数据结构中的图-PPT课件
合集下载
数据结构ppt课件
二叉树的性质
二叉树具有五种基本形态,即空二叉树、只有一个根节点的二叉树、只有左子树或右子 树的二叉树、以及左右子树均有的二叉树。此外,二叉树还具有一些重要性质,如二叉
树的第i层最多有2^(i-1)个节点(i>=1),深度为k的二叉树最多有2^k-1个节点 (k>=1)等。
二叉树的遍历算法
先序遍历
先访问根节点,然后遍 历左子树,最后遍历右
05
图论基础及图的存储结构
图论基础概念介绍
图的基本概念
由顶点(Vertex)和边(Edge)组成的数 据结构,表示对象及其之间的关系。
图的遍历
通过某种方式访问图中所有顶点的过程, 常见的遍历算法有深度优先遍历(DFS)和 广度优先遍历(BFS)。
有向图与无向图
根据边是否有方向,图可分为有向图和无 向图。
时间复杂度
平均时间复杂度和最坏时 间复杂度均为O(n)。
适用场景
适用于数据量较小或数据 无序的情况。
查找算法设计之二分查找法
算法思想
在有序数组中,取中间元素与目标元素比较,若相等则查找成功;若目标元素小于中间元素, 则在左半部分继续查找;若目标元素大于中间元素,则在右半部分继续查找。
时间复杂度
平均时间复杂度和最坏时间复杂度均为O(log n)。
连通图与连通分量
在无向图中,任意两个顶点之间都存在路 径,则称该图是连通图;否则,称该图的 极大连通子图为连通分量。
顶点的度
在无向图中,顶点的度是与该顶点相关联 的边的数目;在有向图中,顶点的度分为 入度和出度。
图的存储结构之邻接矩阵法
邻接矩阵表示法
用一个二维数组表示图中顶点之 间的关系,若顶点i与顶点j之间 存在一条边,则数组元素值为1
二叉树具有五种基本形态,即空二叉树、只有一个根节点的二叉树、只有左子树或右子 树的二叉树、以及左右子树均有的二叉树。此外,二叉树还具有一些重要性质,如二叉
树的第i层最多有2^(i-1)个节点(i>=1),深度为k的二叉树最多有2^k-1个节点 (k>=1)等。
二叉树的遍历算法
先序遍历
先访问根节点,然后遍 历左子树,最后遍历右
05
图论基础及图的存储结构
图论基础概念介绍
图的基本概念
由顶点(Vertex)和边(Edge)组成的数 据结构,表示对象及其之间的关系。
图的遍历
通过某种方式访问图中所有顶点的过程, 常见的遍历算法有深度优先遍历(DFS)和 广度优先遍历(BFS)。
有向图与无向图
根据边是否有方向,图可分为有向图和无 向图。
时间复杂度
平均时间复杂度和最坏时 间复杂度均为O(n)。
适用场景
适用于数据量较小或数据 无序的情况。
查找算法设计之二分查找法
算法思想
在有序数组中,取中间元素与目标元素比较,若相等则查找成功;若目标元素小于中间元素, 则在左半部分继续查找;若目标元素大于中间元素,则在右半部分继续查找。
时间复杂度
平均时间复杂度和最坏时间复杂度均为O(log n)。
连通图与连通分量
在无向图中,任意两个顶点之间都存在路 径,则称该图是连通图;否则,称该图的 极大连通子图为连通分量。
顶点的度
在无向图中,顶点的度是与该顶点相关联 的边的数目;在有向图中,顶点的度分为 入度和出度。
图的存储结构之邻接矩阵法
邻接矩阵表示法
用一个二维数组表示图中顶点之 间的关系,若顶点i与顶点j之间 存在一条边,则数组元素值为1
《数据结构图论部分》PPT课件
Page 4
2020/11/24
哥尼斯堡七桥问题
能否从某个地方出发,穿过所有的桥仅一次 后再回到出发点?
