运动控制系统仿真---实验讲义全
控制系统仿真实验指导书及解答
实验一 MATLAB 软件操作练习一、 实验目的1. 熟悉MATLAB 软件的基本操作;2. 学会利用MATLAB 进行基本数学计算的方法;3. 学会用MATLAB 进行矩阵创建和运算。
二、实验设备计算机一台,MATLAB 软件三、实验内容1. 使用help 命令,查找 sqrt (开方)、roots (求根)等函数的使用方法;2. 用MATLAB 可以识别的格式输入以下矩阵75350083341009103150037193......A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦并将A 矩阵的右下角2×3子矩阵赋给D 矩阵。
赋值完成后,调用相应的命令查看MATLAB 工作空间的占用情况。
3. 矩阵运算(1)矩阵的乘法已知A=[1 2;3 4]; B=[5 5;7 8];求A^2*B(2)矩阵除法已知 A=[1 2 3;4 5 6;7 8 9];B=[1 0 0;0 2 0;0 0 3];A\B,A/B(3)矩阵的转置及共轭转置已知A=[5+i,2-i,1;6*i,4,9-i];求A.', A'(4)使用冒号选出指定元素已知: A=[3 2 3;2 4 6;6 8 10];求A 中第3列前2个元素;A 中所有列第2,3行的元素;4. 分别用for 和while 循环结构编写程序,求出6323626302122222i i K ===++++++∑并考虑一种避免循环的简洁方法来进行求和。
四、实验步骤1. 熟悉MATLAB 的工作环境,包括各菜单项、工具栏以及指令窗口、工作空间窗口、启动平台窗口、命令历史窗口、图形文件窗口和M 文件窗口;2. 在指令窗口中完成实验内容中规定操作并记录相关实验结果;3. 完成实验报告。
实验二 M 文件编程及图形处理一、实验目的1.学会编写MATLAB 的M 文件;2.熟悉MATLAB 程序设计的基本方法;3. 学会利用MATLAB 绘制二维图形。
二、实验设备计算机一台,MATLAB 软件三、实验内容1. 选择合适的步距绘制出下面的图形(1)sin(tan )tan(sin )t t -,其中(,)t ππ∈-(2)-0.5t y=e sin(t-)3π,t ∈[0,20](3)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5), t ∈[0,2π]2.基本绘图控制绘制[0,4π]区间上的x1=10sint 曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)给横坐标标注’t ’,纵坐标标注‘y(t)‘,3.M 文件程序设计(1)编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值);(2)编写分段函数⎪⎩⎪⎨⎧≤≤-<≤=其它021210)(x x x x x f的函数文件,存放于文件ff.m 中,计算出)2(f ,)3(-f 的值四、实验要求1. 预习实验内容,按实验要求编写好实验程序;2. 上机调试程序,记录相关实验数据和曲线,3. 完成实验报告。
运动控制实验讲义(自动化)
运动控制系统实验实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.熟悉晶闸管直流调速系统的组成结构;2.掌握晶闸管直流调速系统参数与环节特性的测定方法。
二.实验内容1.测定晶闸管整流装置的外特性;2.测定晶闸管触发及整流装置的放大系数;3.用直流伏安法测量直流电动机的电枢电阻和电抗器电阻;4.直流电动机电势常数Ce和转矩常数C M的测定;5.测定晶闸管直流调速系统机电时间常数T M(选做);6.测定直流电动机-发电机-测速发电机组的飞轮惯量GD2;7.绘制自由停车曲线n=f ( t )(选做);8.测速发电机特性U TG=f (n)的测试;9.用交流伏安法测量直流电动机电枢回路的电感;10.计算主电路电磁时间常数测定。
三.实验系统组成和工作原理晶闸管直流调速系统由三相交流电路、晶闸管整流调速装置、平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器见表3-1五.注意事项为防止电枢过大电流的冲击,每次增加U g 须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
表3-1实验设备及仪器六.实验方法1.测定整流装置的外特性u =f( I ),并确定其内阻r 。
⑴ 实验原理 见图3-1图3-1 整流装置外特性测试原理图⑵ 数据测定及处理每次实验前,都应将负载电阻R 的阻值置于最大。
由于考虑到整流装置内阻的非线性关系,因此在实验中应测定不同的α角时的外特性曲线u =f( I ),α值可取三种不同的角度,对于每个不同的α值,通过改变R 的大小,可测取其4个左右的相应参数,并描述u =f( I )曲线(应为直线簇),该直线的斜率即为r 。
r=△u /△I(合理选择△u 、△I的值)在实验中,应注意负载电流不得超过其额定值0.6A;每次重新改变α时,R应置于最大位置。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 理解运动控制系统的概念和组成2. 掌握运动控制系统的分类和原理3. 了解运动控制系统在实际应用中的重要性二、教学内容1. 运动控制系统的概念和组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类和原理2.1 模拟运动控制系统2.2 数字运动控制系统2.3 位置控制、速度控制和加速度控制3. 运动控制系统在实际应用中的重要性3.1 运动控制系统在工业生产中的应用3.2 运动控制系统在技术中的应用3.3 运动控制系统在自动驾驶技术中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
2. 案例分析法:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
3. 讨论法:组织学生探讨运动控制系统的发展趋势和挑战,培养学生的创新思维和问题解决能力。
