5.非参数假设检验
数学建模方法-非参数假设检验
两相关样本的非参数检验(2 Related Samples Test)
【例12】clinical trial.sav 比较试验药组(group=1) 治疗前血红蛋白含量(hb1)和治疗后血红蛋白含量(hb2) 有无差异.
这是两组相关计量资料的比较. 结论:P=0.018,有显著性差异.
多个相关样本的非参数检验(K Related Samples Test) 【例13】nonpara_7.sav 分析药物是否有效
两相关样本的非参数检验(2 Related Samples Test) 多个相关样本的非参数检验(K Related Samples Test)
两独立样本的非参数检验(2 Independent Samples Test) 检验两个独立样本间是否具有相同的分布. 【例8】nonpara_3.sav 比较两组人群的RD值有无差别 这是两组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-2),其它使用默认选项即可.从负二项分 布的结论.
单样本的K_S拟合优度检验
检验一计量资料是否服从某种理论分布,这里的分布可以 是正态分布(Normal),均匀分布(Uniform),泊松分布(Poisson), 指数分布(Exponential).
【例7】diameter_sub.sav 检验是否服从正态分布
多个独立样本的非参数检验(K Independent Samples Test) 【例10】nonpara_5.sav 比较三种药物的效果有无差别 这是三组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-3),其它使用默认选项即可. 结论:三组的秩和12.6,7.6,3.8,P=0.008,三种药物的 效果有显著性差异,以甲药效果最好. 【例11】nonpara_6.sav 比较三种固定钉治疗骨折的疗效 这是三组等级/频数资料的比较. 先说明频数变量, 再选择要检验的变量和分类变量,定义分类值(1-3),其它 使用默认选项即可. 结论:P=0.129,故三组无显著性差异.
非参数检验的检验方法
非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。
相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。
非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。
下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。
它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。
然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。
2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。
它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。
然后计算每个样本的秩次和,以及总体的秩次和。
根据这些秩次和的差异来进行推断。
3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。
这两种方法都是用来比较两个相关样本的总体中位数是否相等。
基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。
然后根据秩次和的大小来进行推断。
4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。
它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。
然后根据秩次和的差异来进行推断。
在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。
如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。
2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。
非参数假设检验.pptx
计算每分钟内通过收费站的汽车为0辆、1辆、2辆、3 辆、4辆或更多的概率。
第12页/共43页
e 各概率乘以观测总数n=100,便得到理论频数 ,具体结果见下表: i ei
计算 2统计量的值:
2 (14.96 10)2 (28.42 26)2 (27.0 35)2
H0 :汽车通过收费站的辆数服从泊松分布; H1 :不服从泊松分布。
观测值分为5组,且有 u0 10,u1 26,u2 35,u4 5
第11页/共43页
回忆泊松分布
P{X x} e x , x 0,1, 2,
x!
其中 为泊松分布的期望值,是未知的,需要用样
本观测值来估计。由于100分钟内观测到190辆汽车, 所以平均每分钟观测到190/100=1.9辆汽车,故
第9页/共43页
计算 2统计量的值:
2 6 (ui ei )2
i1
ei
(27 25)2 (18 25)2 (15 25)2 (24 25)2
25
25
25
25
(36 25)2 (30 25)2 12
25
25
在本例的情况下, 统2 计量的自由度为m-1=6-1=5。
第8页/共43页
解:本例中的观测值以月为组,共分为m=6组,
每 月的销售台数即为观测的频v数i ,观测的总次
数为n=150。现欲检验是否服从(离散的)均匀 分布,即每月的销售量是否为
ei
nPi
150 6
25(台),
Pi
1 6
,i
1,
,6
为此,设
H0 :洗衣机销售量服从均匀分布;
H1 :并不服从均匀分布;
非参数假设检验方法
非参数假设检验方法
非参数假设检验方法,那可真是个超棒的统计利器!咱先说说它的步骤吧。
嘿,你想想看,就像搭积木一样,第一步得先明确问题,确定咱要检验啥。
然后收集数据,这数据就像是建筑材料,得好好收集。
接着计算检验统计量,这就如同给积木搭出形状。
最后根据统计量判断是否拒绝原假设。
这步骤简单易懂吧?
注意事项也不少呢!数据得有代表性,不然就像盖房子用了劣质材料,那可不行。
样本量也不能太小,不然就像小娃娃搭的积木城堡,风一吹就倒啦。
说到安全性和稳定性,那可是杠杠的!它不像有些方法那么娇气,对数据的分布要求不高。
就好比一辆越野车,能在各种路况下行驶,不用担心路况不好就抛锚。
应用场景那可多了去啦!当数据不满足参数检验的条件时,非参数假设检验方法就大显身手啦。
比如研究不同年龄段的人对某种产品的喜好,数据可能乱七八糟的,这时候非参数检验就像救星一样。
它的优势也很明显啊,操作简单,容易理解,不需要太多高深的数学知识。
就像玩游戏,不需要看厚厚的说明书就能上手。
给你举个实际案例吧。
有个公司想知道新推出的广告有没有效果,就用了非参数假设检验方法。
结果发现广告确实提高了产品的知名度。
这效果,哇塞,杠杠的!
非参数假设检验方法就是这么牛!它简单易用,安全稳定,应用场景广泛,优势明显。
赶紧用起来吧!。
非参数检验方法
非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。
二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。
2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。
3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。
4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。
三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。
2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。
3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。
4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。
5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。
非参数检验的场景与方法
非参数检验的场景与方法非参数检验是一种统计方法,用于对数据进行假设检验,而不需要对数据的分布做出任何假设。
相比于参数检验,非参数检验更加灵活,适用于更广泛的场景。
本文将介绍非参数检验的场景和常用的方法。
一、非参数检验的场景非参数检验适用于以下场景:1. 数据不满足正态分布:在一些实际问题中,数据的分布可能不满足正态分布假设,例如长尾分布、偏态分布等。
此时,非参数检验可以更好地适应数据的特点。
2. 样本量较小:参数检验通常要求样本量较大,以保证统计推断的准确性。
而非参数检验对样本量的要求较低,即使样本量较小,也可以进行有效的假设检验。
3. 数据类型不确定:非参数检验可以适用于各种数据类型,包括连续型数据、离散型数据、有序数据等。
而参数检验通常对数据类型有一定的要求。
二、常用的非参数检验方法1. Wilcoxon符号秩检验:适用于两个相关样本的比较。
该方法将两个样本的差异转化为秩次,通过比较秩次的大小来进行假设检验。
2. Mann-Whitney U检验:适用于两个独立样本的比较。
该方法将两个样本的观测值合并后,通过比较秩次的大小来进行假设检验。
3. Kruskal-Wallis检验:适用于多个独立样本的比较。
该方法将多个样本的观测值合并后,通过比较秩次的大小来进行假设检验。
4. Friedman检验:适用于多个相关样本的比较。
该方法将多个样本的观测值转化为秩次,通过比较秩次的大小来进行假设检验。
5. Kolmogorov-Smirnov检验:适用于两个样本的分布比较。
该方法通过比较两个样本的累积分布函数来进行假设检验。
三、非参数检验的优缺点非参数检验相比于参数检验具有以下优点:1. 不需要对数据的分布做出任何假设,更加灵活。
2. 对样本量的要求较低,适用于小样本数据。
3. 适用于各种数据类型,更加通用。
然而,非参数检验也存在一些缺点:1. 相对于参数检验,非参数检验的统计效率较低。
2. 非参数检验通常需要更多的计算资源和时间。
非正态总体参数的假设检验和非参数检验
分布类型,此时F0可能含有未知参数,
上述方法不再适用。此时若要检验假
设
H0 : F (x) F0 (x;1,L ,,m由) 于
未于知 是pi0,可故以上用述估检计验量法(不极能大直似接然使估用计,)
来代替未知参数。
此时的统计量为
2 r (ni npˆi0 )2 .
i 1
npˆ i0
当n充分大时,上述统计量近似服
服从多项分布。
由大数定律知,当n充分大时,频 数ni与理论频数npi越来越小。故ni 与npi之间的差异可以反映出概率分 布 ( p1, p2,L , pr )是否为总体的真实分 布。令
2 r (ni npi )2
i1
npi
称上述统计量为皮尔逊统计量。
定理(皮尔逊定理)设总体的真实 分布为( p1, p2,L , pr ) ,则有
实际上,还可以用皮尔逊统计量检 验任意的一个总体是否具有某个指 定的分布函数 F0 (x)。
若我们要检验假设 H0 : F (x) F0 (x). 可选取r-1个不相等的实数 y1 L yr1 把实数轴分成r个区间,令
p1 F ( y1), pi F ( yi ) F ( yi1),i 2,L , r 1, pr 1 F ( yr1).
