流体力学第五章
流体力学第五章 量纲分析和相似理论
第五章 量纲分析与相似原理
5.2 量纲分析与П定理
2. П定理
提议用量纲分析的是瑞利(L.Reyleigh,1877),奠定理论基础的是美国物理
学家布金汉(E.Buckingham,1914):
Π定理
若某一物理过程包含 n 个物理量,即:
f(q1 , q 2,q 3, ……, q n )=0
其中有 m 个基本量(量纲独立,不能相互导出的物理 量),则该物理过程可由 n个物理量构成的 n-m 个无 量纲的关系表达式来描述。即:
5.1 量纲与物理方程的量纲齐次性
1. 物理量的量纲(因次):物理量的本质属性。
2. 物理量的单位:物理量的度量标准。
基本量纲和导出量纲:根据物理量之间的关系把无 任何联系且相互独立的量纲作为基本量纲,可由基本量 导出的量纲为导出量纲。
SI制中的基本量纲:
dim m = M , dim l = L , dim t = T ,dim θ=Θ
第五章 量纲分析与相似原理
5.1 量致性原则,也叫量纲齐次性原理(量纲和谐原理)
物理方程可以是单项式或多项式,甚至是微分方程等,同 一方程中各项的量纲必须相同。
用基本量纲的幂次式表示时,每个基本量纲的幂次应相等,
这就是物理方程的量纲一致性原则,也叫量纲齐次原则或量纲
1. 客观性 2. 不受运动规模的影响 3. 可以进行超越函数运算
整理课件
第五章 量纲分析与相似原理
5.1 量纲与物理方程的量纲齐次性
2. 量纲一的量(无量纲量)
基本量独立性判别条件:
设A、B、C为三个基本量,他们成立的条件是:指数行列式 不等于零。
diB m M 2L 2T 2 diA m M 1L 1T1 diC m M 3L 3T 3
流体力学 第5章 圆管流动..
第5章圆管流动一.学习目的和任务1.本章学习目的(1)掌握流体流动的两种状态与雷诺数之间的关系;(2)切实掌握计算阻力损失的知识,为管路计算打基础。
2.本章学习任务了解雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;掌握圆管层流基本规律,了解紊流的机理和脉动、时均化以及混合长度理论;了解尼古拉兹实验和莫迪图的使用,掌握阻力系数的确定方法;理解流动阻力的两种形式,掌握管路沿程损失和局部损失的计算;了解边界层概念、边界层分离和绕流阻力。
二.重点、难点重点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。
难点:紊流流速分布和紊流阻力分析。
由于实际流体存在黏性,流体在圆管中流动会受到阻力的作用,从而引起流体能量的损失。
本章将主要讨论实际流体在圆管内流动的情况和能量损失的计算。
5.1 雷诺(Osborne Reynolds)实验和流态判据5.1.1 雷诺实验1883年,英国科学家雷诺通过实验发现,流体在流动时存在两种不同的状态,对应的流体微团运动呈现完全不同的规律。
这就是著名的雷诺实验,它是流体力学中最重要实验之一。
105如图5-1所示为雷诺实验的装置。
其中的阀门T1保持水箱A 内的水位不变,使流动处在恒定流状态;水管B 上相距为l 处分别装有一根测压管,用来测量两处的沿程损失f h ,管末端装有一个调节流量的阀门T3,容器C 用来计量流量;容器D 盛有颜色液体,T2控制其流量。
进行实验时,先微开阀门T3,使水管中保持小速度稳定水流,然后打开颜色液体阀门T2放出连续的细流,可以观察到水管内颜色液体成一条直的流线,如图5-2(a )所示;从这一现象可以看出,在管中流速较小时,它与水流不相混和,管中的液体质点均保持直线运动,水流层与层间互不干扰,这种流动称为层流(Laminar flow )。
比如,实际中黏性较大的液体在极缓慢流动时,属层流运动。
随后,逐渐开大阀门T3,增大管中液体流速,流速达到一定速度时,管内颜色液体开始抖动,具有波形轮廓,如图5-2(b )所示。
流体力学第5章 相似性原理和量纲分析
几何相似只有一个长度比例尺,几何相似是力学 相似的前提
二、运动相似
❖ 流场中所有对应点上对应时刻的流速方向相同大小成比例。
v3' 3
v1'
v2'
1
2
3
v3''
v1 v1
v2 v2
v3 v3
v v
kv
v1''
1
2
kv——速度比例尺
v2''
A
A
o
系统1:v
l t
o
系统2:v l t
时间比例尺 加速度比例尺
1/ p
7.5k,kpkv2'