四、教学资源1. 教材:《运动控制系统》2. 多媒体课件:PPT、动画、视频等3. 网络资源:相关论文、案例、新闻报道等五、教学评价1. 课堂参与度:评估学生在课堂讨论、提问等方面的积极性。
2. 课后作业:布置相关练习题,评估学生对运动控制系统知识的理解和掌握程度。
3. 小组项目:组织学生团队合作完成一个运动控制系统的应用案例,评估学生的实践能力和问题解决能力。
六、教学安排1. 课时:共计32课时,每课时45分钟2. 教学计划:第1-4课时:运动控制系统的概念和组成第5-8课时:运动控制系统的分类和原理第9-12课时:运动控制系统在实际应用中的重要性第13-16课时:运动控制系统的的发展趋势和挑战七、教学步骤1. 引入:通过一个实际应用案例,引出运动控制系统的重要性,激发学生的学习兴趣。
2. 讲解:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
3. 案例分析:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
《运动控制系统》实验指导书[新][152023]
一、运动控制系统实验项目一览表实验室名称:电机拖动实验室课程名称:运动控制系统适用专业:电气工程及自动化、自动化实验总学时:16设课方式:课程实验(“课程实验”或“独立设课”二选一)是否为网络实验:否(“是”或“否”二选一)实验一晶闸管直流调速系统主要单元调试一.实验目的1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。
2.掌握直流调速系统主要单元部件的调试步骤和方法。
二.实验内容2.电平检测器的调试3.反号器的调试4.逻辑控制器的调试三.实验设备及仪器1.教学实验台主控制屏。
2.NMCL—31A组件3.NMCL—18组件4.双踪示波器5.万用表四.实验方法1.速度调节器(ASR)的调试按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。
注意:正常使用时应“封锁”,以防停机时突然启动。
(1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由NMCL—31的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于 5V。
(2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
(3)观察PI特性拆除“5”、“6”端短接线接入5~7uf电容,(必须按下选择开关,绝不能开路),突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。
反馈电容由外接电容箱改变数值。
2.电流调节器(ACR)的调试按图1-5接线。
(1)调整输出正,负限幅值“9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值大于 6V。
(2)测定输入输出特性将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
运动控制系统仿真---实验讲义
《运动控制系统仿真》实验讲义谢仕宏xiesh@实验一、闭环控制系统及直流双闭环调速系统仿真一、实验学时:6学时二、实验内容:1.已知控制系统框图如图所示:图1-1单闭环系统框图图中,被控对象G(S) 10e-150s,GC(S)为PID控制器,试整定PID控制器300s + 1参数,并建立控制系统Simulink仿真模型。
再对PID控制子系统进行封装,要求可通过封装后子系统的参数设置页面对KP、Ti、Td进行设置。
2.已知直流电机双闭环调速系统框图如图1-2所示。
试设计电流调节器ACR和转速调节器ASR并进行SimUIink建模仿真。
图1-2直流双闭环调速系统框图三、实验过程:1、建模过程如下:(1)PID控制器参数整顿根据PID参数的工程整定方法(Z-N法),如下表所示,KP= 伯=0.24,Ti= 2 =300, KτTd= 0. 5 =75。
表1-1 Z-N法整定PID参数PI 0.9T-K T3τ无0.4K c0.8TC无PID 1.2TK I2τ0∙5τ0.6KC0.5TC0.12TC(2) Simulink仿真模型建立建立SimUIink仿真模型如下图1-3所示,并进行参数设置:图1-3中,SteP模块"阶跃时间”改为 O, Transport Delay模块的"时间延迟”设置为 150,仿真时间改为1000s,如下图1-4所示:图1-3 PID控制参数设置运行仿真,得如下结果:IP回GamlIntegratordu'dlS S□VieW Simulation FOrmat ToOlS C¾ I ∣-CaΛtel50.5 O500IPlD ≠I ≡ •希刊3片令Uy 卜I IlOOo J⅛orΛal 三爭 E Φ I- F 過应®图1-7 PID 子系统Tim& offset. 0(3) PID 子系统的创建首先将参数 Gain 、Gain1、Gain 三个模块的参数进行设置,如下图所示:图1-5 PID 控制运行结果GarnWO O≡ a [^: P 刃盹逼圖0 ■垢G I airl2 Deirivativ®W FUnCtlOn BlaCk PararrleterS- Gain图1-6 PID 参数设置然后建立PID 控制器子系统,如下图1-7所示:TranSier FCn TransportDelaySietLal AttrLbUEiElIerrt-UriSe g ,aiιι (y =, Je-IaIi吕 FUnCtiOn BIoCk Paranneters≡ Gain2Signal Att ributSaJliJJIe tine (-1 for i≡<P a,E ≥τ∣e i t 6r AttElbulesHlenent5⅞jιple txι≡c (-1 fur IeihKnlt ipLicat iαι∏LS EleMrtt -vise (K. *u) Sanple tune Ii-I for inketLtθd) iElenent-Wije g 自丄n (y = .)LAU) _OE j¾⅛tn⅜ ⅛⅛LΠ Jy ± K ÷ α Oru^K}aV⅛ FUnCtiOn Block Parameters : GainI K⅛LΓi(T)IlU I ltiPIICatiOn5 EIenI l eTSUbSyStem10300s+1出封装编辑器,并进行相应参数设置,如下图1-8、1-9所示,图1-9 PID 子系统封装参数设置tfl MaSk Editor ; SUbSyStemICOn & PortS ParameterS Initialization DOCdrnentatiOn OPtiOnS BIQCk Frame ViSibleIcon TranSParenCy OPaqUe ICOri UnitS AUtOSCaIe ICOn ROtation FiXed POrt ROtatiOn DefaUltkon DraWing COmmandSdisp( PlD Controller')EXamPleS OfdraWing CommandSCOinrD3∩d I lIalr tJLabeI ClabEl ≡peci fi E Por tsj SyntaXPOrtJabel(, oUtPUt l J I J h xy ,)UnmaSkI OK ]3Kel I I HelP ∣ APPly图1-8 PID 子系统封装文本显示¥ MaSlC EditOr: SubsystemKQn & POrH ParameterS InitiaIiZation DOCUmentatiOrl... PromPt Variable TyPe EvaL.. T UIY ., Ta,..1 PID KpIKP edit F 02 3 PID Ti Ti edit +√PtD_TdTdedit »Ell√lDiaICg parameters QPtIOnS for SeIeCtecl Pararneter TyPe-SPeCifiC OPtiOl NO type-specific o ∣GeneriC OPtiOnS In dialog:√l EnabIe ParamShOW Parame lH Dialog callback :UnmaSk CanCelHelP APPly在对图1-9所示封装变量设置完成后,封装后的PID子系统如下图1-10所示图1-10封装后PID控制仿真模型双击图1-10中的PID子系统,按图1-11作参数设置,即可完成PID参数设置。
运动控制系统实验2014春
实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解电力电子及电气传动教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机—直流发电机—测速发电机组(或光电编码器)的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数T d5.测定直流电动机电势常数C e和转矩常数C M6.测定晶闸管直流调速系统机电时间常数T M7.测定晶闸管触发及整流装置特性U d=f (U ct)8.测定测速发电机特性U TG=f (n)三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.教学实验台主控制屏2.SMCL—01组件3.NMCL—33组件4.NMCL—03组件5.电机导轨及测速发电机(或光电编码器)6.直流电动机M037.双踪示波器(自备)8.万用表(自备)五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R 的测定电枢回路的总电阻R 包括电机的电枢电阻R a ,平波电抗器的直流电阻R L 和整流装置的内阻R n ,即R=R a +R L +R n为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图1-1所示。
将变阻器R D (可采用两只电阻串联)接入被测系统的主电路,并调节电阻负载至最大。
运动控制系统实验
实验1 转速反馈控制的直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 软件进行系统仿真。
2.学会用MATLAB 下的SIMULINK 软件建立转速反馈控制的直流调速系统的仿真模型和进行仿真实验的方法。
二、结构原理图设计图1 调试系统原理图图1为转速负反馈闭环调速系统仿真框图,各环节参数如下:直流电动机:额定电压N U =220V ,额定电流dN I =55A,额定转速N n =1000r/min,电动机电动势系数e C =0.192Vmin/r 。
假定晶闸管整流装置输出电流可逆,装置的放大系数s K =44,滞后时间常数s T =0.00167s 。
电枢回路总电阻R=0.1Ω,电枢回路电磁时间常数l T =0.00167s ,电力拖动系统机电时间常数m T =0.075s 。
转速反馈系数α=0.01Vmin/r 。
对应额定转速时的给定电压*n U =10V 。
三、仿真实验1. 搭建simulink 仿真实验图搭建完成如图2所示图2 simulink仿真实验图2.基础实验(1)考虑有反馈和无反馈对转速降落差的影响。
下图图3和图4分别为闭环和开环下的示波器显示图图3 闭环情况下的示波器显示图4 开环情况下的示波器显示结论:转速发生偏差时,有反馈系统能有效的抑制,并跟紧给定值;而没有反馈的系统偏差会越来越大。
(2)计算开环机械特性和闭环静特性。
(ss K K P ττ11+=比例积分环节)系统开环机械特性:ed e n S C RIC U K K n -=*1系统闭环静特性:()()K C RI K C U K K n e de n S +-+=*111(3)讨论P 调节、I 调节、PI 调节对快速性和静差的影响。
以下图5、图6分别是P 调节、I 调节的示波器显示图。
图5 P调节下的示波器显示图6 I调节下的示波器显示图根据3种情况下的对比可得以下结论:1.P调节响应速度快,调节动作敏捷,只能减小但无法消除静差。
运动控制系统实验讲义
运动控制系统实验讲义实验一不可逆单闭环直流调速系统一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验内容1.系统开环工作机械特性。
