数据结构PPT课件
(2024年)《数据结构》全套课件
30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率
浙教版(2020)初中信息技术七年级下册第13课初识数据结构课件(19张PPT)
新知讲解
01 数据结构概念
新知导入
数据结构是计算机存储、组织数据的方式。数据 结构是指相互之间存在一种或多种特定关系的数 据元素的集合。通常情况下,精心选择的数据结 构可以歌大合唱”歌单顺序,在音乐播放器 排一排汇演音乐。 思考:计算机有效处理数据,为什么需要数据结 构?
新知讲解
食堂吃饭的时候去餐盘。
提问:在日常生活中,你还能想到 哪些利用“栈”进行数据组织管理的?
新知讲解
队列(Queue)
队列是一种具有“先进人的数据先出去”特点 的数据结构,采用的是数据进入顺序与出去顺序 相一致的数据管理方式,。现实中存在较多的运 用队列进行事物处理的例子,如食堂买饭时的排 队、超市5银台付款时的排队、高铁站的出租车 接站排队等。
启发思考:计算机如 何有效处理数据?
计算机操作系统采用多级树型目录结构 对文件进行组织与管理(如图所示)
可以实现文件的分类存放和高效检索。
新知导入
利用计算机程序解决问题时,与问题有关的数据 往往不仅数量庞大,而且存在错综复杂的关系。 为了使计算机更加高效地处理数据,需要对数据 进行有效的组织和管理,并以一定的形式加以存 储和表示。
新知讲解
排队吃饭。
随堂训练
随堂训练
巩固小结
新知讲解
02 常见的数据结构
新知讲解
在算法和程序设计中,需要结合数据和数据处理 的特点,运用适合的数据结构组织数据、存储数 据,才能高效地完成对数据的处理。常见的数据 结构有数组、栈、队列等。
新知讲解
数组(Array)
现实中表示一批数据,有时不仅需要描述数据 的值,还需要播述数据所处的位置或数据之间的 前后顺序关系,对于这类数据集合的组织,可以 用数组这种数据结构来实现。
数据结构ppt课件
数据结构的定义数据结构是计算机中存储、组织数据的方式,它定义了数据元素之间的逻辑关系以及如何在计算机中表示这些关系。
提高算法效率合适的数据结构可以显著提高算法的执行效率,降低时间复杂度和空间复杂度。
简化程序设计数据结构为程序设计提供了统一的抽象层,使得程序员可以更加专注于问题本身,而不是底层的数据表示和访问细节。
便于数据管理和维护良好的数据结构设计可以使得数据的管理和维护变得更加方便和高效。
数据结构的定义与重要性线性数据结构中的元素之间存在一对一的关系,如数组、链表、栈和队列等。
线性数据结构非线性数据结构中的元素之间存在一对多或多对多的关系,如树、图等。
非线性数据结构静态数据结构在程序运行期间不会发生改变,如数组、静态链表等。
静态数据结构动态数据结构在程序运行期间可以动态地添加或删除元素,如链表、动态数组等。
动态数据结构数据结构的分类01020304在计算机科学中,数据结构是算法设计和分析的基础,广泛应用于操作系统、编译原理、数据库等领域。
计算机科学在软件工程中,数据结构是软件设计和开发的重要组成部分,用于实现各种软件功能和性能优化。
软件工程在人工智能中,数据结构用于表示和处理各种复杂的数据和知识,如神经网络、决策树等。
人工智能在大数据处理中,数据结构用于高效地存储、管理和分析海量数据,如分布式文件系统、NoSQL 数据库等。