Page 5
2020/11/24
七桥问题的图模型
欧拉回路的判定规则:
1.如果通奇数桥的地方多于
C
两个,则不存在欧拉回路;
2.如果只有两个地方通奇数
桥,可以从这两个地方之一
A
B 出发,找到欧拉回路;
V4 是有向边,则称该图为有向图。
Page 9
2020/11/24
简单图:在图中,若不存在顶点到其自身的边,且同 一条边不重复出现。
V1
V2
V3
V4
V5
非简单图
V1
V2
V3
V4
V5
非简单图
V1
V2
V3
V4
V5
简单图
❖ 数据结构中讨论的都是简单图。
Page 10
2020/11/24
图的基本术语
邻接、依附
DeleteVex(&G, v); 初始条件:图 G 存在,v 是 G 中某个顶点。 操作结果:删除 G 中顶点 v 及其相关的弧。
Page 34
2020/11/24
InsertArc(&G, v, w); 初始条件:图 G 存在,v 和 w 是 G 中两个顶点。 操作结果:在 G 中增添弧<v,w>,若 G 是无向的,则还
Page 2
2020/11/24
• 知识点
– 图的类型定义 – 图的存储表示 – 图的深度优先搜索遍历和广度优先搜索遍历 – 无向网的最小生成树 – 拓扑排序 – 关键路径 – 最短路径
Page 3
数据结构-图
回退到C,C 的4 个邻接顶点中还有D 和G 没有访问,选择一个顶点,例如以D 作为新的
出发点,访问D,标注数字序号④;
(a)无向图 G9
(b)深度优先遍历
图的遍历
3.1图的深度优先遍历
接着到G,访问G, 标注数字序号⑤;G 相邻顶点都访问过了,顺着虚线箭头方向
回退到 D,D 相邻顶点都访问过了,顺着虚线箭头方向回退到C,C 相邻顶点也都访问过
图的基本概念
1.2图的操作定义
02
PART
图的存储结构
2.1邻接矩阵
首先介绍的是数组表示法,即用两个数组分别存储顶点的信息和顶点之间的关系。
用来存放图中 n 个顶点的数组称为顶点数组。我们可将图中顶点按任意顺序保存到顶点数组中,
这样按存放次序每个顶点就对应一个位置序号(简称位序),依次为0~n-1;接着用一个 n×n 的二维
称为有向图。例如,当V={v1,v2,v3,v4,v5},VR={<v1,v2>,
<v1,v4>,<v2,v4>,<v3,v1>,<v3,v5>,<v4,v3>,<v5,v4>},则顶点集合
V、关系集合VR 构成有向图G1=(V,VR),如图(a)所示。
图的基本概念
1.1图的定义与基本术语
无向图(Undirected Graph)。如果顶点间的关系是无
序号作为表结点的值,所以一条弧对应一个表结点。右图为有向图 G1
和无向图 G2的邻接表表示法存储示意图。
图的存储结构
2.2邻接表
对于有向网和无向网,由于表结点表示边或弧,因此需要对表结点扩充一个属性域,表
结点至少包含顶点序号、权值和下一表结点指针 3 个属性,由此构成网的邻接表。
出发点,访问D,标注数字序号④;
(a)无向图 G9
(b)深度优先遍历
图的遍历
3.1图的深度优先遍历
接着到G,访问G, 标注数字序号⑤;G 相邻顶点都访问过了,顺着虚线箭头方向
回退到 D,D 相邻顶点都访问过了,顺着虚线箭头方向回退到C,C 相邻顶点也都访问过
图的基本概念
1.2图的操作定义
02
PART
图的存储结构
2.1邻接矩阵
首先介绍的是数组表示法,即用两个数组分别存储顶点的信息和顶点之间的关系。
用来存放图中 n 个顶点的数组称为顶点数组。我们可将图中顶点按任意顺序保存到顶点数组中,
这样按存放次序每个顶点就对应一个位置序号(简称位序),依次为0~n-1;接着用一个 n×n 的二维
称为有向图。例如,当V={v1,v2,v3,v4,v5},VR={<v1,v2>,
<v1,v4>,<v2,v4>,<v3,v1>,<v3,v5>,<v4,v3>,<v5,v4>},则顶点集合
