到最终产品的质量。
因此,了解连铸板坯裂纹的可能原因对于提高板材质量具有重要意义。
连铸板坯裂纹的可能原因主要包括以下几个方面:1. 温度控制不当:温度是连铸过程中最重要的控制参数之一。
如果连铸板坯的冷却速度过快或过慢,都会导致板坯表面或内部的温度梯度过大,从而引起裂纹的产生。
此外,连铸机的冷却水温度和流量的不稳定也会对板坯的温度分布产生影响,进而导致裂纹的形成。
2. 铸造过程中的应力:连铸板坯在冷却过程中由于温度变化而产生应力,如果应力超过了材料的承受能力,就会引起裂纹。
铸造过程中的应力主要包括热应力、冷却应力和收缩应力。
热应力是由于连铸板坯的非均匀冷却引起的,冷却应力是由于冷却水的不均匀冷却引起的,而收缩应力是由于连铸板坯的收缩引起的。
3. 材料质量问题:连铸板坯的质量直接关系到裂纹的产生。
如果原料中存在夹杂物、气孔或其他缺陷,都会在连铸过程中发展为裂纹。
此外,连铸板坯的化学成分和物理性能也会对裂纹的形成起到重要影响。
4. 连铸工艺参数调整不当:连铸过程中的各项工艺参数对于连铸板坯的质量具有重要影响。
如果连铸机的浇注速度、结晶器的冷却强度、结晶器的振动频率等参数调整不当,都会导致连铸板坯出现裂纹。
为了避免连铸板坯裂纹的产生,可以采取以下措施:1. 合理控制连铸过程中的温度,保证板坯的均匀冷却。
2. 优化连铸工艺参数,确保连铸板坯的质量稳定。
3. 加强原料检验,确保原料的质量达标。
4. 定期检查和维护连铸机设备,确保设备的正常运行。
5. 引入先进的控制技术,如自动化控制系统和智能监测设备,提高连铸过程的稳定性和可控性。
连铸板坯裂纹的产生是由多种因素共同作用的结果。
通过合理控制连铸过程中的温度、调整工艺参数、优化原料质量以及加强设备维护,可以有效地避免连铸板坯裂纹的产生,提高板材的质量。
连铸坯横裂产生的原因
连铸坯横裂产生的缘由横裂纹是位于铸坯内弧外表振痕的波谷处,通常是隐蔽看不见的。
经酸洗检查指出,裂纹深度可达 7mm,宽度 0.2mm。
裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。
且晶界上有细小质点(如 A1N)的沉淀。
尤其是 C—Mn—Nb(V)钢,对裂纹敏感性更强。
横裂产生的缘由:1)振痕太深是横裂纹的发源地。
2)钢中 A1、Nb 含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。
3)铸坯在脆性温度 900~700~C 矫直。
4)二次冷却太强。
防止横裂发生的措施:结晶器承受高频率(200~400 次/分)小振辐(2~4mm)是削减振痕深度的有效办法。
2)二次冷却区承受平稳的弱冷却,使矫直时铸坯外表温度大于900℃。
3)结晶器液面稳定,承受良好润滑性能、粘度较低的保护渣。
4)用火焰清理外表裂纹。
1.连铸坯外表纵裂产生的缘由及其防止方法有哪些?连铸坯外表纵裂纹,会影响轧制产品质量。
如长300mm、深2.5mm 的纵裂纹在轧制板材上留下 1125mm 分层缺陷。
纵裂纹严峻时会造成拉漏和废品。
争论指出:纵裂纹发源于结晶器弯月面初生坯壳厚度的不均匀性。
作用于坯壳拉应力超过钢的允许强度,在坯壳薄弱处产生应力集中导致断裂,出结晶器后在二次冷却区扩展。
纵裂产生的缘由可归纳为:1)水口与结晶器不对中而产生偏流冲刷凝固壳。
2)保护渣熔化性能不良、液渣层过厚或过薄导致渣膜厚薄不均,使局部凝固壳过薄。
液渣层<10mm,纵裂纹明显增加。
3)结晶器液面波动。
液面波动>10 ㎜,纵裂发生几率 30%。
4)钢中 S+P 含量。
钢中S>0.02%,P>0.017%,钢的高温强度和塑性明显降低,发生纵裂趋向增大。
5)钢中 C 在0.12~0.17%,发生纵裂倾向增加。
防止纵裂发生的措施是:1)水口与结晶器要对中。