缺点:由于采用分组处理样本,实 际上检验的只是若干特殊点的值, 这就导致很可能犯第二类错误(取 伪错误)。
2. Kolmogorov检验法
出发点:考虑经验分布函数 Fn*(x) 和原假设H0 : F (x) F0 (x)成立时总 体分布函数之间偏差的最大值。
2 ~& 2 (r 1)
由上述定理,当样本容量较大时,
统计量 2近似服从自由度为r-1的卡
方分布。
非参数检验
非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。
相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。
本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。
首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。
秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。
非参数检验的应用领域广泛,包括但不限于以下几个方面。
一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。
常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。
在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。
二、相关性分析非参数检验可用于判断两个变量之间的关联性。
常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。
这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。
三、分组比较非参数检验可用于比较多个样本之间的差异。
常见的方法有Kruskal-Wallis检验、Friedman检验等。
这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。
在实际应用中,非参数检验需要注意以下几个问题。
一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。
然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。
二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。
但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。
三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。
但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。
5.4,5.5一个正态总体参数的假设检验
提出待检验假设
H 0 : µ = 23. 取α = 0.05
X − 23 X −µ 如果 H 0成立 U0 = 2 ~ N (0,1) U= ~ N (0,1) 2 6 6 X − 23 P > uα = α 2 2 6
X = 20.5, U 0 = 3.06 > 1.96 X − 23 P > 1.96 = 0.05 2 不能接受 " µ = 23" 这一假设 6
判 等 "EX = 23"成 与 ? 断 式 立 否
例 2, 用传统工艺加工的红果 罐头 , 每瓶平均维生素 C 的含量为 19毫克 , 现改进加工工艺,抽查 16 瓶罐头,测得 VC 含量为 现改进加工工艺, 瓶罐头, 23; .5; ; ; ; .5; ; ; ; .5; .8; ; .5; ; ; .(毫克 ) 20 21 22 20 22 19 20 23 20 18 20 19 22 18 23 若假定新工艺的方差 (1)σ 2 = 4为已知 ; ( 2 )σ 2 未知 , 问新工艺下 VC 的含量是否比旧工艺下 含量高 ?
2. H 0 : µ ≤ µ 0
解 .待检验的假设是 H 0 : µ ≤ 19. 设 α = 0 .05 , σ 2 = 4
分析
U= X −µ
σ
~ N(0,1)
U0 =
X − 19
σ
. U 0的分布不能确定
当H 0 成立时
n
U ≥ U0
P {U 0 > uα } ≤ P{U > uα }
X − 19 > uα ≤ α 则P σ n
α
第二类错误 当原假设 H0 不成立时,而样本值却落入了接受域,从而 不成立时,而样本值却落入了接受域, 的结论。也就是说, 作出接受 H0的结论。也就是说,把不符合 H0 的总体当 成符合 H0 的总体加以接受 . “纳伪”的错 纳伪” 误
非参数检验
➢ 编秩:数据相等则取平均秩,
➢ 求秩和
➢ 计算检验统计量H值
H 12 N(N 1)
Ri2 3( N 1) ni
出生体重(kg)xij ABCD
相应秩次 Rij A BCD
2.7 2.9 3.3 3.5
3
4
7 11
2.4 3.2 3.6 3.6
2 5.5 12.5 12.5
2.2 3.2 3.4 3.7
χ 2 12
R
2 i
3(N1)
N(N1) ni
χ2
12 14(14 1)
152
4
152 3
37.52 4
37.52 3
3(14
1)
χ 2 9.375
χ
2 c
1
χ2
(t
3 j
t
j
)
n3 n
1
(23
9.375 2) (33 3) (23
143 14
2)
9.50
四、随机区组设计资料的秩和检验 (Friedman test)
正态近似法
如果n1或n2-n1超出附表的范围,可按下式 计算u值:
u | T n1(N 1) / 2 | 0.5 n1n2 (N 1) / 12
在相同秩次较多时,应用下式进行校正:
uC u / C
C 1
(t
3 j
t
j
)
/(N
3
N)
tj为第j组相同秩次的个数
频数表资料(或等级资料)两样本资料比较
xi (2) 86 71 77 68 91 72 77 91 70 71 88 87
12 对双胞胎兄弟心理测试结果
后出生者得分 差 值
非参数假设检验
结果分析:
P值>0.05,接受Ho,两套问卷测试的数据服从同样的分布。
实例演示:检验一组样本的总体分布是否与猜想的分布(任 意分布)相同:拟合优度 2 检验法 Eg3.六个企业生产汽车,每小时的产量如图:
问:这些企业的生产水平,有无显著差异? 零假设Ho:六个企业的生产能力是相同的(即产量服从均匀 分布)。 备泽假设H1:六个企业的生产能力是不全相同的(产量不服 从均匀分布)
非参数假设检验
郑丽娜
非参数假设检验(Nonparametric tests) 非参数检验与参数检验共同构成统计推断的基本内容。 参数检验是在总体分布形式已知的情况下,对总体分布的参 数如均值、方差等进行推断的方法。 但在数据分析过程中,人们往往无法对总体分布形态作简单 假定,此时参数检验的方法就不再适用了。 非参数检验是在总体方差未知或知道甚少的情况下,利用样 本数据对总体分布形态等进行推断的方法。 由于非参数检验方法在推断过程中不涉及有关总体分布的参 数,因而得名为“非参数”检验。
数据输入: 数据输入见右图:
存放数据是一列 一分钟内观察到得个数 为变量值
数据分析: 步骤1 分析 非参数检验 (Nonparametric) 1样本 K-S( 1 sample k - s )
数据分析: 步骤2 放入右边的检验变量 列表(test variable list)
数据分析: 步骤3 下面的检验分布( test distribution) 都选,因为不知道 服从什么分布。 选择选项里选择所需 的。 点确定
数据分析: 步骤4 检验类型(test type) 有四种 系统默认的是MannWhitney U检验 (序号和<铁和>检 验法) 点确定,看结果
结果分析:
非参数检验
若n>50,超出附表9的范围,可用正态近似法作u检验,按 下式计算u值。
对秩的差值,省略所有差值为0的对子数,令余下的有效对子数
为n;最后按n个差值编正秩和负秩,求正秩和或负秩和。但对 于等级资料,相同秩多,小样本的检验结果会存在偏性,最好 用大样本。
的多个独立样本所来自的多个总体分布是否有差别。在理论
上检验假设H0应为多个总体分布相同,即多个样本来自同一 总体。由于H检验对多个总体分布的形状差别不敏感,故在实
际应用中检验假设H0可写作多个总体分布位置相同。对立的
备择假设H1为多个总体分布位置不全相同。
1.原始数据的多个样本比较
方法步骤见例8-5.