V、关系集合VR 构成有向图G1=(V,VR),如图(a)所示。
图的基本概念
1.1图的定义与基本术语
无向图(Undirected Graph)。如果顶点间的关系是无
序号作为表结点的值,所以一条弧对应一个表结点。右图为有向图 G1
和无向图 G2的邻接表表示法存储示意图。
图的存储结构
2.2邻接表
对于有向网和无向网,由于表结点表示边或弧,因此需要对表结点扩充一个属性域,表
结点至少包含顶点序号、权值和下一表结点指针 3 个属性,由此构成网的邻接表。
数据结构- 图
27
7.2 图的存储表示
一、图的数组(邻接矩阵)存储表示 二、图的邻接表存储表示 三、有向图的十字链表存储表示 四、无向图的邻接多重表存储表示
28
一、图的数组(邻接矩阵)存储表示
定义:矩阵的元素为
1
aij
0
若(vi , v j )或 vi , v j E 否则
v1
v2
v3
v4
v5
无向图G2
} ArcNode;
39
顶点的结点结构
data firstarc
typedef struct VNode { VertexType data; // 顶点信息 ArcNode *firstarc; // 指向第一条依附该顶点的弧 } VNode, AdjList[MAX_VERTEX_NUM];
40
谓词 P(v,w) 定义了弧 <v,w>的意义或信息。
3
由于“弧”是有方向的,因此称由顶点集和弧集构成的图为有 向图。
例如: G1 = (V1, VR1) A
B
E
其中 V1={A, B, C, D, E} VR1={<A,B>, <A,E>,
<B,C>, <C,D>, <D,B>, <D,A>, <E,C> }
24
插入或删除顶点
InsertVex(&G, v); //在图G中增添新顶点v。 DeleteVex(&G, v);
// 删除G中顶点v及其相关的弧。
25
插入和删除弧 InsertArc(&G, v, w); // 在G中增添弧<v,w>,若G是无向的, //则还增添对称弧<w,v>。 DeleteArc(&G, v, w);
7.2 图的存储表示
一、图的数组(邻接矩阵)存储表示 二、图的邻接表存储表示 三、有向图的十字链表存储表示 四、无向图的邻接多重表存储表示
28
一、图的数组(邻接矩阵)存储表示
定义:矩阵的元素为
1
aij
0
若(vi , v j )或 vi , v j E 否则
v1
v2
v3
v4
v5
无向图G2
} ArcNode;
39
顶点的结点结构
data firstarc
typedef struct VNode { VertexType data; // 顶点信息 ArcNode *firstarc; // 指向第一条依附该顶点的弧 } VNode, AdjList[MAX_VERTEX_NUM];
40
谓词 P(v,w) 定义了弧 <v,w>的意义或信息。
3
由于“弧”是有方向的,因此称由顶点集和弧集构成的图为有 向图。
例如: G1 = (V1, VR1) A
B
E
其中 V1={A, B, C, D, E} VR1={<A,B>, <A,E>,
<B,C>, <C,D>, <D,B>, <D,A>, <E,C> }
24
插入或删除顶点
InsertVex(&G, v); //在图G中增添新顶点v。 DeleteVex(&G, v);
// 删除G中顶点v及其相关的弧。
25
插入和删除弧 InsertArc(&G, v, w); // 在G中增添弧<v,w>,若G是无向的, //则还增添对称弧<w,v>。 DeleteArc(&G, v, w);
《数据结构图》课件
层次分明
02
通过节点和边的关系,数据结构图能够清晰地表示数据的层次
结构,有助于理解数据的组织方式。
易于修改
03
相比文本或表格,数据结构图更易于修改和更新,能够快速适
应数据的变化。