2.转速负反馈有静差系统工作静特性。
3.转速调节器ASR输出限幅调节。
4.转速反馈信号强度整定及极性判别。
三.实验线路及原理实验线路参见图6-3.2。
四.实验设备及仪器1.MCL—Ⅲ教学实验台主控制屏2.MCL—32T组件3.MCL—31组件4.MCL—33组件5.可调电阻器900Ω/0.4A×26.电机导轨及测速发电机7.直流电动机M038.直流发电机M01 9.双踪示波器 10.万用表五.实验方法1.按图接线,触发电路检查及调试(主电路电源未通电)依次打开实验台主控制屏上的自动开关、中央锁控开关、低压直流开关、激磁电源开关,有正常的电压LED 指示。
参见第四章实验七:(1)同步电源相序、触发电路脉冲检查。
(2)如图6-3.1所示,调节脉冲初始相位α=90°。
2.系统开环工作机械特性。
(1) G (给定)输出直接加至相移控制电压U ct 端。
给定电位器RP1左旋到底,使U ct =0。
电机空载。
(2)合上主电路电源,逐渐调节给定电压U g ,使电机空载转速n 0=1500转/分,调节发电机负载电阻R d ,在空载至额定负载的范围内(0.8A)测取7~8点,读取电机电枢电流I d 以及对应转速n 。
求取系统开环工作机械特性曲线(3)在电机额定状态下(同时满足n=1500 r/min 、I d =0.8 A ),调节FBS 的RP 电位器使转速反馈输出为+5V ,同时,用万用表测取给定电压输出作为U gmax 。
3.转速负反馈有静差系统工作静特性(1)断开主回路电源,ASR的输入“1”端与FBS转速反馈的输出“3”端相连(另外注意转速反馈输出“4”端与给定单元共地),输入“2”端与G (给定)的输出U g端相连,输出“3”端与相移控制电压U ct端相连,“4”端与DZS零速封锁的输出“3”端相连,短接ASR的“5”与“6”端,构成比例调节器。
运动控制实验讲义
Simulink中传递函数的建立实验一Matlab和实验目的一.中建立系统传递函数的方法。
Matlab 1.掌握在中建立系统的传递函数及结构图的方法。
2.掌握在Simulink二.实验设备及仪器软件计算机、Matlab三.实验内容推出的一个科技应用软件,已经发展成为一个适用于多学科MathworksMatlab是由美国在本课程的实验中主要使用该软件的控制系统工它涉及领域广泛,多工作平台的大型软件。
设计提供的结构Matlab具箱,以加深对控制理论及其应用的理解。
Simulink是该公司专门为使该仿真环境下的用户程序其外观就是系统的结构图,图编程与系统仿真的专用软件工具,得系统仿真变得简便直观。
1.Matlab 中建立系统传递函数命工作空间窗口可以显示Matlab中的各个变量。
Matlab启动后的用户界面如图1-1所示,令窗口可以输入各种命令,这也是输入系统传递函数的窗口。
Matlab启动界面图1-1(1). Matlab中求解微分方程个方12),该函数最多可同时求解21”, “方程”,…dsolve(求解微分方程所用的命令为“方程2yd在接变量名,例如:代表D2y。
表示,程。
方程中的各阶导数项以大写的D后面跟阶数,2dxdc(0)?00c(0)?Matlab1例:在,中求解下列微分方程,变量初始值为t 12dccd2?2?c?22dtdt)t?2*cos(y??2,通过解:在命令窗口中键入命令如图1-2所示。
可见方程的解所示。
ezplot命令可以绘制该微分方程解的曲线如图1-3Matlab中输入微分方程图1-2ezplot命令绘制图形图1-3,zpk。
. Matlab中输入传递函数常用的命令有:tf,printsys(2)可以输入多项式形式的传递函数,首先根据传递函数写出分子多项式,prinfsys 命令tf numnum denden或令tf(,)系数向量。
然后输入命项的数系向量,分母多式的)即可得到传递函数。
【报告】运动控制仿真实验报告
【关键字】报告运动控制仿真实验报告姓名:班级:学号:——晶闸管三相全控桥式整流仿真实验——实用Buck变换仿真实验晶闸管三相全控桥式整流仿真实验(大电感负载)原理电路:输入三相交流电,额定电压380伏(相电压220伏),额定频率50Hz,星型联接。
输入变压器可省略。
为便于理解电路原理,要求用6只晶闸管搭建全控桥。
实验内容:1、根据原理框图构建Matlab仿真模型。
所需元件参考下表:仿真元件库:Simulink Library Browser示波器Simulink/sink/Scope要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。
要观察波形的FFT结果时,使能保存数据到工作站。
仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。
交流电源SimPowerSystems/Electrical Sources/AC Voltage Source设定频率、幅值、相角,相位依次滞后120度。
晶闸管SimPowerSystems/Power Electronics/Thyristor6脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator 设定为50Hz,双脉冲利用电压检测构造线电压输入。
Block端输入常数0.输出通过信号分离器分为6路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1到6排列,注意按号分配给主电路对应晶闸管。