0.001207, kv 4416(Pa)
22.5, 有
F F ' F ' 1.261104(N)
kF
k
k
2
l
k
2
v
M M ' 2030(N m)
k
k
3k
l
2
v
第五节 量纲分析法
❖一、量纲分析的概念和原理 ❖ 量纲是指物理量的性质和类别。例如长度和质量, 它们分别用 [ L ] , [ M ]表达。 ❖而单位除表示物理量的性质外,还包含着物理量的 大小,如同为长度量纲的米,厘米等单位。
如何进行模型实验: (1) 几何相似(模型和实物、攻角、位置等); (2) 确定相似准则数; (3) 确定模型尺度和速度; (4) 实验数据整理(无因次形式); (5) 试验值与实际值之间的换算。
完全相似:两个流动的全部相似准则数对应相等。不可能实现。 部分相似:满足部分相似准则数相等。
近似的模型试验:在设计模型和组织模型试验时,在 与流动过程有关的定性准则中考虑那些对流动过程起 主导作用的定性准则,而忽略那些对过程影响较小的
流体力学第五章
5.2 边界层流动
5.2 边界层流动
*
0
u 1 u e e
dy
5.2 边界层流动
**
0
u eue
u 1 u dy e
5.2 边界层流动
平面边界层流动方程
边界层近似假定 1. 纵向偏导数远小于横向偏导数
5.2 边界层流动
边界层分离
理想流体能量转换过程 边界层内粘性对机械能的耗散使得流体微团在逆 压区 MF 段间的某个点处 V 降为零,后来的质点 将改道进入主流区,使来流边界层与物面分离; 在分离点下游区域,受逆压作用而发生倒流。
5.2 边界层流动
边界层分离
分离点:紧邻壁面顺流区与倒流区分界点。 边界层分离的必要条件:粘性、逆压梯度。
湍流边界层摩阻系数大
0.664 C fL Re x
C fT
0.0576 /5 Re 1 x
5.2 边界层流动
边界层分离
边界层流动:流体质点受惯性力、粘性力和压力 作用;粘性力阻滞流体质点运动,使流体质点减 速和失去动能;压力的作用取决于绕流物体形状; 顺压梯度有助于流体加速前进,而逆压梯度阻碍 流体运动。
研究方法:实验、数值(RANS、LES、DNS)
5.1 粘流的基本特性
层流、紊流速度型 紊流粘性应力比层流大
5.2 边界层流动
边界层概念的提出
高 Re流动,惯性力远大于粘性力,研究忽略粘 性的流动有实际意义。 阻力、分离、涡扩散等问题,无粘解与实际相 差甚远。 研究表明:虽然 Re很大,但在靠近物面的薄层 流体内,沿物面法向存在很大的速度梯度,粘 性力与惯性力相当而不可忽略。 Prandtl把物面附近粘性力起重要作用的薄层称 为边界层。
流体力学第5章管流损失和阻力计算
除了流体与管壁之间的摩擦外,流体内部的粘性、湍流等也会导致能量损失。 例如,湍流会使流体的流动变得不规则,增加流体之间的相互碰撞和摩擦,从 而产生更多的能量损失。
损失和阻力的影响
01
能量消耗
管流损失和阻力会导致流体在 流动过程中能量不断损失,这 需要额外提供能量来克服这些 损失,如泵或风机的能耗会增 加。
02 系统效率
管路中的损失和阻力会降低整 个系统的效率,使得系统需要 更多的输入能量才能达到预期 的输出效果。
03
设备选型
04
在进行设备选型时,需要考虑管 路中的损失和阻力,以确保所选 设备能够满足实际需求。例如, 在选择泵时,需要考虑到管路中 的损失和阻力,以确保泵能够提 供足够的扬程和流量。
安全风险
理论发展
实验结果可为流体力学理论的发展提 供实证支持,进一步完善管流损失和 阻力的计算模型。
THANKS
感谢观看
过大的管流损失和阻力可能会导 致流体流动受阻,甚至产生流体 过热、压力过高等问题,这可能 对设备和人员安全造成威胁。因 此,需要进行合理的设计和操作 ,以避免这些问题的发生。
02
管流损失的计算
局部损失计算
局部损失是由于流体在管道中 流动时,遇到突然扩大、缩小、 弯曲等局部障碍而产生的能量 损失。
控制流体流速和压力
降低流体流速
01
适当降低流体在管路中的流速,可以减小流体流动的阻力,从
而降低管流损失。
控制流体压力
02
合理控制流体在管路中的压力,避免过高的压力导致流体流动
阻力的增加。
使用减压阀和稳压阀
03
在管路中安装减压阀和稳压阀,可以稳定流体压力,减小流体
流体力学课件 第五章 流动阻力
斜直线分布
r hf 1 g grJ 2 l 2
du grh f dr 2l
抛物线分布
2.流速分布 3.流量
Q