数据结构图的缺点
制作难度大
制作一份高质量的数据结构图需要花费较多的时间和精力,特别 是在处理复杂的数据结构时。
表达能力有限
解数据结构。
辅助设计数据结构
在设计复杂的数据结构时,可以使 用数据结构图来辅助设计,使设计 过程更加清晰和有条理。
方便交流和讨论
数据结构图是一种可视化的表达方 式,可以方便地展示给其他人,有 助于团队成员之间的交流和讨论。
数据结构图的分类
01
02
03
树形结构图
树形结构图是一种层次结 构的数据结构图,它通过 节点和子节点的关系来表 示数据的层次关系。
随着用户需求的多样化,未来 的数据结构图将更加注重个性 化定制,满足不同用户对数据 可视化的需求和偏好。
为了提高数据可视化的可解释 性和透明度,未来的数据结构 图将更加注重对数据的处理和 分析过程的可视化呈现,使用 户能够更好地理解数据的来源 和含义。
2023 WORK SUMMARY
THANKS
未来的数据结构图将更加注重用户的交互 性,使用户能够更深入地探索数据,提高 数据理解的效率和准确性。
动态数据的实时呈现
多维度的数据呈现
随着大数据和实时数据处理技术的发展, 数据结构图将能够实时呈现动态数据的变 化,帮助用户更好地理解和分析数据。
未来的数据结构图将能够呈现多维度的数 据,包括时间序列数据、空间数据等,满 足用户对不同类型数据的可视化需求。
详细描述
数据结构ppt课件完整版
数据结构是计算机中存储、组织 数据的方式,它定义了数据元素 之间的逻辑关系以及如何在计算 机中表示这些关系。
数据结构分类
根据数据元素之间关系的不同, 数据结构可分为线性结构、树形 结构、图形结构等。
4
数据结构重要性
01
02
03
提高算法效率
合理的数据结构可以大大 提高算法的执行效率,减 少时间和空间复杂度。
33
案例三:最小生成树在通信网络优化中应用
Kruskal算法
基于并查集实现,按照边的权值从小到大依次添加边,直到生成 最小生成树。
Prim算法
从某一顶点开始,每次选择与当前生成树最近的顶点加入,直到 所有顶点都加入生成树。
通信网络优化
最小生成树算法可用于通信网络优化,通过选择最优的通信线路 和节点,降低网络建设和维护成本。
2024/1/28
简化程序设计
数据结构的设计和实现可 以简化程序设计过程,提 高代码的可读性和可维护 性。
解决实际问题
数据结构是解决实际问题 的基础,如排序、查找、 图论等问题都需要依赖于 特定的数据结构。
5
相关术语解析
数据元素
数据元素是数据的基本 单位,通常作为一个整
体进行考虑和处理。
2024/1/28
02
队列的基本操作包括入队(enqueue)、出队( dequeue)、查看队首和队尾元素等。
03
队列的特点
2024/1/28
04
数据从队尾入队,从队首出队。
05
队列中元素的插入和删除操作分别在两端进行,因此也称 为双端操作。
06
队列中没有明显的头尾标记,通常通过计数器或循环数组 等方式实现。
15
栈和队列应用举例
数据结构分类
根据数据元素之间关系的不同, 数据结构可分为线性结构、树形 结构、图形结构等。
4
数据结构重要性
01
02
03
提高算法效率
合理的数据结构可以大大 提高算法的执行效率,减 少时间和空间复杂度。
33
案例三:最小生成树在通信网络优化中应用
Kruskal算法
基于并查集实现,按照边的权值从小到大依次添加边,直到生成 最小生成树。
Prim算法
从某一顶点开始,每次选择与当前生成树最近的顶点加入,直到 所有顶点都加入生成树。
通信网络优化
最小生成树算法可用于通信网络优化,通过选择最优的通信线路 和节点,降低网络建设和维护成本。
2024/1/28
简化程序设计
数据结构的设计和实现可 以简化程序设计过程,提 高代码的可读性和可维护 性。
解决实际问题
数据结构是解决实际问题 的基础,如排序、查找、 图论等问题都需要依赖于 特定的数据结构。