样本所来自的两个总体中位数是否有差别。方法步骤见例8l。
例8-1 对12份血清分别用原方法(检测时间20分钟)和新 方法(检测时间10分钟)测谷-丙转氨酶,结果见表8-1的(2)、 (3)栏。问两法所得结果有无差别?
血清谷-丙转氨酶不知是否符合正态分布,本例为小样 本资料,其配对差值经正态性检验得0.1<P<0.2,虽可用配对t 检验,为保守起见,现用Wilcoxon符号秩检验。
用于推断计量资 料或等级资料的两个独立样本所来
自的两个总体分布是否有差别。
在理论上检验假设H0应为两个总体分布相同,即 两个样本来自同一总体。由于秩和检验对于两个总体分布 的形状差别不敏感,对于位置相同形状不同但类似的两个 总体分布,如均数相等、方差不等的两个正态分布,推断
不出两个总体分布(形状)有差别,故对立的备择假设Hl不
非参数检验的名词解释
非参数检验的名词解释
非参数检验是一种统计方法,用于在数据不满足正态分布或其他假设条件的情况下进行统计推断。
与参数检验相比,非参数检验不需要对总体参数做出假设,而是直接利用样本数据进行推断。
以下是相关名词解释:
1. 非参数:指在进行统计推断时,不对总体的分布形式或参数做出特定的假设。
非参数方法依赖于具体的样本数据,不依赖于总体的分布特征。
2. 假设检验:统计推断的一种方法,用于通过对样本数据进行分析来得出关于总体参数或总体分布的结论。
假设检验通常涉及对某个假设的拒绝或接受。
3. 正态分布:也称为高斯分布,是一种连续概率分布,常用于描述许多自然现象和随机变量的分布。
参数检验通常基于对总体数据服从正态分布的假设。
4. 参数检验:通过对总体参数的估计和假设进行统计推断的
方法。
参数检验通常要求数据满足特定的假设条件,如正态分布、独立性和方差齐性等。
5. 统计显著性:在假设检验中,用于评估观察到的差异或效应是否显著。
统计显著性通常以p值表示,若p值小于预设的显著性水平(如0.05),则可以拒绝零假设。
非参数检验在实际应用中具有灵活性和广泛适用性,特别适合处理样本数据不满足假设条件的情况。
它们不依赖于总体分布的形式,因此更加鲁棒,并可以应用于各种类型的数据集。
0904-非参数假设检验例题SPSS实现-05信管信计
非参数假设检验SPSS辅助案例六、非参数假设检验:正态分布假设检验
SPSS求解过程:
注:K-S方法的主要思想是通过抽样建立来自总体的经验分布,把经验分布与假设的理论分布相比较,以误差最大建立统计量,求实际最大误差出现时的
P-Value,如果是小概率事件,拒绝
H,否则接受0H。
判别:由于显著性概率sig.(2-tailed)=0.333=P-V alue>0.05,所以接受
H
和用已知分布计算书本题解:计算在各小区间的观察值个数(即实际频数)i
np:
的理论频数i
np计算检验统计量的值,判断总体分布是否为正态分布:由i 、i
在已知观察值出现的频数时,可以用2
分布检验,过程如下:
需要设置频数为权重以识别。
判别:由于显著性概率sig. =0.999=P-V alue>0.05,所以接受
H
七、均匀分布假设检验
判别:由于显著性概率sig.(2-tailed)=1=P-V alue>0.05,所以接受
H
独立性假设检验:
如果应用2 (chi-Square)检验两个总体的独立性,可采用列联表形式,过程如下:
仍需要对频数进行设置为权重以识别。
判别:由于皮尔逊2 检验的显著性概率
sig.(2-tailed)=0.530=P-V alue>0.05, 所以接受
H。
书本题解过程:
应是n。
非参数假设检验
§ 7.4 非参数假设检验在§7.2中讨论了母体分布类型为已知时的参数假设检验问题.一般在进行参数假设检验之前,需要对母体的分布进行推断.本节将讨论母体分布的假设检验问题.因为所用的方法适用于任何分布或者仅有微弱假定分布,实质上是不依赖于分布的.在数理统计学中不依赖于分布的统计方法统称为非参数统计方法.这里所讨论的问题就是非参数假设检验问题.这里所研究的检验是如何用子样去似全母体分布,所以又称为分布拟合扰度检验,一般有两种:一是拟合母体的分布函数;另一是拟合母体分布的概率函数.这里我们只介绍三种检验方法:概率图纸法. 2χ-拟合优度检验和柯尔莫哥洛夫斯米尔诺夫检验.一, 概率图纸法这是一种比较直观和简便的检验方法.它适合于在现场使用.目前常见的概率图纸有正态,对数正态,二项分布,指数分布和威布尔分布概率图纸等.这里我们只介绍正态概率图纸,关于其它分布的概率图纸的构造原理和使用方法都是类似的1. 正态概率图纸的构造原理设母体ξ有分布函数F(x),{N(μ,2σ)}表示正态分布族.需要检验假设)},({)(:20σμN x F H ∈这里μ和2σ均为未知常数.在原假设0H 为真时,通过中心化变换)(2121)(22)(222σμπσπσμμσμ-Φ===⎰⎰-∞--∞---x du edt ex F x xt即σμξξμ-=)(服从正态N(0,1).函数u(x)是x 的线性函数. σμξξμ-=)( (7.13) 在(x,u(x))直角坐标平面上是一条直线.