大数据处理数据结构的应用领域0102线性表是具有n个数据元素的有限序列创建、销毁、清空、判空、求长度、获取元素、修改元素、插入元素、删除元素等线性表的定义线性表的基本操作线性表的定义与基本操作03用一段地址连续的存储单元依次存储线性表的数据元素顺序存储结构的定义可以随机存取,即可以直接通过下标访问任意元素;存储密度高,每个节点只存储数据元素顺序存储结构的优点插入和删除操作需要移动大量元素;空间利用率不高,需要提前分配存储空间顺序存储结构的缺点链式存储结构的定义01用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的链式存储结构的优点02插入和删除操作不需要移动大量元素,只需要修改指针;空间利用率高,不需要提前分配存储空间链式存储结构的缺点03不能随机存取,只能通过从头节点开始遍历的方式访问元素;存储密度低,每个节点除了存储数据元素外,还需要存储指向下一个节点的指针0102定义栈(Stack)是一种特殊的线性数据结构,其操作只能在一端(称为栈顶)进行,遵循后进先出(LIFO)的原则。
《复习提纲数据结构》课件
数据结构组成
数据结构由数据元素和它们之间的 关系组成,这些关系决定了数据元 素之间的逻辑关系。
数据结构分类
数据结构可以根据不同的分类标准 进行分类,如线性结构和非线性结 构、静态结构和动态结构等。
数据结构的重要性
01
02
03
提高数据处理效率
合理的数据结构能够提高 数据处理的速度和效率, 使得数据处理更加高效。
图的应用
图在计算机科学中有着广泛的应用, 如社交网络、路由算法、搜索引擎等 。
哈希表
哈希表的概念
哈希表是一种通过哈希函数将键映射到 桶中的数据结构,用于快速查找和存储
键值对。
哈希冲突的处理
当两个不同的键被映射到同一个桶时 ,会发生哈希冲突。常见的处理方式
有链地址法和开放地址法。
哈希表的性能分析
哈希表的查找、插入、删除等操作的 时间复杂度主要由哈希函数的设计和 哈希表的负载因子决定。
链式插入
在链式存储结构中,插入操作需要定位到插入位置的节点 ,并在其后插入新节点,同时修改指针。
AVL树的插入
在AVL树中,插入操作需要先找到合适的空位,然后将新 节点插入到该位置,并调整树的结构以保持平衡。
删除操作
顺序删除
在顺序存储结构的线性表中,删除操作需要定位到要删除的元素,然 后将其后一位元素覆盖到要删除的位置,并减少数组长度。
06
数据结构性能分析
时间复杂度分析
时间复杂度概念
时间复杂度是衡量算法执行时间随输入规模 增长而增长的量度,通常用大O表示法表示 。
时间复杂度分类
根据算法的时间复杂度,可以将算法分为线性时间 复杂度、多项式时间复杂度和指数时间复杂度。
时间复杂度分析方法
数据结构ppt课件完整版
针对有序数据集合,每次通过中间元素将 待查找区间缩小为之前的一半,直到找到 元素或区间为空。
哈希查找
树形查找
通过哈希函数将数据映射到哈希表中,实 现快速查找。
如二叉搜索树、平衡树等,通过树形结构实 现高效查找。
排序算法分类及实现原理
插入排序
将待排序元素逐个插入到已排序序列中,直到所有元素均插入完毕。
由n(n>=0)个具有相同类型 的数据元素(结点)a1,a2,
...,an组成的有序序列。
同一性
每个元素必须是同一类型的数 据。
有序性
元素之间具有一对一的前驱和 后继关系,即除首尾元素外, 每个元素都有一个前驱和一个 后继。
可变性
线性表的长度可变,即可以插 入或删除元素。
顺序存储结构与链式存储结构比较
定义
用一段连续的存储单元依次存储线性 表的数据元素。
优点
可以随机存取表中任一元素,且存取 时间复杂度为O(1)。
顺序存储结构与链式存储结构比较
• 缺点:插入和删除操作需要移动大量元素,时间 复杂度高;需要预先分配存储空间,容易造成空 间浪费。