2)结晶器液面波动稳定在±10mm。
3) 适宜的浸入式水口插入深度。
4)适宜的结晶器锥度。
连铸坯表面裂纹形成及防止汇总
图2-4 拉速对纵Biblioteka 纹的影响2 铸坯表面纵裂纹
(3) 保护渣 液渣层厚度<10mm,纵裂纹增加(图2-5)。
图2-5 液渣层厚度对纵裂纹的影响
2 铸坯表面纵裂纹
(4) 结晶器液面波动 液面波动<±5mm,纵裂纹最少(图2-6);
图2-6 结晶器液面波动对纵裂纹的影响
2W (T1 T2 ) W
3 铸坯表面横裂纹
3.2横裂纹产生原因 (1) 横裂纹产生于结晶器初始坯壳形成振痕的 波谷处,振痕越深,则横裂纹越严重,在波谷 处,由于: -奥氏体晶界析出沉淀物,产生晶间断裂 -沿振痕波谷S、P元素呈正偏析,降低了钢高 温强度。 这样,振痕波谷处,奥氏体晶界脆性增大,为裂 纹产生提供了条件。
这些力的的综合作用在坯壳上,当张应力超过钢的高温允许的 强度,则就在坯壳薄弱处萌生裂纹,出结晶器后在二冷区继续扩展。
2 铸坯表面纵裂纹
在结晶器弯月面区坯壳厚度生长不均匀的主要原 因是: (1)包晶相变(L+δ→γ)收缩特征,气隙过早形成, 导致坯壳生长不均匀。 (2)工艺因素影响结晶的坯壳生长不均匀。 显然要防止产生纵裂纹,就是要使结晶的弯月面初 生坯壳厚度均匀,避免坯壳产生应力梯度。要做到这点, 对于包晶相变的收缩特征是由Fe-C相图决定的,人为 无法改变,而重要的是准确控制影响结晶的初生坯壳生 长的工艺因素,来防止产生纵裂纹。
图3-1 振痕深度与横裂纹产生几率的关系
3 铸坯表面横裂纹
图3-2 振动频率与振痕深度的关系
3 铸坯表面横裂纹
图3-3 结晶器液面波动与角裂发生率的关系
(3) 结晶器液面波动 结晶器液面波动增加,横裂纹加重(图3-3)。
3 铸坯表面横裂纹
连铸表面裂纹产生的原因和改进的技术措施3
姓名:陈守汪班级:冶094班学号:0990142142012 年5 月14 日连铸表面裂纹产生的原因和改进的技术措施摘要:连铸坯表面裂纹的产生主要取决于: 钢成分对裂纹敏感性、浇铸工艺条件及连铸机设备状况。
带液芯的连铸坯在连铸机内运行过程中受到外力作用是坯壳产生裂纹的外因, 钢的高温力学行为是产生裂纹的内因, 而设备和工艺因素是产生裂纹的条件。
根据所浇钢种, 对连铸机设备的调整应符合钢水凝固收缩规律, 以坯壳不发生变形为原则。
优化工艺参数, 使其处于能够保证连铸坯不产生裂纹或不足以造成废品的允许范围内, 得到合理的铸坯凝固结构。
关键词:铸坯表面纵裂纹、铸坯表面横裂纹主要内容:铸坯裂纹是影响连铸机产量和铸坯质量的主要缺陷。
据统计, 铸坯各类缺陷中有50%为裂纹缺陷。
铸坯出现裂纹, 轻者需进行精整, 重者会导致漏钢和废品, 既影响连铸坯生产率, 又影响产品质量, 增加生产成本。
1 铸坯表面纵裂纹1. 1 板坯表面纵裂纹特征表面纵裂纹可能在板坯宽面中心区域或宽面到棱边的任一位置产生。
综合分析表明, 纵裂纹有以下特征:( 1) 产生纵裂纹的表面常伴有凹陷( depression), 纵裂纹的严重性与表面凹陷相对应。
( 2) 裂纹沿树枝晶干方向扩展。
( 3) 裂纹内发现有硅、钙、铝等元素的夹杂物。
( 4) 在裂纹周围发现有P, S, Mn 的偏析。
( 5) 裂纹边缘出现一定的脱碳层, 说明裂纹是在高温下形成扩展的。
1. 2 表面纵裂纹产生的原因板坯表面纵裂纹在连铸机内产生原因如下:( 1) 板坯横断面低倍检验表明, 纵裂纹起源于激冷层薄弱处( 约2~3mm) 。
( 2) 结晶器的模拟试验表明, 纵裂纹起源于结晶器弯月面区( 几十毫米到150mm) 周边坯壳厚度薄弱处。
这说明纵裂纹起源于结晶器的弯月面区初生凝固壳厚度的不均匀性。