r0 0
gh f 2 2 u (r0 r ) 4l
gh f 2 2 gh f 4 (r0 r ) 2 rdr d 4l 128l
(3)粗糙区
莫迪
§5-7 局部损失计算
一、边界层理论
1.边界层:贴近平板存在 较大切应力、粘性影响不能 忽略的这一层液体 。
2.边界层的厚度:当流速达到 边界层的厚度顺流增大,即δ是x的函数。
处时,它
3.转捩点,临界雷诺数 转捩点:在x=xcr处边界层由层流转变为紊流的过渡点。
临界雷诺数: Recr
三、总水头损失
hw h f h j
i 1 i 1 n n
§5-2 流体流动的两种型态
一、雷诺实验
1883年英国物理学家雷诺按图示试验装置对粘性流体进行 实验,提出了流体运动存在两种型态:层流和紊流。
1 4
(a)
hf 5
(b)
2
3
(c)
1.层流 :管中水流呈层状流动,各层的流体质点互不掺混的 流动状态。
四、湍流切应力分布和流速分布
1.切应力分布
du 2 du 2 1 2 L ( ) dy dy
摩擦切应力 普朗特混合长度 : 附加切应力
y L ky 1 r0
k 称为卡门常数
k 0.36 ~ 0.435
2.流速分布 (1)近壁层流层: 管壁切应力
du u 0 dy y
§5-6 湍流的沿程损失
一、湍流沿程损失计算
《流体力学》第五章孔口管嘴管路流动
2g
A
C O
C
(C
1)
vc2 2g
(ZA
ZC )
pA
pC
Av
2 A
2g
令
H0
(Z A
ZC )
pA
pC
AvA2
2g
§5.1孔口自由出流
1
则有
vc
c 1
2gH0
H0
(Z A
ZC )
pA
pC
AvA2
2g
H0称为作用水头,是促使
力系数是不变的。
§5.4 简单管路
SH、Sp对已给定的管路是一个定数,它综合 反映了管路上的沿程和局部阻力情况,称为 管路阻抗。
H SHQ2
p SpQ2
简单管路中,总阻力损失与体积流量平方成 正比。
§5.4 简单管路
例5-5:某矿渣混凝土板风道,断面积为1m*1.2m, 长为50m,局部阻力系数Σζ=2.5,流量为14m3/s, 空气温度为20℃,求压强损失。
2v22
2g
1
vc2 2g
2
vc2 2g
令 H0 (H1 ζH12:局)液部体p阻1 经力p孔2系口数处1v的122g1 2v22
1
H1 H
H2
2
2
H0 (1 2 ) 2vcg2突ζ然2:液扩体大在的收局缩部断阻面力之系后数 C
C
§5.2 孔口淹没出流
1
c 1
2gH0
Q A 2gH0 A 2gH0
出流
H0
流体力学第五章流体动力学微分形式基本方程
或 D w 0
Dt
第4页 退 出 返 回
(5.3a)
第五章 流体动力学微分形式基本方程
第一节 连续性方程
对于稳定流动, 0,于是式(5.1)变为
t wx wy wz 0
x
y
z
即
w 0
对于不可压缩流体, 为常数,则连续性方程为
wx wy wz 0 x y z
即
w 0
和为零,六面体中流体的质量是不变的,即
wx
wy
wz
0
t x
y
z
(5.1)
式(5.1)就是流体的连续性方程。将上式展开,并且注意到
d dt
t
wx
x
wy
y
wz
z
则连续性方程也可写成 1 d wx wy wz 0 dt x y z
(5.2)
写成向量形式 (w) 0
t
(5.3)
Fr
1
p r
w t
wr
w r
w r
w
wz
w z
wr w r
F
1
p r
(5.9)
wz t
wr
wz r
w r
wz
wz
wz z
Fz
1
p z
式中 Fr 、F 、Fz 分别为单位质量的体积力在r、、z方向的分量。
第4页 退出
返回
第五章 流体动力学微分形式基本方程
第二节 理想流体运动方程
其中,f1至f6是给定的函数。 对于稳定流动,流场中各点的物理量不随时间改变,所以不存在初始条
件。
边界条件是指所求物理量在边界上的取值。如对静止的固体壁面,由于
第五章 流体力学
称为伯努利方程。
伯努利方程对定常流动的流体中的任一流线也成立。
例题5-3
例题5-3:文丘里流量计。U形管中水银密度为ρ’,流量计中通 过的液体密度为ρ,其他数据如图所示。求流量。
取水平管道中心的流线。
1 2 1 2 由伯努利方程: p1 v1 p2 v 2 2 2
p 1 、 S1
得: p p e 0
gy p0
积分:
p p0
0 y dp g dy p p0 0
p0、ρ0
o