顺序存储结构与链式存储结构比较
定义
用一组任意的存储单元存储线性 表的数据元素(这组存储单元可 以是连续的,也可以是不连续的
查找操作
查找指定元素的位置。
遍历操作
访问线性表中的每个元素。
销毁操作
释放线性表占用的存储空间。
03
栈和队列
栈定义及特点
栈(Stack)是一种特殊的线性数据结构,其数据的存 取遵循后进先出(LIFO, Last In First Out)的原则。 栈的特点
具有记忆功能,能保存数据的状态。
栈的基本操作包括入栈(push)、出栈(pop)、查 看栈顶元素(top)等。 只能在栈顶进行数据的插入和删除操作。
数据结构线性表ppt课件
01
02
03
04
插入操作
在链表的指定位置插入一个新 节点,需要修改相邻节点的指
针。
删除操作
删除链表的指定节点,需要修 改相邻节点的指针。
查找操作
从链表的头节点开始,顺序遍 历链表,直到找到目标元素或
遍历到链表末尾。
遍历操作
从链表的头节点开始,顺序访 问每个节点,直到遍历到链表
末尾。
04 线性表应用举例 与问题分析
多项式表示与计算问题
01
02
03
多项式表示方法
数组表示法和链表表示法 。
数组表示法
将多项式的系数按次序存 放在一个数组中,通过下 标表示对应的幂次。
链表表示法
每个节点包含系数和指数 两个数据域,以及一个指 向下一个节点的指针域。
一元多项式相加算法设计
• 算法思想:将两个多项式中的同类项系数相加,得到新的 多项式。
删除操作
删除指定位置i的元素,需要将i之后的元素都向前移动 一个位置。
03 链式存储结构及 其实现
链式存储结构原理及特点
链式存储结构原理
使用一组任意的存储单元存储线 性表的数据元素(这组存储单元 可以是连续的,也可以是不连续 的)。
链式存储结构特点
逻辑上相邻的元素在物理位置上 不一定相邻,元素之间的逻辑关 系是通过指针链接来表示的。
...,an组成的有序序列。
性质
集合中必存在唯一的一个“第一元素 ”。
集合中必存在唯一的一个“最后元素 ”。
除最后元素之外,均有唯一的后继。
除第一元素之外,均有唯一的前驱。
线性表与数组关系
数组是线性表的一种表现和实现形式。
线性表更侧重于逻辑概念,而数组则是这种逻辑概念在计算机中的一种存储方式。
《数据结构》课件
第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。
《数据结构说课》课件
05 数据结构课程设计建议
实践项目选择
综合性项目
实际应用背景
选择一个涉及多种数据结构的项目,如“ 最小生成树算法”、“图的最短路径问题 ”等,以便学生全面掌握数据结构知识。
确保项目与实际应用紧密相关,如搜索引 擎、社交网络等,以提高学生对数据结构 的兴趣和认识。
难度适中
团队合作
选择难度适中的项目,既不过于简单也不 过于复杂,以便学生在实践中学习和掌握 数据结构知识。
链表
总结词
动态分配存储结构
详细描述
链表是一种非连续的数据结构,通过指针链接各个节点。链表中的节点可以动态 分配和释放,适用于需要频繁插入和删除的场景。
栈
总结词
后进先出(LIFO)数据结构
详细描述
栈是一种具有后进先出特性的数据结构,只能在一端进行插入和删除操作。栈常用于实现函数调用、括号匹配等 功能。
构理论的理解。
B
C
D
反思与总结
鼓励学生对自己的学习过程进行反思和总 结,找出自己的不足之处,制定针对性的 改进计划。
刻意练习
引导学生进行刻意练习,通过大量练习提 高自己的编程能力和数据结构应用能力。
感谢您的观看