电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch设定参数负载切换开关SimPowerSystems/Elements/Breaker设定动作时间信号合成、分离Simulink/Signal Routing/Demux,Mux电流傅立叶分解SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier设定输出为50Hz,基波有效值SimPowerSystems/Extra Library/Discrete Measurements/Discrete RMS value设定为50Hz位移功率因数计算Simulink/User-Difined Functions/Fcn将度转换为弧度后计算余弦常数Simulink/Sources/Constant增益Simulink/Math Operations/Gain乘除运算Simulink/Math/Divide显示Simulink/sinks/Display电压检测SimPowerSystems/Measurements/Voltage Measurement电流检测SimPowerSystems/Measurements/Current Measurement2、带阻感负载,电感0.1H, 设定触发角为30度:起动时基本负载20欧,0.3秒后并联一个2欧姆电阻。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常见类型及其原理。
3. 学会分析运动控制系统的性能指标。
4. 能够运用运动控制系统的基本原理解决实际问题。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的应用领域2. 运动控制系统的类型模拟运动控制系统数字运动控制系统单片机运动控制系统计算机运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理加速度控制原理4. 运动控制系统的性能指标稳态性能指标动态性能指标系统误差指标5. 运动控制系统的硬件组成控制器执行器反馈元件辅助元件三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和性能指标。
2. 案例分析法:分析实际运动控制系统的应用案例,加深学生对运动控制系统的理解。
3. 实验法:安排实验室实践环节,让学生亲自动手操作运动控制系统。
4. 小组讨论法:分组讨论运动控制系统的设计和优化方法。
四、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的图片、图表、动画等。
3. 实验室设备:运动控制系统实验装置。
4. 网络资源:相关学术论文、企业案例等。
五、教学评价1. 平时成绩:课堂表现、作业、实验报告等。
2. 考试成绩:期末考试,包括选择题、填空题、计算题和论述题。
3. 实践能力:实验室操作运动控制系统的表现。
4. 综合素质:小组讨论、课堂提问、问题解答等。
六、教学安排1. 课时:本课程共计32课时,包括16次课堂讲授,8次实验操作,8次小组讨论。
2. 授课方式:课堂讲授与实验操作相结合,小组讨论与个人作业相辅相成。
3. 进度安排:按照教材和课件内容,依次讲解各个章节,安排实验和小组讨论。
七、实验环节1. 实验目的:通过实际操作,让学生深入了解运动控制系统的原理和应用。
2. 实验内容:包括运动控制系统的搭建、调试和性能测试。
八、小组讨论1. 讨论主题:运动控制系统的设计与优化。
运动控制-直流电动机开环调速系统仿真
天津城建大学课程设计任务书控制与机械工程 学院 电气工程及其自动化课程设计名称: 运动控制系统课程设计设计题目: 直流电动机开环调速系统仿真完成期限设计依据、要求及主要内容:一、已知条件及控制对象的基本参数:已知直流电动机额定参数为nom =220V U ,nom I =136A ,nom n =1460r/min ,4极,a R =0.21Ω,22=GD 22.5m N 。
励磁电压f =220V U ,励磁电流f =1.5I A 。
采用三相桥式整流电路,整流器内阻rec =1.3R Ω。
平波电抗器p =200L mH 。
n =5V U二、 设计要求(1)分析系统结构、原理(2)利用matlab/simulink 绘制系统的仿真模型并对模块参数进行设置。
(3)对该晶闸管-整流电动机开环调速系统进行仿真,并观察电动机在全压启动和启动后加额定负载时电动机的转速、转矩和电流的变化情况。
三、 参考文献1.王兆安,等.电.力电子技术[M 〕.北京:机械工业出版社,2000.2.张广溢,等.电机学[M]。
重庆:重庆大学出版社,2002.3.王军.自动控制原理[M]。
重庆:重庆大学出版社,2008.4.周渊深.交直流调速系统与Flat 1 ab 仿真[M].俨比京:中国电力出版社,2004.5.陈伯时,电力拖动自动控制系统(第2版)[M].北京:机械工业出版社.20056.陈伯时.电力拖动自动控制系统一一运动控制系统(第3版)机械工业出版社指导教师(签字):系(教研室)主任(签字):批准日期: 2015年 1 月19 日目录一、绪论 0二、直流电动机开环调速系统仿真的原理 (1)2.1晶闸管整流器-电动机系统组成及原理 (1)2.2直流电动机开环调速系统仿真的原理 (1)三、数学模型建立与动态结构图 (3)3.1晶闸管传递函数 (4)3.2 直流电动机数学模型 (4)3.3直流开环调速系统稳态结构图 (5)3.4 直流开环调速系统的开环传函 (5)3.5参数的选择 (5)四、系统仿真 (6)4.1仿真原理图 (6)4.2 仿真结果 (6)4.3 仿真结果分析 (8)五、总结 (8)参考文献: (9)一、绪论在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
运动控制实验精选全文
可编辑修改精选全文完整版第二章运动控制(一)实验实验三不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。
转速单闭环直流调速系统是常用的一种形式。
实验图3一1所示是转速单闭环直流调速系统的实验线路图。
实验图3一1转速单闭环直流调速系统图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V供电,通过与电动机同轴刚性连接的测速发电机TG检测电动机的转速,并经转速反馈环节FBS分压后取出合适的转速反馈信号U n,此电压与转速给定信号U*经速度调节器ASR综合调节,ASR的n输出作为移相触发器GT的控制电压U ct,由此组成转速单闭环直流调速系统。
图中DZS和转速反馈电压U n均为零时,DZS的输出信号使转速为零速封锁器,当转速给定电压U*n调节器ASR锁零,以防止调节器零漂而使电动机产生爬行。
三、实验设备及仪器1.MCL—II型电机控制教学实验台主控制屏。
2.MCL—20组件。