坯壳受下列所述力的作用:( 1) 板坯凝固壳四周温度不均匀而产生的收缩力;( 2) 板坯收缩时由钢水静压力产生的鼓胀力;( 3) 宽度收缩时受侧面约束产生的弯曲应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸坯横裂产生的原因
横裂纹是位于铸坯内弧表面振痕的波谷处,通常是隐藏看不见的。
经酸洗检查指出,裂纹深度可达7mm,宽度0.2mm。
裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。
且晶界上有细小质点(如A1N)的沉淀。
尤其是C—Mn—Nb(V)钢,对裂纹敏感性更强。
横裂产生的原因:1)振痕太深是横裂纹的发源地。
2)钢中A1、Nb含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。
3)铸坯在脆性温度900~700~C矫直。
4)二次冷却太强。
防止横裂发生的措施:结晶器采用高频率(200~400次/分)小振辐(2~4mm)是减少振痕深度的有效办法。
2)二次冷却区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃。
3)结晶器液面稳定,采用良好润滑性能、粘度较低的保护渣。
4)用火焰清理表面裂纹。
1.连铸坯表面纵裂产生的原因及其防止方法有哪些?
连铸坯表面纵裂纹,会影响轧制产品质量。
如长300mm、深2.5mm的纵裂纹在轧制板材上留下1125mm分层缺陷。
纵裂纹严重时会造成拉漏和废品。
研究指出:纵裂纹发源于结晶器弯月面初生坯壳厚度的不均匀性。
作用于坯壳拉应力超过钢的允许强度,在坯壳薄弱处产生应力集中导致断裂,出结晶器后在二次冷却区扩展。
纵裂产生的原因可归纳为:1)水口与结晶器不对中而产生偏流冲刷凝固壳。
2)保护渣熔化性能不良、液渣层过厚或过薄导致渣膜厚薄不均,使局部凝固壳过薄。
液渣层<10mm,纵裂纹明显增加。
3)结晶器液面波动。
液面波动>10㎜,纵裂发生几率30%。
4)钢中S+P含量。
钢中S>0.02%,P>0.017%,钢的高温强度和塑性明显降低,发生纵裂趋向增大。
5)钢中C在0.12~0.17%,发生纵裂倾向增加。
防止纵裂发生的措施是:1)水口与结晶器要对中。
2)结晶器液面波动稳定在±10mm。
3)合适的浸入式水口插入深度。
4)合适的结晶器锥度。
5)结晶器与二次冷却区上部对弧要准。
6)合适的保护渣性能。
7)采用热顶结晶器,即在弯月面区75mm铜板内镶入不锈钢等导热性差的材料,减少了弯月面区热流50~70%,延缓了坯壳收缩,减轻了凹陷,因而也减小了纵裂发生几率。
12.连铸坯表面横裂产生的原因及其防止方法有哪些?
横裂纹是位于铸坯内弧表面振痕的波谷处,通常是隐藏看不见的。
经酸洗检查指出,裂纹深度可达7mm,宽度0.2mm。
裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。
且晶界上有细小质点(如AlN)的沉淀。
尤其是C—Mn—Nb(V)钢,对裂纹敏感性更强。
横裂产生的原因:1)振痕太深是横裂纹的发源地。
2)钢中A1、Nb含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。
3)铸坯在脆性温度900~700℃矫直。
4)二次冷却太强。
防止横裂发生的措施:1)结晶器采用高频率(200~400次/分)小振辐(2~4mm)是减少振痕深度的有效办法。
2)二次冷却区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃。
3)结晶器液面稳定,采用良好润滑性能、粘度较低的保护渣。
4)用火焰清理表面裂纹。
13.连铸坯表面网状裂纹产生的原因及其防止方法有哪些?