THANKS
效率和检索速度。
数据库系统
总结词
高效数据管理
VS
详细描述
数据库系统是用于存储和管理大量数据的 系统。数据库系统通常使用数据结构来组 织和管理数据,如B树、哈希表等。这些 数据结构有助于提高数据库系统的查询速 度和数据管理效率。
人工智能与机器学习
总结词:算法基础
详细描述:人工智能和机器学习领域中的许多算法都基于数据结构。例如,决策树、神经网络等算法 都涉及到数据结构的运用。这些算法在自然语言处理、图像识别、推荐系统等领域都有广泛的应用。
数据结构详解ppt课件
“数据结构知识导入全程目标•数据结构的基本概念–逻辑结构–物理结构–运算结构•数据结构的基本实现–堆栈–队列–链表–二叉树知识讲解数据结构的基本概念•数据结构是相互之间存在一种或多种特定关系的数据的集合•数据结构是计算机存储、组织数据的方式•数据结构的选择直接影响计算机程序的运行效率(时间复杂度)和存储效率(空间复杂度)•计算机程序设计=算法+数据结构•数据结构的三个层次–抽象层——逻辑结构–结构层——物理结构–实现层——运算结构识讲解•集合结构(集)–结构中的数据元素除了同属于一个集合外没有其它关系识讲解•线性结构(表)–结构中的数据元素具有一对一的前后关系识讲解•树型结构(树)–结构中的数据元素具有一对多的父子关系知识讲解实现双向线性链表•删除节点识讲解•树形结构的最简模型,每个节点最多有两个子节点•每个子节点有且仅有一个父节点,整棵树只有一个根节点•具有递归的结构特征,用递归的方法处理,可以简化算法•三种遍历序–前序遍历:D-L-R–中序遍历:L-D-R–后序遍历:L-R-D识讲解•二叉树的一般形式–根节点、枝节点和叶节点–父节点和子节点–左子节点和右子节点–左子树和右子树–大小和高度(深度)识讲解•满二叉树–每层节点数均达到最大值–所有枝节点均有左右子树知识讲解二叉树•完全二叉树–除最下层外,各层节点数均达到最大值–最下层的节点都连续集中在左边识讲解•顺序存储–从上到下、从左到右,依次存放–非完全二叉树需用虚节点补成完全二叉树识讲解•链式存储–二叉链表,每个节点包括三个域,一个数据域和两个分别指向其左右子节点的指针域识讲解•链式存储–三叉链表,每个节点包括四个域,一个数据域、两个分别指向其左右子节点的指针域和一个指向其父节点的指针域知识讲解实现有序二叉树•有序二叉树亦称二叉搜索树,若非空树则满足:–若左子树非空,则左子树上所有节点的值均小于等于根节点的值–若右子树非空,则右子树上所有节点的值均大于等于根节点的值–左右子树亦分别为有序二叉树•基于有序二叉树的排序和查找,可获得O(logN)级的平均时间复杂度知识讲解逻辑结构•网状结构(图)–结构中的数据元素具有多对多的交叉映射关系识讲解•顺序结构–结构中的数据元素存放在一段连续的地址空间中识讲解•顺序结构–随机访问方便,空间利用率低,插入删除不方便识讲解•链式结构–结构中的数据元素存放在彼此独立的地址空间中–每个独立的地址空间称为节点–节点除保存数据外,还需要保存相关节点的地址识讲解•链式结构–插入删除方便,空间利用率高,随机访问不方便知识讲解逻辑结构与物理结构的关系•每种逻辑结构采用何种物理结构实现,并没有一定之规,通常根据实现的难易程度,以及在时间和空间复杂度方面的要求,选择最适合的物理结构,亦不排除复合多种物理结构实现一种逻辑结构的可能知识讲解运算结构•创建与销毁–分配资源、建立结构、释放资源•插入与删除–增加、减少数据元素•获取与修改–遍历、迭代、随机访问•排序与查找–算法应用知识讲解数据结构的基本实现•堆栈–基于顺序表的实现–基于链式表的