这条直线过(μ,0),且斜率为σ1. 2. 检验步骤.事实上,我们知道的不是母体ξ取出的一组子样观察值n x x ,,1 由格里汶科定理知道子样的经验分布函数)(x F n 依概率收剑于母体分布函数F(x).所以在检验母分体布函数F(x)是否属于正态分布族时,我们以大子样的经验分布函数)(x F n 作为母体分布的近似.若0H :F(x) ∈{N(μ,2σ)}为真,那末点,,,1)),(,(n i x F x i i =在正态概率图纸上应该在一条直线上.所以根据上述经验分布函数)(x F n 是母体分布函数F(x)很好的近似,点,,,1)),(,(n i x F x i i =在正态概率图纸上也应该近似地在一条直线附近.倘若点列)),(,(i i x F x 不是近似地在一条直线附近,那末只能说明F(x)不属于正态分布族.根据上述想法,用正态概率图纸去检验假设0H 的具体步骤如下.(1) 整理数据 (2) 描点(3) 目测这些点的位置, 3. 未知参数μ与2σ的估计.若通过概率图纸检验已经知道母体服从正态分布,我们就凭目测在概率图纸上画出最靠近各点,,,1)),(,()()(n i x F x i n i =的一条直线l,因为σμξξμ-=)(服从正态N(0,1),所以当0)(=-=σμξμx ,即x=μ时对应的概率F=0.5.因此,只要在概率图纸上面一条F=0.5的水平直线.这条直线与直线l 的交点的横坐标5.0x 就可以作为参数为μ的估计.又由μ(x)=1时所对应的概率F=0.8413的水平直线,这条直线与直线l 的交点的横坐标为8413.0x .这个8413.0x 显然满足18413.08413.0=-=σμμx 即μσ-=8413.0x 因此可以用差5.08413.0x x -估计σ.例 7.8 (略)见P 338 二, 2χ的似体检验法前面介绍了直观而简便的概率图纸法,它不需要很多计算就能对母体分布族作出一个统计推断,并且还能对分布所含的参数作出估计.但是这种方法因人而异,且精度不高,又不能控制犯错误的概率.这里介绍2χ-拟合检验法,它能够像各种显著性检验一样控制犯第一类错误的概率.设母体ξ的分布函数为具有明确表达式的F(x),.我们把随机变量ξ的值域R 分成k 个互不相容的区间[][][]k k k a a A a a A a a A ,,,,,,1212101-=== 这些区间不一定有相同的长度.设n x x ,,1 是容量为n 的子样的一组观测值.i n 为子样观测值n x x ,,1 中落入i A 的频数.n n ni i =∑=1在这n 次事件i A 出现的频率为nn i. 我们现在检验原假设)()(:00x F x F H =.设在原假设0H 成立下,母体ξ落入区间i A 的概率为i P ,即k i a F a F A P P i i i i ,1),()()(100=-==- (7.14)此时n 个观察值中,恰有1n 个值落入1A 内,2n 的观察值落入2A 内,k n 个观察值落入k A 内的概率为k n n n n k P P P n n n n 212121!!!!这是一个多项分布.按大数定理,在0H 为真时,频率nn i与概率i P 的差异不应太大.根据这个思想构造一个统计量2χ=∑=-ki i i i nP nP n 12)( (7.15)称做2χ-统计量.往后可以看到,用2χ表示这一统计量不是没有原因的.因为它的极限分布就是自由度为k-1的2χ-分布.为了能够把2χ-统计量用来作检验的统计量,我们必须知道它的抽样分布.我们先k=2的简单情形.在0H 成立下,221)(,)(P A P P A P i ==其中121=+P P这时,频数n n n =+21我们考察222212112)()(nP nP n nP nP n -+-=χ (7.16) 令222111,nP n Y nP n Y -=-= (7.17)显然0)(212121=+-+=+P P n n n Y Y (7.18)由此可见1Y 与2Y 不是线性独立,且21Y Y -=.于是21212221212P nP Y nP Y nP Y =+=χ 21111)1(⎥⎥⎦⎤⎢⎢⎣⎡--P nP nP n (7.19) 根据德莫弗-拉普拉斯极限定理,当n 充分大时,随机变量)1(1111P nP nP n --的分布是接近于正态的,从而推得k=2情形的分布,当n 充分大时,是接近于自由度为1的2χ-分布.对于一般情形有如下的定理.定理 7.1 当0H 为真时,即k P P ,,1 为母体的真实概率时,由(7.15)式所定义的统计量2χ的渐近分布是自由度为k-1的2χ-分布,即密度函数为⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-Γ=---,0,2121)(22321xk k e x k x f (7.20) 证 因为在n 个观测值中恰有1n 个观测值落入1A 内, 2n 的观察值落入2A 内,k n 个观察值落入k A 内的概率为k n n n n k P P P n n n n 212121!!!!