如: 0 1.293kg / m 3 , p0 1.013 10 5 Pa , y 8848 m ( 珠峰 )
得: p 0.33 p0 0.33 atm
例题5-1
1 1 2 2 动能增量:Ek V v 2 V v1 2 2
p1
v1 S1
势能增量: E p g( h2 h1 )V 外力作功:
A A'
h1
S2
v2
B
h2
B'
p2
W p1 S1l1 p2 S2 l 2 p1V p2 V
由功能原理:
θ z Δx py
Δz
x
当ΔV=0时: p y pl 无论流体时静止还是流动,以上结论都成立。
2、 静止流体中压强的分布:
(1) 静止流体中同一水平面上压强相等。 pA pA pB
A
ΔS B
pB
(2) 静止流体中高度相差h的两点间压强差为ρgh。
pB pA gh
(3) 帕斯卡原理: 密闭容器中的静止液体,当外
单位时间内,容器内水的减少等于从小孔流出的流量: 积分得:t
流体力学-第5章
六. 伯努利方程 的应用举例
%%%%%%%%%%%%
恒定总流伯努利方程表明三种机械能相互 转化和总机械能守恒的规律,由此可根据具 体流动的边界条件求解实际总流问题。
1
%%%%%%%%%%%%
先看一个跌水的例子。取 顶上水深处为 1-1 断面,平 均流速为 v1,取水流跌落高 度处为断面 2-2 ,平均流速 为 v2,认为该两断面均取在 渐变流段中。基准面通过断 面 2-2 的中心点。
Gz dQdt( z2 z1 )
2 2 1 1 u u 2 2 m2u2 m1u1 ( 2 1 ) dQdt 2 2 2 2
外力对系统做功=系统机械能量的增加
2 2 u2 u1 ( p1 p2 )dQdt dQdt( z2 z1 ) ( ) dQdt 2 2
实际流体恒定总流 的伯努利方程
断面 A1 是上游断面,断面 A2 是 下游断面,hl 1-2 为总流在断面 A1 和 A2 之间平均每单位重量流体所损耗 的机械能,称为水头损失。水头损 失如何确定,将在后面叙述。
分析流体力学问 题最常用也是最 重要的方程式
二、恒定总流伯努利方程的几何表示——水头线
u p2 u z1 z2 2g 2g
p1
2 1
2 2
(P57 3-39)
单位重量理想 流体沿元流的 能量方程式
能量方程
•能量方程的
物理意义
z
u2 z Cl 2g p
伯努利方程表示能 量的平衡关系。
单位重量流体所具有的位置 势能(简称单位位置势能) **************** p 单位重量流体所具有的压强 势能(简称单位压强势能) **************** 单位重量流体所具 p z 有的总势能(简称 单位总势能)
流体力学-第5章
F ( x1 , x2 ,...xn ) = 0
而这些变量中含有m个基本量纲, 而这些变量中含有 个基本量纲,则这个物理过 个基本量纲 程可以由n个物理量组成的 个物理量组成的n-m个无量纲量(相似 个无量纲量( 程可以由 个物理量组成的 个无量纲量 的函数关系来描述, 准则数πi)的函数关系来描述 即:
和管径d有关,试用瑞利量纲分析法建立vc的公式结构。 和管径 有关,试用瑞利量纲分析法建立 的公式结构。 有关 [解] 假定 vc = kρ α ⋅ µ β ⋅ d γ 式中k为无量纲常数。 式中 为无量纲常数。 为无量纲常数 将各物理量的量纲
dim vc = LT −1 , dim ρ = ML−3 dim µ = ML−1T −1 , dim d = L
F′ F = 2 2 ρ ′l ′2v′2 ρl v
——牛顿数 牛顿数
二、各单项力相似准则
1.基本量纲和导出量纲 1.基本量纲和导出量纲 基本量纲:无任何联系、相互独立的量纲。 基本量纲:无任何联系、相互独立的量纲。 导出量纲: 导出量纲:可以由基本量纲导出的量纲 基本量纲具有独立性、唯一性, 基本量纲具有独立性、唯一性,如: 具有独立性 质量( )、长度 长度( )、时间 时间( )、温度 温度( 质量(M)、长度(L)、时间(T)、温度(Θ)
解上述三元一次方程组得: 解上述三元一次方程组得: α1 = −1, β1 = −2, γ 1 = −2 其中 同理: 同理:
π1 =
FD ρv 2 d 2
µ 1 π2 = = ρvd Re
并就F 解出, 代入 ϕ (π 1 , π 2 ) = 0 ,并就 D解出,可得
FD = f (Re) ρv 2 d 2 = C D ρv 2 d 2
流体力学第五章
� V