实现•队列–基于顺序表的实现–基于链式表的实现•链表–双向线性链表的实现•二叉树–有序二叉树(二叉搜索树)的实现知识讲解堆栈•后进(压入/push)先出(弹出/pop)识讲解•初始化空间、栈顶指针、判空判满识讲解•动态分配、栈顶指针、注意判空知识讲解队列•先进(压入/push)先出(弹出/pop)识讲解•初始化空间、前弹后压、循环使用、判空判满识讲解•动态分配、前后指针、注意判空知识讲解链表•地址不连续的节点序列,彼此通过指针相互连接•根据不同的结构特征,将链表分为:–单向线性链表–单向循环链表–双向线性链表–双线循环链表–数组链表–链表数组–二维链表识讲解•单向线性链表识讲解•单向循环链表识讲解•双向线性链表识讲解•双向循环链表识讲解•数组链表识讲解•链表数组识讲解•二维链表识讲解•结构模型识讲解•插入节点。
数据结构严蔚敏PPT(完整版)
时间复杂度是衡量算法效率的重要指标,常见的 排序算法的时间复杂度有O(n^2)、O(nlogn)、 O(n)等。
查找的基本概念和算法
查找的基本概念
查找是指在一个已经有序或部分 有序的数据集合中,找到一个特 定的元素或一组元素的过程。
常见查找算法
常见的查找算法包括顺序查找 、二分查找、哈希查找等。
先进先出(FIFO)的数据 处理。
并行计算中的任务调度。
打印机的打印任务管理。
二叉树的层序遍历(宽度 优先搜索,BFS)。
04
树和图
树的基本概念和性质
树的基本概念
树是一种非线性数据结构,由节 点和边组成,其中节点表示实体 ,边表示实体之间的关系。
树的性质
树具有层次结构,节点按照层次 进行排列,每个节点最多只能有 一个父节点,除了根节点外。
isEmpty:判断队列是否为空。
enqueue:向队尾添加一个元素。
front 或 peek:查看队首元素。
dequeue:删除队首的元素。
栈和队列的应用
栈的应用 后进先出(LIFO)的数据处理。
括号匹配问题。
栈和队列的应用
队列的应用
深度优先搜索(DFS)。 表达式求值。
01
03 02
栈和队列的应用
数据结构严蔚敏ppt( 完整版)
contents
目录
• 绪论 • 线性表 • 栈和队列 • 树和图 • 排序和查找 • 数据结构的应用案例分析
01
绪论
数据结构的基本概念
总结词
数据结构是计算机存储和组织数据的方式,是算法和数据操 作的基础。
详细描述
数据结构是计算机科学中研究数据的组织和存储方式的学科 ,它决定了数据在计算机中的表示和关系。数据结构不仅包 括数据的逻辑结构,还涉及到数据的物理存储方式以及数据 的操作方式。
《数据结构MST》课件
VS
最小生成树唯一性的证明
通过反证法,假设存在两棵不同的最小生 成树,它们之间至少存在一个边不同,那 么可以通过调整这条边来得到一棵权值和 更小的生成树,与最小生成树的定义矛盾 。
最小生成树性质
最小生成树的边数
01
在一个连通加权无向图中,最小生成树的边数等于顶点数减一
。
最小生成树的权值和
02
在一个连通加权无向图中,最小生成树的权值和等于所有边的
最小生成图问题
1 2 3
定义
给定一个带权重的连通图,寻找一种方式将该图 分解为若干个子图,使得所有子图的权值和最小 。
算法
可以采用Kruskal算法或Prim算法进行扩展,通 过将多个顶点划分为一个集合,然后寻找连接这 些集合的边,形成子图。
应用
在图像处理、化学分子结构分析等领域有广泛应 用,用于简化模型和提高计算效率。
电力系统网络优化
在电力系统中,最小生成树算法可以用于构 建低损耗的输电网络,提高电力传输效率。
最小生成树算法的实现步骤