3.MCL—03组件。
4.MEL—11电容箱。
5.MEL—03三相可调电阻(或自配滑线变阻器)6.电机导轨及测速发电机、直流发电机MO l7.直流电动机M03。
8.双踪示波器。
四.实验内容1.移相触发电路的调试(主电路未通电)(a)用示波器观察MCL—20的脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V-2V的双脉冲。
(b)触发电路输出脉冲应在30º~90º范围内可调。
可通过对偏移电压调节单位器及ASR输出电压的调整实现。
例如:使ASR输出为0V,调节偏移电压,实现α=90º:再保持偏移电压不变,调节ASR的限幅电位器RP1,使α =30º。
单摆运动控制系统设计与仿真实验报告
单摆运动控制系统设计与仿真实验报告1.引言1.1 概述概述部分的内容:单摆运动控制系统是一个常见的控制系统应用领域,它在诸多科学实验、工程项目和技术研究中都有广泛的应用。
单摆运动控制系统通过控制摆臂的运动,实现对摆臂的稳定性和精确度的控制,从而达到预定位置、速度和加速度的要求。
随着科技的不断发展和进步,单摆运动控制系统的设计和仿真实验成为研究者们关注的焦点。
在过去的几十年中,众多学者和工程师们提出了各种各样的方法和理论,以提高单摆运动控制系统的性能和效果。
这些方法包括但不限于PID控制、自适应控制、模糊控制等等。
它们都在不同的场景中展现了自己的优势和特点,为单摆运动控制系统的设计和仿真实验提供了全新的思路和方法。
本文旨在介绍单摆运动控制系统的设计和仿真实验。
首先,我们将对单摆运动控制系统的相关背景和理论基础进行概述和分析。
接着,我们将详细介绍单摆运动控制系统的设计过程,包括系统结构、控制算法和参数选择等方面。
在设计完成后,我们将进行仿真实验,在不同的工作条件下对系统进行测试和评估,以验证设计的有效性和性能。
最后,我们将总结本文的研究成果,并对未来的研究方向进行展望。
通过本文的研究,我们希望能够为单摆运动控制系统的设计和仿真实验提供实用有效的方法和理论支持,为相关领域的研究者和工程师提供参考和借鉴。
同时,我们也期待通过本文的工作,能够推动单摆运动控制系统设计的进一步发展和应用。
文章结构部分的内容可以如下所示:1.2 文章结构本文主要分为三个部分,即引言、正文和结论。
引言部分主要概述了文章内容和研究背景,介绍了单摆运动控制系统设计与仿真实验的目的和重要性。
正文部分包括两个主要内容,即单摆运动控制系统设计和仿真实验。
在单摆运动控制系统设计中,我们将介绍系统的原理和设计方法,并详细描述系统的硬件和软件实现。
在仿真实验中,我们将使用相关仿真软件进行系统的仿真,验证设计的有效性和准确性。
结论部分对本文的主要内容进行总结,回顾了实验的结果和分析,总结了系统的性能和局限性。
运动控制实验报告2讲解
电压空间矢量控制仿真1. 实验目的与要求异步电机结构简单,运行可靠,维修方便,在日常生活和工业生产中得到了越来越广泛的应用,但交流异步电机的数学模型是一个高阶、非线性、强耦合的多变量系统 [1], 在交流电机调速中 ,V/f控制对于需要快速动态响应的应用场合则效果欠佳 ,特别是在速度或转矩发生快速变化时 , 会产生较高的转差率 ,从而导致较大的瞬态电流,异步电动机转差频率型矢量控制作,为高性能力矩控制正在逐渐广泛应用[2]。
与传统的正弦波脉宽调制 (SPWM 相比,空间矢量脉宽调制(SVPWM 具有线性调制范围宽、直流电压利用率高、输出电压谐波小和易于数字化实现的特点 , 因而在变频调速和无功补偿等电力电子变换器应用领域得到更加广泛的应用 [3]。
计算机仿真技术是现代科学研究和产品设计的新手段。
仿真时首先建立应用系统的仿真模型 , 然后利用计算机去求解 , 因而较其它方法容易、快捷、经济。
其具有应用的可重复性针 , 对不同的系统 , 有时只需要更改个别环节或修改参数即可。
由于以上的优点 , 计算机仿真技术作为强有力的研究工具 , 正在控制领域获得广泛的应用 [4]。
随着生产技术的不断发展,直流拖动的薄弱环节逐步显露出来,而异步电动机结构简单、坚固耐用、便于维修, 受到人们的欢迎。
近年交流电动机的控制技术取得了突破性的进展,与传统的正弦波脉宽调制相比,空间矢量脉宽调制(SVPWM 具有线性调制范围宽直流电压利用率高输出电压谐波小和易于数字化实现的特点,因而在变频调速和无功补偿等电力电子变换器应用领域得到更加广泛的应用但对于电机控制系统的研究,但传统的解析方法是分析研究周期长、投资大而且不宜分析系统的各种性能,因此,采用数字仿真的方法是必要的 [5]。
2. 实验原理2.1电压空间矢量 PWM (SVPWM 控制技术把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,这种控制方法称作“磁链跟踪控制” ,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的,所以又称“电压空间矢量 PWM (SVPWM , Space Vector PWM控制”空间电压矢量脉宽调制 (SVPWM 是满足圆形气隙磁场要求的控制方法 ,具有降低转矩脉动 ,减小波形畸变 ,提高直流电压利用率 ,易于数字化实现等优点 ,目前广泛用于交流电机调速控制系统中 [7]。
运动控制系统实验指导书
实验一异步电机矢量变换控制原理实验一、实验目的:1.了解异步电机转子磁场定向控制的原理结构框图及硬件构成2.了解异步电机转子磁场位置检测电流模型法3.了解异步电动机转子磁场定向控制原理中实现矢量变换的方法及意义二、实验设备三、实验线路及原理1.运动控制系统的硬件配置图1-1 运动控制系统硬件构成图1-1为本系统的硬件配置框图。
THKDSP-1为运动控制实验箱,箱内装有DSP主控板(B1),功率驱动板(B2)及控制电源和功率模块板(B3)。
图1-2为DSP主控板的组成框图。
它包括DSP芯片;RAM芯片IC1、IC2;E2PROM存储器芯片IC3;用于RS232串行通信的接口芯片IC4以及MC-BUS I/O连接器J1、J2。
图1-2 DSP主控板组成框图图1-3为功率驱动板框图。
它包括电动机两相电流I a,I b(Iu、Iv)检测;直流母线电压V dc检测电路;保护电路;PWM信号驱动电路。