Vcosα α
� ds
B
� � � � � � � � 其中: V = ui + υj + wk , ds = dxi + dyj + dzk 若 A 与 B 重合,便成了封闭曲线,则: � � Γ=∫ k V ⋅ ds = ∫ k V cos αds = ∫ k udx + υdy + wdz 即逆时针方向速度环量为“+”
A i →0 A i →0
A1
A2
K
Γ=2 ∫ A ω n dA
这就是平面上有限大小封闭周线的斯托克斯定理。 以上定理仅适用于单连通
4
域。上述结论也适用于强于任意空间封闭曲线的任意空间曲面。 与数学上定义相同,单连域-即区域内任一条封闭周线都能连续地收缩成一 点,而不越出流体的边界。或:不经过区域外的点。 对多连通域,则先将多连域化为单连域 因为假设速度方向是 A→B,则 Γ AB 为“+” ,而 B′ → A ′ 时,速度方向与环 量规定的正向相反,故 Γ B′A′ 为“-” 。
Γ AB K 2B′A′K1A=Γ AB + Γ B K 2B′ + Γ B′A′ + Γ A′ K1A =Γ K1 − Γ K 2 = 2∫ A ω n dA
这就是多连通域的斯托克斯定理。 推而广之,对存在多个洞的多连域则有:
Γ K1 − ∑ Γ K 2 = 2∫ A ω n dA
即:通过多连通域的旋涡强度等于沿这个区域的外周 线的速度环量同沿所有内周线的速度环量总和之差。 显然,环量等于零,总旋涡强度等于零。环量不等于 零,必然存在旋涡。 用速度环量来研究旋涡运动的优点如下: 1、因为速度环量是线积分,被积分函数是速度本身; 2、而旋涡强度是面积分,被积分函数是速度本身的偏导数; 3、所以,无论是实验,还是理论计算,利用速度环量来研究旋涡要简单一 些,这就是斯托克斯定理的用处。
流体力学第5章
对空气,T0=52℃,k=1.4,R=287J/kg,
v=200m/s,则 T=32.1℃,T-T0≈20℃
可见必须予以修正
四、临界参数
v=a的状态参数:
p pc , c ,T Tc , a ac
则:
k
pc 2 k1 , p0 k 1
对空气k=1.4,则
pc 0.528 p0
另外: Tc
l D
V
2
2
(即达西公式)。
四、一般等径管流
其结果介于绝热和等温之间。应采用数值递推解法。
传热方程: (k为管壁综合传热系数)
q 4k Dl T T D2 l
4k
D
T
T
4k RT pD
T
T
能量方程: q cp T2 T1V V2 V1
2
动量方程:R T2
T1
RT
⑶ 存在最大管长lmax
lmax
D
1
k
M12
1 ln
k
M12
沿程流速v2:
RT V12
1
V12 V22
ห้องสมุดไป่ตู้
l
D
2 ln
V2 V1
沿程压力p2:
p12
p22
p12V12 RT
l
D
2ln
p1 p2
体积流量:
Q A
p12 p22
RT1
l
D
2 ln
p1 p2
对小压差流动:p1p2,
则:
p
p1
p2
习题:
5-34 5-35 5-37
kl
D
k
p1
1
k
第五章流体动力学控制体雷诺输运定理流体力学
❖ 什么是体系? ❖ 在力学和热学中,基本物理定律适用的对象是一
个选定的物质系统,具有以下特征:
➢ 该系统始终由一定量的物质组成; ➢ 系统的边界把自己同周围的外界物质分开; ➢ 系统边界既可以固定不动,也可以运动,而且系统的
形状和系统所占据的空间都可以随时间发生变化; ➢ 可以透过系统边界和外界有功和热量的交换,但绝无质
5.2雷诺输运定理
CVIII
CVI
I
dA1
t
n
II III
u dA3
CVII
u
n
t t
考虑到dA面和vn的方向,并认为流出体系所在空间对应
பைடு நூலகம்
体积的流量为正,则单位时间流出微元面的N值为
(vndA) v dS
S的方向按CV的表面外法线方向计
4.3.3雷诺输运定理
CVIII
CVI
I
dA1
t
n
II III
流体的密度,微体积的质量
A1, t to
dm d
则有ms d s
y
x
5.1.1体系
进一步把式中的参数用流动参数表达也来,则得到关于流 体封闭体系的质量守恒方程. 这种分析方法就称为体系分析法
但是,由于运动中的流体系统将产生由移动、转动和变形 运动等组成的复杂运动,长时间难以追踪得到,甚至在 紊流流动状态由于流体的混沌,严格讲要辨认哪些流体 仍否属于原来的流体系统都成了问题.