选择起始节点
选择一个节点作为最小生成树 的根节点。
构建最小生成树
从根节点开始,按照权值从小 到大选择边,直到所有节点都 被连接起来。
构建无向图
将问题转化为无向图,并确定 所有节点和边。
要点二
克鲁斯卡尔算法(Kruskal's Algorithm)
按照边的权值从小到大排序,依次选择边,如果选择的边 不会与已选择的边构成环,则加入到生成树中,直到所有 顶点都连接在一起。
02
MST基本算法
Prim算法
总结词
Prim算法是一种求解最小生成树问题的贪心算法。
详细描述
Prim算法从图中的任意一个顶点开始,每次选择距离已选顶点集合最近的顶点 加入集合,直到所有顶点都被加入。该算法利用了贪心策略,每次选择局部最 优解,最终得到全局最优解。
(2024年)数据结构严蔚敏PPT完整版
选择排序的基本思想
在未排序序列中找到最小(或最大)元素,存放到排序 序列的起始位置,然后,再从剩余未排序元素中继续寻 找最小(或最大)元素,然后放到已排序序列的末尾。 以此类推,直到所有元素均排序完毕。
2024/3/26
33
交换排序和归并排序
交换排序的基本思想
通过不断地交换相邻的两个元素(如果它们的顺序错 误)来把最小的元素“浮”到数列的一端。具体实现 时,从第一个元素开始,比较相邻的两个元素,如果 前一个比后一个大,则交换它们的位置;每一对相邻 元素做同样的工作,从开始第一对到结尾的最后一对 ;这步做完后,最后的元素会是最大的数;针对所有 的元素重复以上的步骤,除了最后一个;持续每次对 越来越少的元素重复上面的步骤,直到没有任何一对 数字需要比较。
图的基本操作
创建图、添加顶点、添加边、删除顶点、删除边 等
2024/3/26
27
图的存储结构
01
邻接矩阵表示法
用一个二维数组表示图中顶点间的 关系,适用于稠密图
十字链表表示法
用于有向图,可以方便地找到任一 顶点的入边和出边
03
2024/3/26
02
邻接表表示法
用链表表示图中顶点间的关系,适 用于稀疏图
入栈操作将元素添加到栈顶,出栈操作将栈顶元素删 除,取栈顶元素操作返回栈顶元素但不删除,判断栈
是否为空操作检查栈中是否有元素。
2024/3/26
12
栈的表示和实现
栈可以用数组或链表来实现。
用数组实现时,需要预先分配一块连续的内存空间,用一个变量指示栈顶位置。入栈和出栈操作都可以 通过移动栈顶位置来实现。
22
二叉树的定义和基本操作
二叉树的定义
二叉树是一种特殊的树,每个节点最 多有两个子节点,分别称为左子节点 和右子节点。
2024版《数据结构图》ppt课件
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 上述表达式可用图形表示为:
bc a e
fd
此结构为线性的。
01.11.2020
14
(2) S=(D, R) D={di | 1≤i≤5} R={(di , dj ), i<j}
解:上述表达式可用图形表示为:
d1
d5
d2
该结构是非线性的。
d4
d3
01.11.2020
15
解释2:什么叫数据的物理结构?
01.11.2020
16
解释3:什么是数据的运算?
答:在数据的逻辑结构上定义的操作算法。 它在数据的存储结构上实现。
最常用的数据运算有 5 种:
插入、删除、修改、查找、排序
01.11.2020
17
1.4 什么是抽象数据类型
抽象数据类型和伪码是学习数据结构的工具
讨论:
1.4.1 数据类型与抽象数据类型的区别? 1.4.2 抽象数据类型如何定义? 1.4.3 抽象数据类型如何表示和实现?