图1-3 功率驱动板电路结构框图电源功率模块板包括﹢5V,±15V, +15V三组电源和由六个IGBT构成的逆变电路。
2.异步电动机转子磁场定向控制的原理图1-4 转子磁场定向控制原理框图电机的相电流i a,i b检测之后,经过3/2变换(Park变换)和旋转变换后得到旋转变换坐标上的二个分量i sd,i sq,这两个分量分别与磁通参考值i sdref和转矩参考值i sqref比较之后送入电流和磁通调节器PI。
电流调节器的输出即为在旋转坐标上的电压分量参考值U dref和U qref;此二分量经旋转逆变换和3/2变换(Park变换)之后得到定子三相电压的参考值U aref,U bref,U cref。
根据U aref,U bref,U cref产生三相逆变器的PWM驱动信号。
转子磁通的位置角θ则由电机的模型和电机速度反馈信号计算而得。
四、实验内容1.熟悉运动控制的系统硬件构成2.异步电机转子磁场定向控制(FOC)得输入信号测量,i a、i b和转子磁场位置角计算3.电流信号的3/2变换(Park变换)及旋转变换4.i sd,i sq波形观察,并与i sdref,i sqref作比较五、预习要求1.仔细阅读FOC控制原理的有关章节2.3/2变换(Park变换)与旋转变换的计算公式3.画出异步电机的电流模型框图及有关θ计算公式4.画出电压、电流和转子磁通的空间向量及旋转坐标的d-q轴,静止坐标a-b-c、和α-β。
运动控制仿真实验报告
运动控制仿真实验报告实验11,晶闸管单相交流调压仿真实验一,实验原理1.1原理图该实验是通过晶闸管的调压触发控制电路来控制晶闸管导通,以此来实现不同导通角时,输出电压不同。
该实验的原理电路如图1所示。
图1通过两个触发脉冲来触发VT1与VT2,触发电路的原理框图如图2所示。
图2该触发电路两个触发脉冲相差180°,以此来实现正半周和负半周都进行调压,而且调压的脉冲角是相同。
1.2 仿真模型1.3 脉冲发生器子模块参考模型其中斜率限制器上升斜率=1;下降斜率=-inf;放大器增益=1000;Relay 使能过0 检测。
Fcn=10*u(1)/180 完成指令角度到比较电压的转换。
指令通过常数按触发角设定。
二.实验内容根据原理框图构建 Matlab 仿真模型。
所需元件参考下表:仿真元件库:Simulink Library Browser示波器 Simulink/sink/Scope交流电源 SimPowerSystems/Electrical Sources/AC Voltage Source设定电压=220*1.414V晶闸管 SimPowerSystems/Power Electronics/ ThyristorFcn Simulink/User-Defined Functions/Fcn设定为10*u(1)/180Relay Simulink/Discontinuities/RelayRate Limiter Simulink/Discontinuities/ Rate LimiterSubsystem Simulink/Commonly Used Block/Subsystem电阻、电容、电感 SimPowerSystems/Elements/Series RLC Branch设定参数负载电阻2 欧姆、串联电感2mH。
电流傅立叶分解 SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier设定输出为50Hz,基波显示 Simulink/sinks/Display电压检测SimPowerSystems/Measurements/Voltage Measurement电流检测SimPowerSystems/Measurements/Current Measurement仿真设定:Configuration Parameters/Solver optionsType Variable-step Solver Ode23sRelative tolerance 1e-5其它不变仿真时间0.1 秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运动控制系统仿真》实验讲义
仕宏
xiesh
实验一、闭环控制系统及直流双闭环调速系统仿真
一、实验学时:6学时
二、实验容:
1. 已知控制系统框图如图所示:
图1-1 单闭环系统框图
图中,被控对象s e s s G 1501
30010)(-+=,Gc(s)为PID 控制器,试整定PID 控制器参数,并建立控制系统Simulink 仿真模型。
再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。
2. 已知直流电机双闭环调速系统框图如图1-2所示。
试设计电流调节器ACR 和转速调
节器ASR 并进行Simulink 建模仿真。
图1-2 直流双闭环调速系统框图
三、实验过程:
1、建模过程如下:
(1)PID 控制器参数整顿
根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ
K T 2.1=0.24,Ti=τ2=300,Td=τ5.0=75。
控制器类型
由阶跃响应整定
由频域响应整定 Kp
Ti Td Kp Ti Td P τK T
无 无 c K 5.0 无 无
PI τ
K T 9.0
τ3 无 c K 4.0 c T 8.0 无 PID τK T 2.1
τ2 τ5.0 c K 6.0 c T 5.0 c T 12.0
(2 建立simulink 仿真模型如下图1-3所示,并进行参数设置:
图1-3 PID控制系统Simulink仿真模型
图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示:
图1-3 PID控制参数设置
运行仿真,得如下结果:
图1-5 PID控制运行结果
(3)PID子系统的创建
首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示:
图1-6 PID参数设置
然后建立PID控制器子系统,如下图1-7所示:
图1-7 PID子系统