这里n n n n k =+++ 21.其特征函数nk j it jk je P t t ⎪⎪⎭⎫⎝⎛=∑=112),,( ϕ (7.21) 令k j nP nP n Y jjj j ,2,1, =-=(7.22)于是有∑∑===-=kj j kj jj j Y nP nP n 12122)(χ (7.23)和∑=kj j jP Y1=0 (7.24)由此式看出,诸随机变量j Y 不是线性独立的.(k Y Y ,,1 )的联合分布的特征函数具有形状2111exp exp ),,(⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛•⎪⎪⎭⎫ ⎝⎛-=∑∑==kj j j j kj j jk nPit P nP it t t ϕ (7.25) 两边取对数得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+-=∑∑==k j j jj kj j jn nP it P n P t n i t t 111exp ln ),,(ln ϕ (7.26) 利用指数数函和对数函在0=j t 处的泰勒展开:⎪⎭⎫ ⎝⎛+-=-⎥⎥⎦⎤⎢⎢⎣⎡n nP t nP it np it j jj j jj 121exp 2ο和)(2)1ln(22x x x x ο+-=+于是)1(21211211ln ),,(ln 11212111211οοϕ+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-++-=∑∑∑∑∑∑∑=======k j k j k j j j j j j k j j j k j k j j j j kj j jk P t n i t n P t n i n P t n i n t n P t n i n P t n i t t当∞→n 时⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--→∑∑==k j kj j j j k P t t t t 1212121),,(ln ϕ 即⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=∑∑==∞→k j k j j j j k n P t t t t 1212121exp ),,(lim ϕ (7.26) 作一正交变换:⎪⎪⎩⎪⎪⎨⎧=-==∑∑==kj j k j kj lj l Y P Z k l Y a Z 111,,1, (7.27) 其中lj a 应该满足1,,1,,0,11-=⎩⎨⎧≠==⋅∑=k r l r l r l a a kj rjlj 和1,,1,01-==∑=k l P akj j lj由⎪⎪⎩⎪⎪⎨⎧=-==∑∑==kj j j k kj y ij l t P u k l t a u 111,1, (7.28) 得到∑∑∑-====⎪⎪⎭⎫ ⎝⎛-1122112k j j kj i k j j j u P t t (7.29) 由(7.26)知,当∞→n 时,(k Z Z ,,1 )的特征函数⎭⎬⎫⎩⎨⎧-=∑-=∞→112121exp ),,(lim k j j k n u u u ϕ.这意味着11,,-k Z Z 的分布弱收剑于相互独立的正态N(0,1)分布,而k Z 依概率收剑于0.因此∑∑====kj j k j j Z Y 12122χ的渐近分布是自由度为k-1的2χ-分布.如果原假设0H 只确定母体分布类型,而分布中还含有未知参数m θθ,,1 则我们还不能用定理7.1来作为检验的理论依据.费歇证明了如下定理.从而解决了含未知参数情形的分布检验问题.定理 7.2 设F(x; m θθ,,1 )为母体的真实分布,其中m θθ,,1 为m 个未知参数.在F(x;m θθ,,1 )中用m θθ,,1 的极大似然估计mθθ∧∧,代替m θθ,,1 并且以F(x; mθθ∧∧,)取代(7.4)中的F(x)得到),,1;(),,1;(1m a F m a F i i iP θθθθ∧∧-∧∧∧-= (7.30)则将(7.30)代入(7.15)所得的统计量∑=∧∧-=kj i ini nn p p 122()χ (7.31)当∞→n 时有自由度为k-m-1的2χ-分布.例 7.9 (略)见P 345由例子来总结一下利用2χ-检验分布假设的步骤:(1)把母体ξ的值域划分为k 个互不相交的区间[,,,1),,1k i a a i i =+其中k a a ,1可以分别取∞∞-,;(2) 在0H 成立下,用极大似然估计法估计分布所含的未知参数; (3)在0H 成立下,计算理论概率)()(010i i i a F a F p -=+并且算出理论频数i nP ; (4)按照子样观察值n x x x ,,,21 落在区间),[1+i i a a 中的个数,即实际频数,,,1,k i n i =和(3)中算出的理论频数i nP ,计算ii i nP nP n )(2-=χ的值;(5)按照所给出的显著性水平α,查自由度k-m-1的2χ-分布表得)1(21---m k αχ,其中m 是未知参数的个数; (6)若2χ21αχ-≥,则拒绝原假设0H ,若212αχχ-<,则认为原假设0H 成立.