5
相关术语解析
数据元素
数据元素是数据的基本 单位,通常作为一个整
体进行考虑和处理。
2024/1/28
02
队列的基本操作包括入队(enqueue)、出队( dequeue)、查看队首和队尾元素等。
03
队列的特点
2024/1/28
04
数据从队尾入队,从队首出队。
05
队列中元素的插入和删除操作分别在两端进行,因此也称 为双端操作。
06
队列中没有明显的头尾标记,通常通过计数器或循环数组 等方式实现。
15
栈和队列应用举例
数据结构图结构(动态PPT)课件
结合实际问题
将数据结构图与实际问题相结合,通过分析问题的本质和 规律,选择合适的数据结构和算法进行求解。
创新应用方式
在传统的数据结构图应用基础上,探索新的应用方式和方 法,如基于数据结构图的机器学习模型、数据结构图在社 交网络分析中的应用等。
跨学科融合
将数据结构图与其他学科领域进行融合,如物理学、化学 、生物学等,通过借鉴其他学科的理论和方法,创新数据 结构图的应用场景和解决方案。
包括无向图、有向图、权 重图、邻接矩阵、邻接表 等。
图的遍历方法
深度优先搜索(DFS)和 广度优先搜索(BFS)的 原理和实现。
非线性数据结构图应用案例
树的应用案例
包括二叉搜索树、堆、哈夫曼树等在实际问题中的应用,如排序、优先队列、 编码等。
图的应用案例
包括最短路径问题(Dijkstra算法、Floyd算法)、最小生成树问题(Prim算法 、Kruskal算法)以及网络流问题等在实际问题中的应用,如交通网络规划、电 路设计等。
根据实际需求,选择适合的最小生 成树算法,如Prim算法、Kruskal算
法等。
B
C
D
可视化呈现结果
将算法的运行过程和结果以图形化的方式 呈现出来,方便用户直观地理解和掌握最 小生成树算法的原理和实现过程。
实现算法逻辑
编写代码实现最小生成树算法的逻辑,包 括节点的选择、边的添加和权重的计算等 。
拓展思考:如何创新应用数据结构图解决问题
作用
帮助理解复杂数据结构的组成和 关系,提高数据处理的效率。
常见类型及特点
01
02
03
04
线性数据结构图
元素之间一对一关系,如数组 、链表等。
树形数据结构图
《数据结构图》课件
《数据结构图》PPT课件
欢迎来到《数据结构图》PPT课件!本课程将带您深入了解数据结构的定义、 常见类型以及应用领域。让我们一起开始探索这个精彩的主题吧!
概述
通过本节课,您将了解到数据结构的基本概念和作用。我们将探讨如何存储 和组织数据以及优化数据访问和操作的方法。
数据结构的定义
在这一节中,我们将介绍数据结构的定义,并探讨数据的抽象和表示方法。 了解数据结构的定义将有助于您理解数据在计算机中的常重要,因为不同的数据结构适用于不同的场景和数据操作需求。本节将深入 研究线性结构、树形结构和图形结构。
线性结构
线性结构是最简单且最常见的数据结构类型之一。我们将研究数组、链表和 栈等线性结构的特点、优点和缺点,并了解它们在实际应用中的使用情况。
树形结构
树形结构是一种层次化的数据结构,常用于表示层级关系。本节我们将探讨 二叉树、堆和AVL树等树形结构,并讨论它们在数据处理和搜索中的应用。
图形结构
图形结构是一种包含节点和边的数据结构,用于表示复杂的关联关系。本节我们将深入研究图的定义、遍历算 法和最短路径算法,并讨论图形结构在社交网络和地图导航中的应用。
数据结构的应用
数据结构是计算机科学领域中的核心概念,几乎应用于所有的软件开发领域。 本节我们将探讨数据结构在数据库、图形处理和算法设计中的实际应用。
数据结构图的设计原则
了解数据结构图的设计原则有助于我们创建清晰、易于理解的数据结构图。 本节我们将讨论数据结构图的设计原则,例如模块化、抽象和简洁性。
欢迎来到《数据结构图》PPT课件!本课程将带您深入了解数据结构的定义、 常见类型以及应用领域。让我们一起开始探索这个精彩的主题吧!