再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹出封装编辑器,并进行相应参数设置,如下图1-8、1-9所示,
图 1-8 PID子系统封装文本显示
图1-9 PID子系统封装参数设置
在对图1-9所示封装变量设置完成后,封装后的PID子系统如下图1-10所示
图1-10封装后 PID控制仿真模型
双击图1-10中的PID子系统,按图1-11作参数设置,即可完成PID参数设置。
图1-11 PID控制器参数设置
封装后运行仿真,结果如图1-12所示:
图1-12封装后系统运行结果
2、建模方法:
图1-2中r(t)为给定输入,采用阶跃信号。
Y(t)为系统输出,表示直流电机的转速。
ASR为转速调节器,由PI调节器组成。
ACR为电流调节器,也是一个PI调节器。
根据直流双闭环调速系统工程整定方法,进行ASR和ACR的参数整定时,首先断开转速环,整定电流调节器ACR。
然后接通转速环,整定转速环ASR,同时调节电流环参数。
根据上述分析,首先建立直流双闭环调速系统的高层仿真模型,其中转速调节器和电流调节器由空白子系统组成,如图1-13所示。
图2-1 直流双闭环调速系统Simulink 仿真模型
图1-13中给定速度输入信号R (t )由信号源模块库的Step (阶跃)信号生成,通过改变阶跃信号的幅值,可以改变双闭环调速系统给定输入电压,其变化围为-10V ~10V 。
负载电流信号IL 也由阶跃信号生成,通过改变阶跃输入信号的幅值和时间,可观察系统在不同负载下的转速响应。
输入滤波环节
101.01+s 、转速反馈环节1
01.0007.0+s 、电流反馈环节1002.005.0+s 、转速调节器输入滤波环节1
002.01+s 及其他模块为传递函数描述的数学模型,在Simulink 仿真中,可使用Continue (连续系统)模块库的Transfer Fcn 模块实现。
增益模块可以使用Math (数学)模块库的Gain 来实现。
转速调节器ASR 和电流调节器ACR 首先由两个空白子系统组成,结果如图1-13所示。
下面对转速调节器ASR 和电流调节器ACR 进行设计,结果如图1-14和图1-15所示。
对图1-14和图1-15所示的子系统进行封装,可得如图1-16所示的结果。
利用工程整定及Simulink 动态调试的方法,对转速调节器和电流调节器进行参数整定,参数结果如图1-16所示。
图1-14 转速调节器子系统Simulink 模型 图1-15 电流调节器子系统Simulink 模型
图1-16 转速调节器ASR与电流调节器ACR封装后参数设置对话框
Simulink求解器取系统默认值,运行仿真可得如图1-17所示的转速、电流响应曲线及图1-18所示的转速调节器输出和电流调节器输出。
从仿真结果可以看出,电流、转速响应达到工程设计要求。
(a)电流响应(b)速度响应
图1-17 直流双闭环调速系统电流及速度响应
(a)转速调节器输出(b)电流调节器输出
图1-18 转速调节器及电流调节器输出
试验二、交-直-交变频调速系统仿真分析
一、实验学时:6
二、实验容:
1、建立三相桥式不可控整流电路,带10 欧姆电阻负载,观察输入电流,输出电压波形。
并对输入电流作谐波分析。
2、建立PWM逆变电路仿真模型,在带三相对称的纯电阻负载时,每相电阻10欧姆,观察输出50Hz时的电压波形,并对比不同载波频率下输出电压谐波分量。
3、将1和2中的整流和逆变电路连接起来,构建完整的交-直-交变频调速系统仿真模型。
4、带15kw电机负载。
负载转矩20Nm。
观察50Hz下电源侧输入电流波形及谐波含量;观察频率由25Hz变换到50Hz时电机输出转速及电磁转矩的波形。
三、实验步骤:
1、建立三相桥式不可控整流电路,带10 欧姆电阻负载,观察输入电流,输出电压波形。
并对输入电流作谐波分析。
三相桥式整流电路建模如下
(1)构建仿真模型
图2-1 三相桥式全控整流电路(2)设置仿真参数
图2-2三相电源参数设置
图2-3通用桥模块参数设置
图2-4 电阻模型参数设置
图2-5电流示波器参数设置
仿真最大步长设置为0.0001,仿真时间设置为0.2s,运行仿真,输入a相电流波形如下图2-6所示:
图2-6三相桥式不可控整流输入A相电流波形
单击Powergui模块,再弹出的窗口中单击FFT“ Analysis ”菜单按钮,打开傅立叶分析窗口,如图2-8所示。
图2-7 Powergui模型
图2-8 傅立叶分析窗口
按图2-8所示设置参数,按后单击“Display”按钮,即可完成对Ia 电流信号的谐波分析。
总谐波电流含量30.42%。
2、建立PWM逆变电路仿真模型,在带三相对称的纯电阻负载时,每相电阻10欧姆,观察输出50Hz时的电压波形,并对比不同载波频率下输出电压谐波分量。
建立PWM逆变电路如下图2-9所示
图2-9 PWM逆变电路仿真模型
图中模块参数设置:
图2-10 直流电源模块和电阻负载模块参数设置
图2-11 通用桥模块参数设置
图2-12 PWM发生器模块参数设置
图2-13 电压示波器参数设置
图2-13 电流示波器参数设置
将仿真算法改为ode15s,仿真时间改为0.4s,最大仿真步长改为0.00001s,运行仿真,可得电压
电流波形如下:
图2-14 PWM逆变电路相电流及相电压/线电压波形单击Powergui模块,再单击FFTAnalysis按钮,进行谐波分析:
图2-15 A相电流谐波分析
图2-16 线电压UAB谐波分析
改变PWM逆变模块参数设置,再次仿真并分析电流谐波含量.
图2-17 PWM发生器模块参数改动前后对比
图 2-18 输出线电压谐波分析
3 将1和2中的整流和逆变电路连接起来,构建完整的交-直-交变频调速系统仿真模型。
图2-19 AC-DC-AC 电路仿真模型
将图2-19中电容C的参数由1e-3改为1e-2,观察改变前后直流环节的电压电流。
再观察输入交流电流波形。
图2-20直流环节电流、电压波形(电容C=0.001F)
图2-20直流环节电流、电压波形(电容C=0.01F)
图2-21交流电源输入电流波形
试分析图2-21的原因,并改善电流波形。
4 将三相纯电阻负载换为三相交流异步电动机,建立变频调速系统仿真模型,如下图所示。
AC-DC-AC变频调速系统仿真模型
电机模块参数设置
电机测量模块参数设置
图电机转速及转矩响应。