这种分析方法就称为 控制体分析法
控制体与体系的区别
名称
定义
边界特性
适用
体系
物质的集 有力、能交换, 拉格朗
合
无质量交换
日法
控制体
流体力学 第五章 涡旋动力学基础
2.开尔文定理
理想(无粘)正压流体在有势的质量力作用下, 速度环流不随时间变化,其证明如下:
d dt
d dt
udx
vdy
得出结论:对于理想的正压流体,在有势的质 量力作用下,沿任何封闭的流体线的环量永远 不会改变。又由斯托克斯定理知,在流场中已 有的旋涡将永远不会消失,即理想流体中,旋 涡不生不灭。
3、拉格朗日(Lagrange)定理
拉格朗日定理是开尔文定理的直接推论,又称 为涡旋不生不灭定理。
拉格朗日定理可陈述如下:在质量力有势的条 件下,理想、正压流体的流动中,若在某一时 刻某一部分流体内没有涡旋,则在该时刻以前 及以后的时间内,该部分流体内也不会有涡旋 。反之,若某一时刻该部分流体内有涡旋,则 在此时刻以前及以后的时间内这部分流体皆为 有旋。
三、皮耶克尼斯环流定理
设流体无粘非正压,但质量力为有势力,则:
d dt
1
p x
dx
p y
dy
p z
dz
1
dp
dp
上式中引入比容:
1
p=常数的面称为等压面,α=常数的面为等容 面。对于正压流体 p p() ,显然等压面和等 容面是重合的。但对于一般的非正压流体,等 压面和等容面将相交,作一系列彼此相差一个 单位的等压面,同时作一系列彼此相差一个单 位的等容面,这样整个流体空间被隔成一系列 有两个相邻的等压面和两个相邻的等容面构成 管子,通常称为等压、等容管。
本节先从速度环流变化的角度来刻画涡旋运动 的变化。先引入速度环流变化的基本关系式, 从而推出有关速度环流变化的两个守恒定律— —开尔文定理和皮耶克尼斯定理。
流体力学第5章管内不可压缩流体运动
p 32vl 32 0.285 6 50 273600N / m2
d2
0.12
• (3)管路中的最大速度: • (4)壁面处的最大切应力:
umax 2v 2 6 12m / s
max
p 2l
r0
273600 0.05 2 50
136.8N
/ m2
5.2 湍流流动及沿程摩擦阻力计算
Re数越大——粘性底层的厚度越薄;流速越低,
第5章 管内不可压缩流体运动
5.1 管内层流流动及粘性摩擦损失
• 【内容提要】 本节主要讨论流动阻力产生的原因及分类 ,同时讨论两种流态及转化标准
并且在此基础上讨论圆管层流状态下流速分布、流量计算、切应力分布、沿 程水头损失计算等规律。
5.1.0概述(阻力产生的原因)
1、阻力产生的原因 (1)外因 • ①断面面积及几何形状 • ② 管路长度 L:水流阻力与管长成正比。 • ③管壁粗糙度:一般而言,管路越粗糙,水流阻力越大。
• 【内容提要】 • 本节简要介绍紊流理论及湍流沿程阻力系数的计算
5.2.1 湍流漩涡粘度与混合长度理论
• 湍流的产生
5.2.1 湍流漩涡粘度与混合长度理论
• 湍流的产生 • ① 层流在外界环境干扰的作用下产生涡体(湍流产生的先决条件)。 • ② 雷诺数大于临界雷诺数(湍流产生的必要条件)。
5.2.1 湍流漩涡粘度与混合长度理 论
5.1.1 层流与湍流流动
2、流态的判别:
(3)雷诺数
(无量纲数)
Re dv dv 式中,ρ—流体密度;v—管内流速;d—管径;μ—动力粘性系数;—运动粘性系
数
5.1.1 层流与湍流流动
2、流态的判别: (3)雷诺数 • ① 雷诺数Re是一个综合反映流动流体的速度、流
流体力学第五章孔口管嘴出流与管路水力计算
Q VB AB A 2gH0 A 2gH0
H0 作用总水头
流速系数 流量系数
相对压强: pC
g
0.75 H 0
真空值:
pV
g
0.75 H 0
§5-3 简单管路
简单管路:管径不变、没有分叉的管路。
复杂管路:由两根或两根以上简单管路组合 而成的管道系统。
短管:局部损失和流速水头之和大于总水头 的5%。
Q1
H hf CD
AB
Q2
C
D
Q3
三、管网
(a)分枝状管网
(b)环状管网
(1)任一结点处,流出结点的流量与流 入结点的流量应相等:
Qi 0
(2)任一环路中,由某一结点沿不同方向 到另一个结点的能量损失应相等:
hf 0
•
感
感 谢 阅
谢 阅
读
读
l
d
一、小孔口自由出流
对截面A-A和收缩断面C-C列 总流能量方程
zA
pA
g
AVA2
2g
zC
pC
g
CVC2
2g
hm
O
H0
( C
) VC2 2g
A
Av
2 A
2g
H
H0
d vA
A
C
O
vC C
1
VC C
2gH0 2gH0