树 结 构: 一对多(1:n) 图 结 构: 多对多 (m:n)
非线性
01.11.2020
13
例:用图形表示下列数据结构,并指出它们是属于线 性结构还是非线性结构。
(1) S=(D, R) D={ a, b, c, d, e, f } R={(a,e), (b,c), (c,a), (e,f), (f,d)}
01.11.2020
20
例:给出自然数(Natural Number )的抽象数据类型定义。
ADT Natural_Number is
objects: 一个整数的有序子集合,它开始于0,结束于机器能
表示的最大整数 (MAX INT)
functions: 对于所有的 x,
else 返回 MAX INT
FALSE Boolean; +, -, <, = = ,=等都是可用 的服务。
Zero ( ): Natural Number 返回 0
IsZero(x): Boolean
if (x==0) 返回TRUE else 返回 FALSE
Add(x, y): Natural Number if (x+y <= MAX INT)返回 x+y
01.11.2020
9
01.11.2020
10
1.2 学习数据结构的意义
计算机内的数值运算依靠方程式,而非数值运算(如 表、树、图等)则要依靠数据结构。
数据结构是一门学科,针对非数值计算的程序设计问 题,研究计算机的操作对象以及它们之间的关系和操作等 等。
同样的数据对象,用不同的数据结构来表 示,运算效率可能有明显的差异。
答:物理结构亦称存储结构,是数据的逻辑结构在计 算机存储器内的表示(或映像)。它依赖于计算机。
存储结构可分为4大类: 顺序、链式、索引、散列
例:复数3.0-2.3i 的两种存储方式:
法1:地址 0300 0302
内容 3.0 -2.3
2字节
法2:地址 0300
0302
内容 3.0
0415
0415 -2.3
是相互之间存在一种或多种特定关系的数据元素的集合, 表示为:
Data_Structure=(D, R)
(数值或非数值)
元素有限集
关系有限集
——是指同一数据元素类型中各元素之间存在的关系。
01.11.2020
8
术语简介: 数据、数据元素和数据项
数据(data)——所有能被计算机识别、存储和处理的符号的集合(包
01.11.2020
4
01.11.2020
5
数据结构产生的背景
– 例2 人机对奕问题
树
……..
……..
…...
…...
…...
…...
01.11.2020
6
例3多叉路口交通灯管理问题
图
AB AC AD
BA BC BD
C D
B
DA DB DC EA EB EC ED
E A
01.11.2020
7
1.1 什么是数据结构
01.11.2020
19
1.4.2 抽象数据类型如何定义
抽象数据类型可以用以下的三元组来表示: ADT = (D,R,P)
数据对象 D上的关系集 D上的操作集
ADT抽象数据类型名{
ADT 常用 定义 格式
数据对象:<数据对象的定义> 数据关系:<数据关系的定义> 基本操作 :<基本操作的定义>
} ADT抽象数据类型名
数据结构
数据结构课程的地位
——针对非数值计算的程序设计问题,研究计算机
的操作对象以及它们之间的关系和操作。
——是介于数学、计算机硬件和计算机软件三 者之间的一门核心课程。
Data_Structure=(D, R)
关系
数学
对象
对象
关系
软件 硬件
关系
操作
操作
01.11.2020
2
学时数:80 教 材:严蔚敏等,数据结构(C语言版),清华大学出版
社,1997年4月第1版 (配题集)
参考书:
[1] 殷人昆等,数据结构(用面向对象方法与C++描述),清 华大学出版社,1999年7月(2002年配习题集)
[2]资讯教育小组,数据结构C语言版,中国铁道出版社。
01.11.2020
3
第1章 绪 论
1.1 什么是数据结构 1.2 学习数据结构的意义 1.3 数据结构涵盖的主要内容 1.4 什么是抽象数据类型 1.5 算法效率的度量
01.11.2020
18
1.4.1 数据类型与抽象数据类型的区别
数据类型:是一个值的集合和定义在该值上的 一组操作的总称。
抽象数据类型:由用户定义,用以表示应用问题的数 据模型。它由基本的数据类型构成,并包括一组相关 的服务(或称操作)
它与数据类型实质上是一个概念,但其特征是使用与 实现分离,实行封装和信息隐蔽(独立于计算机)
括数字、字符、声音、图像等信息 )。
数据元素(data element)——是数据的基本单位,具有完整确定的
实际意义(又称元素、结点,顶点、记录等)。
数据项(Data item)——构成数据元素的项目。是具有独立含义的最
小标识单位(又称字段、域、属性 等)。
三者之间的关系:数据 > 数据元素 > 数据项 例:班级通讯录 > 个人记录 > 姓名、年龄……
程序设计=好算法+好结构
01.11.2020
11
1.3 数据结构涵盖的内容
01.11.2020
12
解释1: 什么叫数据的逻辑结构?
答:指数据元素之间的逻辑关系。即从逻辑关系上描述 数据,它与数据的存储无关,是独立于计算机的。
逻辑结构可细分为4类:
集合结构: 仅同属一个集合
线性结构: 一对一(1:1) 线 性