【精选】七年级数学代数式中考真题汇编[解析版]

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类

①若a≠0,b=c=0,则称该整式为P类整式;

②若a≠0,b≠0,c=0,则称该整式为PQ类整式;

③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;

(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;

(2)说明整式x2﹣5x+5为“PQ类整式;

(3)x2+x+1是哪一类整式?说明理由.

【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.

若a=0,b≠0,c≠0,则称该整式为“QR类整式”.

故答案是:a=b=0,c≠0;a=0,b≠0,c≠0

(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)

=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.

即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”

(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),

∴该整式为PQR类整式.

【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.

(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.

(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.

2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)

5m3和8m3,则应收水费分别是________元和________元.

(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)

(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)

【答案】(1)10;20

(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)

答:应收水费(4a﹣12)元。

(3)解:当0<x≤4时,该户居民4、5两个月共缴水费=2x+12+4×4+6(14﹣x﹣10)=52﹣4x;

当4<x≤6,该户居民4、5两个月共缴水费=2x+12+4(14﹣x﹣6)=﹣2x+44;

当6<x<7时,该户居民4、5两个月共缴水费=12+4(x﹣6)+12+4(14﹣x﹣6)=32.【解析】【解答】(1)解:该户居民1月份用水5m3,应缴水费=5×2=10(元);

2月份用水8m3,应缴水费=6×2+2×4=20(元);

故答案是:10;20

【分析】(1)①按照价目表可知,不超过6m3的用水量的水费=5×不超过6m3的用水量的价格计算即可求解;

②按照价目表可知,超过6m3的不超过10m3的用水量的水费=6×不超过5m3的用水量的价格+超过6m3的用水量×超过6m3的价格计算即可求解;

(2)由题意知,用水量属于第二档,按照(1)中②的方法可求解;

(3)结合(1)的方法,分类可求解.

3.从2开始,连续的偶数相加时,它们的和的情况如下表:

S和n之间有什么关系?用公式表示出来,并计算以下两题:

(1)2a+4a+6a+…+100a;

(2)126a+128a+130a+…+300a.

【答案】(1)解:依题可得:S=n(n+1).

2a+4a+6a+…+100a,

=a×(2+4+6+…+100),

=a×50×51,

=2550a.

(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,

=a×(2+4+6+…+300),

=a×150×151,

=22650a.

又∵2a+4a+6a+…+124a,

=a×(2+4+6+…+124),

=a×62×63,

=3906a,

∴126a+128a+130a+…+300a,

=22650a-3906a,

=18744a.

【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.

(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,

4.糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.

(1)问2005年4月糖业集团生产了多少吨糖?

(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).

【答案】(1)解:2005年4月糖业集团产糖250×12%=30(万吨)=300000(吨)

(2)解:设7月份的糖价为x元/吨,

则据已知条件有x=2597.784(元/吨);

设7月份的糖销量为y吨,

则据已知条件得:y=30×0.60×(1+9%)2=21.3858(万吨)

设7月份销售4月份产糖的销售额为w元,

则据题意得:w=2597.784×21.3858≈55556(万元).

答:糖业集团7月份销售4月份产糖的销售额约为55556万元.

【解析】【分析】(1)根据产糖量等于入搾甘蔗量乘以搾糖率即可求解;

(2)由题意先求出7月份的糖价=2940(1-6%)2=2597.784元/吨,再求出7月份的糖销量=30×0.60×(1+9%)2=21.3858(万吨),最后根据销售额等于销售单价乘以销售量即可解

相关文档
最新文档