这种裂纹在铸坯表面酸洗之后才能发现,深度可达5mm。
产生的原因:
(1)高温铸坯表面吸收了结晶器的铜,而铜变成液体再沿奥氏体晶界渗透所致。
(2)铸坯表面铁的选择性氧化,使钢中残余元素(如Cu、Sn等)残留在表面沿晶界渗透形成裂纹。
研究表明,裂纹区有Cu、Sn、Sb等元素的富集,钢中Cu含量大于0.1%,裂纹加重;钢中Al含量增加,网状裂纹加重。
防止办法:1)结晶器表面镀Cr或Ni以增加硬度。
2)合适的二次冷却水量。
3)控制钢中残余元素如Cu<0.2%。
4)控制Mn/S>40。
14.连铸坯角部纵裂纹形成原因及防止措施有哪些?
角部纵裂纹可能位于宽面与窄面交界棱边附近,有的离棱边10~15㎜,有的刚好位于棱边上,严重时会造成漏钢。
形成的原因:对于方形,可能是沿结晶器高度水缝厚度不均匀,造成结晶器角部冷却不良;结晶器锥度太小,结晶器圆角半径太小。
对于板坯,可能是由于(1)窄面支撑不当造成窄面鼓肚。
窄面有6~12mm的鼓肚伴随有角部纵裂导致漏钢。
(2)锥度不合适。
(3)窄面冷却水不足。
改进方法:对于方坯1)控制好结晶器几何形状防止变形。
2)合适的圆角半径。
3)装配结晶器时,保持冷却水缝厚度一致,使冷却均匀。
对于板坯1)调整窄面足辊间隙使其向内l~2㎜限制鼓肚。
2)合适锥度(1.0%/m)。
3)合适冷却水量。
4)水口与结晶器对中不要偏流。
15.连铸坯角部横裂纹形成原因及防止措施有哪些?
这是一种位于铸坯角部的细小横裂纹。
其产生的原因可能是:1)结晶器锥度太大。
2)结晶器表面划伤。
3)结晶器出口与零段对弧不准。
改进方法:调整结晶器锥度,严格对弧,调整二次冷却使矫直时铸坯角部温度不能小于800℃。
16.连铸坯的皮下气泡是如何形成的?
在位于铸坯表皮以下,有直径和长度各在1毫米和10毫米以上的向柱状晶方向生长的大气泡。
这些气泡如裸露在外面的叫表面气泡,没有裸露的叫皮下气泡,比气泡小呈密集的小孔叫皮下针孔。
在加热炉内,铸坯的表面气泡或皮下气泡内表面被氧化而形成脱碳层,轧制后不能焊合而形成表面缺陷。
埋藏浅的气泡可用砂轮、风铲和火焰清理等办法清除。
埋藏深的气泡很难发现,会使产品产生裂纹。
钢水脱氧不足是产生气泡的主要原因,如采用强化脱氧,以降低钢中的氧含量,会使钢水中的铝含量达到0.01~0.015%,从而使气泡消除。
另外,钢水中的气体含量(尤其是氢)也是生成气泡的一个重要原因。
因此,加入钢水中的一切材料(如铁合金、渣粉等)应干燥,钢包、中间包应烘烤,润滑油用量要适当,注流采用保护浇注,对减少气泡的效果是明显的。
17.什么叫连铸坯表面折叠缺陷?
在铸坯表面有横向的折叠痕迹,严重时伴随有横向裂纹。
形成原因:
(1)结晶器内悬挂使凝固壳撕裂,由于结晶器的强冷,在撕裂处漏出的钢水立刻凝固在表面形成折叠痕迹;
(2)结晶器振动参数调整不当;
(3)结晶器出口与二次冷却段对弧不良;
(4)结晶器润滑不良,坯壳与铜壁粘结。
18.铸坯表面“冷痣”产生的原因是什么?
在铸坯表皮下嵌入的金属硬块或渣块叫“冷痣”。
产生原因是:
(1)敞开浇注时钢流的喷溅粘到结晶器表面的冷钢嵌入凝固壳;
(2)结晶器液面波动太大,把渣中的不溶物卷入凝固壳。
19.什么叫连铸坯表面的重皮缺陷?
在铸坯表面呈现横向不连续性,有明显的不完全焊合的痕迹叫重皮。
产生原因:
(1)结晶器的注流突然停浇,或瞬间停止拉坯。
如果停浇时间过长,就会在铸坯表面形成明显的重接;
(2)钢水太粘、温度过低、水口堵塞、注流偏离等都可能引起重皮。
20.为什么连铸坯表面有时呈凹状?
此缺陷常见于方坯或板坯窄面。
形成原因:
(1)结晶器锥度过大;
(2)二次冷却区不均匀冷却。
使用合适的结晶器锥度和均匀二次冷却可以防止。