三 柯尔莫哥洛夫似合检验------n D 检验2χ-似合检验是比较子样频率与母体的概率的.尽管它对于离散型和连续型母体分布都适用.但它是依赖于区间的划分的.因为即使原假设)()(:00x F x F H =不成立,在某种划分下还是可能有k i P a F a F a F a F i i i i i ,,1,)()()()(1001 ==-=---从而不影响(7.5)中2χ的值,也就是有可能把不真的原假设0H 接受过来.由此看到,用2χ-检验实际上只是检验了,,,1,)()(100k i P a F a F i i i ==--是否为真,而并未真正地检验母体分布F(x)是否为)(0x F .柯尔莫哥洛夫对连续母体的分布提出了一种方法.一般称做柯尔莫哥洛夫检验或n D -检验.这个检验比较子样经验分布函数)(x F n 和母体分布函数F(x)的.它不是在划分的区间上考虑)(x F n 与原假设的分布函数之间的偏差.而是在每一点上考虑它们之间的偏差.这就克服了2χ-检验的依赖于区间划分的缺点.但母体分布必须假定为连续.根据格里汶科定理,我们可以把子样经验分布函数看作实际母体分布函的缩影.如果原假设成立,它与F(x)的差距一般不应太大.由此柯尔莫哥洛夫提出一个统计量|)()(|sup x F x F D n xn -= (7.32)并且得到这统计量n D 的精确分布和极限分布K(λ).它们都不依赖于母体的分布.这里我们不加证明地引入柯尔莫哥洛夫定理.定理 7.3 设母体ξ有连续分布函数F(x),从中抽取容量为n 的字样,并设经验分布函数为)(x F n ,则|)()(|sup x F x F D n xn -=的分布函数⎪⎭⎫ ⎝⎛+<n D P n 21λ=n n n n dy y y f n n n nn n n n n 2120212,1,),,(0,021********22121-<≤⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥<⎰⎰⎰+-+-+---λλλλλλλλλ 当(7.33)其中⎩⎨⎧<<<=其它当,010!),(11n n y y n y y f在∞→时有极限分布函⎪⎩⎪⎨⎧≤>--=→<∑-∞=0,00),2exp()1()()(22λλλλλ当当n j j n j K D n P (7.34) 在应用柯尔莫哥洛夫检验时,应该注意的是,原假设的分布的参数值原则上应是已知的.但在参数为未知时,近年来有人对某些母体分布如正态分布和指数分布用下列两种方法估计.()可用另一个大容量子样来估计未知参数,(2)如果原来子样容量很大,也可用来估计未知参数.不过此n D -检验是近似的.在检验时以取.较大的显著性水平为宜,一般取α=0.10-0.12.n D -检验检验母体有连续分布函数F(x)这个假设的步骤如下:(1) 从母体抽取容量为n 的子样,并把子样观察值按由小到大的次序排列;(2) 算出经验分布函⎪⎪⎩⎪⎪⎨⎧≤=<≤<=+x n j x x x nx n x x x F k j j jn 当当当,1,,1,,)(,0)()1()()1((3) 在原假设0H 下,计算观测值处的理论分布函数F(x)的值; (4) 对每一个i x 算出经验分布函数与理论分布函数的差的绝对值||)()(||)()()()1()()(i i n i i n x F x F x F x F --+与(5) 由(4)算出统计量的值(6) 给出显著性水平α,由柯尔莫哥洛夫检验的临界值表查出αα=≥)(,n n D D P的临界值α,n D ;当n>100时,可通过n D n /1,ααλ-≈查n D 的极限分布函数数值表得αλ-1从而求出α,n D 的近似值.(7) 若由(5)算出的α,n n D D ≥则拒绝原假设0H ;若α,n n D D <则接受假设,并认为原假设的理论分布函数与子样数据是似合得好的. 例 7.10 略) 见P 351定理 7.4 当样本容量21n n 和分别趋身于∞时,统计量|)()(|212121,sup x F x F D n n xn n -=有极限分布函数)(212121λλK D n n n n P n n →⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<+ ⎪⎩⎪⎨⎧≤>--=∑∞-∞=0,00),2exp()1(22λλλ当当j j j (7.35) 例 7.11 (略)见P 353。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u
现在 n1 200,
xy s n1 s n2
2 1 2 2
u /2
n2 100,
u / 2 u0.025 1.96
u
xy
2 s12 n1 s2 n2
3.5849 1.96
=>拒绝原假设 H 0 ,
即认为这两台机床加工的
轴承的平均椭圆度是不相同的.