Q VC AC A 2gH0 A 2gH0
H0 作用总水头
长管:作用水头的95%以上用于沿程水头损失,可 以略去局部损失及出口速度水头
取断面A-A和B-B,列总流能量方程
zA
pA
g
AVA2
2g
zB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学相似-小结
几何相似
表象 前提
动力相似
表象
前提
主导
运动相似
西安交通大学流体力学课程组
相似性质1
两种相似流动属于同一类流动现象,应 为相同的微分方程组描述 连续方程 动量方程-Navier-Stokes方程 能量方程 状态方程 两个流动现象相似,单值条件必须相似
西安交通大学流体力学课程组
西安交通大学流体力学课程组
近似模型法1
完全相似
模型流动与实物流动的全部准则数相等 完全相似只有在模型与实物尺寸相同的情 况下才有可能实现
部分相似
西安交通大学流体力学课程组
只保证起主要作用 的准则数相等
近似模型法2
保证模型流动与实物流动部分相似的方法 Re Fr Eu Ma We 粘性流动最重要的准则 存在自由表面的流动:舰船,明渠流 压力、压差起主要作用:空蚀 流体可压缩性不能忽略:高速流动 表面张力起主要作用:毛细现象等
α
α
线性尺寸成同一比例时,对应的夹角相等
西安交通大学流体力学课程组
运动相似1
运动相似
满足几何相似 对应瞬时,对应空间点 流速方向相同,大小成同一比例
V1 m V2 m = = L = CV V1 p V2 p
针对描述运动状态的量
CV – 速度比例系数
西安交通大学流体力学课程组
运动相似2
流体质点通过对应距离的时间相似
a1 b1 c1 + a2 b2 c2 + ⋅ ⋅ ⋅ = X
α β γ α1 β1 γ1
⎡ a1α 1 b1 β 1 c1γ 1 ⎤ = ⎡ a2α 2 b2 β 2 c2γ 2 ⎤ = L = [ X ] ⎣ ⎦ ⎣ ⎦
量纲分析的基础是量纲和谐原理,是一种 定性分析方法
西安交通大学流体力学课ห้องสมุดไป่ตู้组
[M] [ L] [t ]
西安交通大学流体力学课程组
δ =1
α + β + 2γ − 3δ = −2
− β − γ = −2
量纲分析法-瑞利法3
取 γ 作为参变量
α = −1 − γ , β = 2 − γ , δ = 1
Δp = Kd −1−γ v 2−γ ν γ ρ l Δp ρv ⎛ ν ⎞ =K ⎜ ⎟ l d ⎝ dv ⎠
西安交通大学流体力学课程组
相似准则4
欧拉准则 压力与惯性力的比
Δp Eu = ρV 2
欧拉数
压力或压差对流速分布影响较大的流动中 重要的准则数 空化效应或空蚀现象等
西安交通大学流体力学课程组
相似准则5
马赫准则 惯性力与弹性力的比
v Ma = a
马赫数
可压缩流动中重要的准则数 高速流动问题
西安交通大学流体力学课程组
第五章 相似原理与量纲分析
相似原理与量纲分析
相似原理、相似与模型实验、量纲分析
基础知识
几何相似,量纲,单位,几种力的定 义,牛顿第二定律,N-S方程
西安交通大学流体力学课程组
流体力学的研究方法
理论分析
流体力学的 研究方法
实验研究 数值模拟
力学相似
实物流动
量纲分析
西安交通大学流体力学课程组
模型流动 分析物理现象中的未知规律
不可压流体在水平光滑管内的流动实验
Δp Q l D T
影响因素
西安交通大学流体力学课程组
Δp = f ( D, ρ , μ , V ) l
量纲分析法
试验方法:改变一个自变量,保持其余三个不变 测量压差;每个变量值需改变多次,重复实验 数据整理
Δp /l Δ p /l
Δp / l
V
ρ Δ p /l
D
2
近似模型法-雷诺相似5
( Re ) m = ( Re ) p
⎛ ρ lV ⎞ ⎛ ρ lV ⎞ ⎜ μ ⎟ =⎜ μ ⎟ ⎝ ⎠m ⎝ ⎠p
若选取密度相同的同种流体,有
ρ m = ρ p , μm = μ p
此时,模型流动的特征长度不能太小,模 型流动的特征速度不能太大
西安交通大学流体力学课程组
pm = 10 × p p = 1.013 × 106 (Pa )
(2) 计算阻力 流动相似
⎛ F ⎞ ⎛ F ⎞ ⎜ 2 2⎟ =⎜ 2 2⎟ ⎜ ρl V ⎟ ⎜ ρl V ⎟ ⎝ ⎠m ⎝ ⎠p
2
西安交通大学流体力学课程组
ρ p ⎛ lm ⎞ ⎜ ⎟ Fp = ρm ⎜ l p ⎟ ⎝ ⎠
⎛ Vp ⎞ ⎜ ⎜ V ⎟ Fm = 44.48(N ) ⎟ ⎝ m⎠
雷诺准则
ρVL Re = μ
惯性力与粘性力的比
Re = VL
ν
雷诺数