概述
通过本节课,您将了解到数据结构的基本概念和作用。我们将探讨如何存储 和组织数据以及优化数据访问和操作的方法。
数据结构的定义
在这一节中,我们将介绍数据结构的定义,并探讨数据的抽象和表示方法。 了解数据结构的定义将有助于您理解数据在计算机中的常重要,因为不同的数据结构适用于不同的场景和数据操作需求。本节将深入 研究线性结构、树形结构和图形结构。
线性结构
线性结构是最简单且最常见的数据结构类型之一。我们将研究数组、链表和 栈等线性结构的特点、优点和缺点,并了解它们在实际应用中的使用情况。
树形结构
树形结构是一种层次化的数据结构,常用于表示层级关系。本节我们将探讨 二叉树、堆和AVL树等树形结构,并讨论它们在数据处理和搜索中的应用。
图形结构
图形结构是一种包含节点和边的数据结构,用于表示复杂的关联关系。本节我们将深入研究图的定义、遍历算 法和最短路径算法,并讨论图形结构在社交网络和地图导航中的应用。
数据结构的应用
数据结构是计算机科学领域中的核心概念,几乎应用于所有的软件开发领域。 本节我们将探讨数据结构在数据库、图形处理和算法设计中的实际应用。
数据结构图的设计原则
了解数据结构图的设计原则有助于我们创建清晰、易于理解的数据结构图。 本节我们将讨论数据结构图的设计原则,例如模块化、抽象和简洁性。
第八章 图(Graph)PPT课件
Graph->Arcs[v][w] = 0; }
15
2、邻接表 (Adjacency List)表示法
实际上是一种顺序存储与链式存储相结合的方法。顺序存储 部分用来存储图中顶点的信息,链式部分用来保存图中边 (弧)的信息。
一个一维数组,每个数据元素包含以下信息:
Vertex FirstArc
邻接单链表的每个结点(边结点)的结构如下 AdjVertex Weight NextArc
16
# define MAXNODE <图中结点的最大个数>
typedef struct arc {
int AdjVertex; int Weight; struct arc * NextArc; }arctype; // 邻接链表结点结构
typedef struct {
elemtype Vertext; arctype * FirstArc; }vertextype; // 顺序表结构
在无向图中, 统计第 i 行 (列) 1 的个数可得顶点i 的度。
12
网络的邻接矩阵 W (i,j), 如i果 !j且 <i,jE或 (i,j)E
A.Ed[i]gj[]e= , 否但 则i是 !,=j 0, 对角 i=线 j=
13
用邻接矩阵表示的图的类型的定义
#define MAXNODE 100
✓权 某些图的边具有与它相关的数, 称之为权。这 种带权图叫做网络。
8
7
10 2
5 9
1
12
63
8
15
76
6
3
4
16
7
施工进度图
60
A
B 40 80 C
30
15
2、邻接表 (Adjacency List)表示法
实际上是一种顺序存储与链式存储相结合的方法。顺序存储 部分用来存储图中顶点的信息,链式部分用来保存图中边 (弧)的信息。
一个一维数组,每个数据元素包含以下信息:
Vertex FirstArc
邻接单链表的每个结点(边结点)的结构如下 AdjVertex Weight NextArc
16
# define MAXNODE <图中结点的最大个数>
typedef struct arc {
int AdjVertex; int Weight; struct arc * NextArc; }arctype; // 邻接链表结点结构
typedef struct {
elemtype Vertext; arctype * FirstArc; }vertextype; // 顺序表结构
在无向图中, 统计第 i 行 (列) 1 的个数可得顶点i 的度。
12
网络的邻接矩阵 W (i,j), 如i果 !j且 <i,jE或 (i,j)E
A.Ed[i]gj[]e= , 否但 则i是 !,=j 0, 对角 i=线 j=
13
用邻接矩阵表示的图的类型的定义
#define MAXNODE 100
✓权 某些图的边具有与它相关的数, 称之为权。这 种带权图叫做网络。
8
7
10 2
5 9
1
12
63
8
15
76
6
3
4
16
7
施工进度图
60
A
B 40 80 C
30
数据结构.ppt
注意: 1.数据元素ai是一个抽象的符号 2. ai可取各种数据类型 3. 一般情况下,同一线性表中的元素具有相同的数据类型 4. i是元素的序号 (1<=i<=n)
2.逻辑特征:仅有一个开始结点和一个终端结点,并且所有结 点都最多只有一个直接前趋和一个直接后继
2019/9/18