V为特征速度,L为特征长度 是粘性流体流动最重要的准则数 管道流动、飞行器或潜艇的阻力等
西安交通大学流体力学课程组
相似准则3
弗劳德准则
Fr =
惯性力与重力的比
V gL
弗劳德数
是具有自由液面流体流动时重要的准则数 船舶运动、明渠流、液体表面波动等
将所求的物理量表达成与之有关的各参量 的幂次之积形式
Δp l = Kd α v βν γ ρ δ
西安交通大学流体力学课程组
量纲分析法-瑞利法2
采用量纲和谐原理求出各待定系数
[ML
−2 −2
t
] = [L] [Lt ] [L t ] [ML ]
α
−1 β 2 −1 γ
−3 δ
质量、长度、时间量纲分别一致
近似模型法-弗劳德相似1
弗劳德相似
明渠流、船舶运动
尺度不十分小,忽略表面张力,不考虑We, 不可压缩流体,忽略Ma 粘性影响可忽略或处在自模化状态,忽略Re 只考虑重力、压力、惯性力
( Fr ) m = ( Fr ) p
西安交通大学流体力学课程组
( Eu ) m = ( Eu ) p
近似模型法-弗劳德相似2
( Ma ) m = ( Ma ) p
可压缩流动
⎛V ⎞ = ⎛V ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ a ⎠m ⎝ a ⎠ p
欧拉相似
压差起主要作用
⎛ p ⎞ ⎛ p ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ρV 2 ⎟ = ⎜ ρV 2 ⎟ ⎠p ⎠m ⎝ ⎝
(Eu )m = (Eu ) p
西安交通大学流体力学课程组
5.3 量纲分析法
(2) 实物船所受阻力 流动相似
⎛ F ⎞ ⎛ F ⎞ ⎜ 2 2⎟ =⎜ 2 2⎟ ⎜ ρl V ⎟ ⎜ ρl V ⎟ ⎠p ⎠m ⎝ ⎝
由 ρ p = ρm
西安交通大学流体力学课程组
(VL) F p = Fm (VL)
2 p 2 m
= 1.28 × 106 (N )
近似模型法-其它相似
马赫相似
概述
力学相似与准则数
几何相似、运动相似、动力相似 Re,Fr,Eu,Ma,We
部分相似与模型试验 量纲分析
西安交通大学流体力学课程组
瑞利法、白金汉法
5.1 力学相似
模型流动与实物流动在各对应点和对应时 刻,对应物理量成一定的比例关系
几何相似
力学相似
运动相似 动力相似
西安交通大学流体力学课程组
几何相似1
西安交通大学流体力学课程组
针对描述动力特征的量
τ1 p
p1 p
p2 p
Wp
τ2p
τ 1m
p1m
Wm
p2m
τ 2m
CF – 作用力比例系数
相似准则1
准则数
惯性力 重力 粘性力 弹性力 表面张力
西安交通大学流体力学课程组
惯性力与某种力的比
− Ma
Mg
压力
du τA=μ A dy Ev A
ΔpA
σl
相似准则2
解: (1) 风洞空气工作压强
( Re ) m = ( Re ) p
⎛ ρ lV ⎞ ⎛ ρ lV ⎞ ⎜ μ ⎟ =⎜ μ ⎟ ⎝ ⎠m ⎝ ⎠p
l p = 10l m
由题意 Vm = V p
西安交通大学流体力学课程组
μ p = μm
近似模型法-雷诺相似4
ρm l p = = 10 ρ p lm
几何相似
针对描述几何形状的量
模型流动与实物流动有相似的边界形状 对应的线性尺寸成同一比例
L1 m L2 m = = L = CL L1 p L2 p
α α
CL – 线性比例系数
西安交通大学流体力学课程组
几何相似2
对应的面积和体积分别成一定的比例关系
Am L2 2 = m = CL Ap L2p Vm L3 3 m = 3 = CL Vp Lp
量纲分析法-瑞利法1
已知圆管的阻力损失同管径d,流速v,运动粘性 已知圆管的阻力损失同管径d,流速v,运动粘性 系数ν,流体密度ρ有关,求圆管单位长度上压 系数ν,流体密度ρ有关,求圆管单位长度上压 力损失Δp/l的表达式 力损失Δp/l的表达式
确定与流动现象有关的参数
Δp l = f ( d , v , ν , ρ )
tm Lm Vm = tp Lp V p
CL = = Ct CV
流体质点的加速度相似
am CV Vm tm = = Ca = ap Ct Vp t p
流线几何相似
西安交通大学流体力学课程组
动力相似1
动力相似
满足几何相似 对应瞬时,对应空间点 同名力方向相同,大小 成同一比例
F1 m F2 m = = L = CF F1 p F2 p
相似准则6
韦伯准则 惯性力与表面张力的比
ρV 2 L We = σ
韦伯数
表面张力起主要作用的流动中重要准则数 小液滴、小气泡、毛细现象等