数据结构
18
二、线性表的运算
数据结构
15
第一章 概 论
本章要求:
1、掌握数据、数据元素、数据结构等基本概念。 2、掌握数据逻辑结构和物理结构的分类。 3、学会算法分析的基本方法。
2019/9/18
数据结构
16
第二章 线性表
本章要学习的主要内容 1、线性表的逻辑结构及基本运算 2、线性表的顺序存储结构 3、线性表的链式存储结构:单链表、循环链表、双 链表、静态链表 4、顺序表和链表的比较
(1)头插法建表 (2)尾插法建表
头插法建表:将新结点插入到当前链表的表头
Head c
b
a^
2
sd
1
优点:算法简单
缺点: 链表中结点次序和输入次序相反
2019/9/18
数据结构
27
Linklist *CREATLIST( )
Head c
b
a^
{ char ch;
2
sd
1
linklist *head,*s; head=NULL; ch=getchar( );
2019/9/18
数据结构
17
2.1 线性表的概念及运算
一、逻辑结构 1.描述: 线性表是由n (n>=0)个数据元素(点)a1,a2,….,ai,….,an
组成的有限序列。其中,数据元素的个数n定义为表长。 当n=0时称为空表,非空的线性表(n>0)记为: (a1,a2,….,ai,…..,an)
数据结构线性表栈队列二叉树图PPT课件
第22页/共40页
• 表达式a*(b+c)-d的后缀表达式是: A)abcd*+- B) abc+*d- C) abc*+dD) -+*abcd
• 假设一棵二叉树的后序遍历序列为DGJHEBIFCA,中序遍历序列为DBGEHJACIF, 则其前序遍历序列为 。
• 一棵二叉树的中序遍历序列为:DGBAECHF,后序遍历序列为:GDBEHFCA,则前 序列遍历序列是 __。
第36页/共40页
广度优先遍历: 从图中某个结点V0出发,访问此结点,然后依次访问与V0
邻接的、未被访问过的所有结点,然后再分别从这些结点出发 进行广度优先遍历,直到图中所有被访问过的结点的相邻结点 都被访问到。若此时图中还有结点尚未被访问,则另选图中一 个未被访问过的结点作为起点,重复上述过程,直到图中所有 结点都被访问到为止。
第25页/共40页
欧拉通过对柯尼斯堡桥问题的研究,于 1736年发表了著名的关于图论的论文,从而 创立了图论的学说。图1—2一类的问题就是 图论中所指的图。
第26页/共40页
又如,有6个足球队之间进行循环赛,他们 比赛的场次可以用图1-3(1)来表示。有3个 人相互写信,可以用图1—3(2)来表示。
• [定理1] 图G中所有顶点的度数之和等于边数的2倍。因为计算顶点的度数时。每条边均用到2次。 [定理2] 任意一个图一定有偶数个奇点。
第32页/共40页
连通:如果图中结点U,V之间存在一条从U通过若干条边、点到达V的通路,称U、 V是连通的。 连通图:如果一个无向图中,任一对不同顶点U、V,都有一条(U,V)通路,则 称图G是连通的。 强连通图:在有向图G中,每一对结点之间都有路径的图。 网络:带权的连通图。
• 表达式a*(b+c)-d的后缀表达式是: A)abcd*+- B) abc+*d- C) abc*+dD) -+*abcd
• 假设一棵二叉树的后序遍历序列为DGJHEBIFCA,中序遍历序列为DBGEHJACIF, 则其前序遍历序列为 。
• 一棵二叉树的中序遍历序列为:DGBAECHF,后序遍历序列为:GDBEHFCA,则前 序列遍历序列是 __。
第36页/共40页
广度优先遍历: 从图中某个结点V0出发,访问此结点,然后依次访问与V0
邻接的、未被访问过的所有结点,然后再分别从这些结点出发 进行广度优先遍历,直到图中所有被访问过的结点的相邻结点 都被访问到。若此时图中还有结点尚未被访问,则另选图中一 个未被访问过的结点作为起点,重复上述过程,直到图中所有 结点都被访问到为止。
第25页/共40页
欧拉通过对柯尼斯堡桥问题的研究,于 1736年发表了著名的关于图论的论文,从而 创立了图论的学说。图1—2一类的问题就是 图论中所指的图。
第26页/共40页
又如,有6个足球队之间进行循环赛,他们 比赛的场次可以用图1-3(1)来表示。有3个 人相互写信,可以用图1—3(2)来表示。
• [定理1] 图G中所有顶点的度数之和等于边数的2倍。因为计算顶点的度数时。每条边均用到2次。 [定理2] 任意一个图一定有偶数个奇点。
第32页/共40页
连通:如果图中结点U,V之间存在一条从U通过若干条边、点到达V的通路,称U、 V是连通的。 连通图:如果一个无向图中,任一对不同顶点U、V,都有一条(U,V)通路,则 称图G是连通的。 强连通图:在有向图G中,每一对结点之间都有路径的图。 网络:带权的连通图。