根据这个样本来检验总体X的分布函数F(x) 是否等于某个给定的分布函数 F0(x),即检验假设
H0 : F ( x) F0 ( x),
:
H1 : F ( x) F0 ( x)
注意: 若总体 X 为离散型的, 则 H 0 相当于 总体 X 的分布律为
P{X xi } pi , i 1,2,
例4.4.2:某大城市为了确定城市家庭养猫灭鼠的效果,进 行调查结果如下:养猫户m=119家,其中有老鼠活动的有 15户;无猫户n=418家,有老鼠活动的有58户。问:养猫 与不养猫对家庭灭鼠有无显著差异(α=0.05) ?
解:用p1和p2表示养、无猫户中有老鼠活动的百分率。引 入总体X和Y,有 p{X=0}=1- p1, p{X=1}=p1; p{Y=0}=1- p2, p{Y=1}=p2。 EX= p1, EY= p2。 检验假设 H0:p1=p2; H1: p1<p2.
统计量U的值为
u
0.08 0.05 0.05 1 0.05 / 50
0.78
| u | 0.0306 1.96
=>接受假设 H 0
=>可以认为这批产品的次品率为5%
1.一个总体均值的假设检验
2 假设总体X 的均值为μ, 方差为
X 1 , X 2 ,, X n 为 X 的样本,检验假设
近似服从 (k 1) 分布.
2
由定理1, 若给定显著性水平α,则前述假设检验问 题的拒绝域为(因为若原假设成立,此统计量的取 值一般都比较小)
2 2 (k 1)
例4.5.1:正四面体的四面分别涂成红、黄、蓝、白 颜色。进行抛掷试验:任意抛掷四面体,直到白色 一面与地面接触为止,记录抛掷次数,共试验200 次,结果如下: 抛掷次数 频率 1 56 2 48 3 32 4 28 大于4 36
A1 [3.95, 4.25], A2 (4.25, 4.55],
中落入 Ai 的个数,
=> 在n次试验中,事件 Ai发生的频率为 fi /n
另一方面,当H0为真时, 可以根据H0所假设的 X 的分 布函数来计算 pi P( Ai ).
选取统计量
fi hi pi n i 1
k
2
来度量样本与H0中所假设的分布的吻合程度,hi是 给定的常数。
问:四面体是否均匀?(显著性水平0.05)
解:设X表示首次出现白色一面与地面接触 时进行的抛掷次数,则X服从几何分布: p{X=k}=(1-p)k-1p,k=1,2,3… 假设四面体均匀,则p= 1/4 。 此时可计算得到: p{X=1}=1/4, p{X=2}=3/16, p{X=3}=9/64, p{X=4}=27/256, p{X>4}=81/256.
H 0 : 0 , H1 : 0
由中心极限定理知,当样本容量n充分大时,
X 0 U / n
近似地服从标准正态分布N(0,1)
n 2 1 2 Xi X 由于样本方差 S n 1 i 1 2 为 的无偏估计量,
2 S 近似代替 可以用 ,并且当 H 0 为真 X 0 且样本容量n充分大时,统计量 U S/ n
s1 0.025, s2 0.062
能否认为这两台机床加工的轴承的平均椭圆度是相 同的(α=0.05)
解
设这两台机床加工的轴承的椭圆度分别为X,Y
且 1 E X , 2 E Y 检验假设
H0 : 1 2 ,
H 1 : 1 2
由于题目给出的两个样本都是大样本,因此该假设 检验问题的拒绝域为
2
仍近似地服从标准正态分布N(0,1)
所以该假设检验问题的拒绝域为
u
x 0 s/ n
u /2
2.两个总体均值的假设检验
设总体 X 和 Y 相X 的样本, Y1 , Y2 ,, Yn 是 Y 的样本. 记 2 n1 n1 1 1 2 X Xi, S12 ( X X ) i n1 i 1 n1 1 i 1 n2 n2 1 1 2 2 Y Yi , S2 (Yi Y ) n2 i 1 n2 1 i 1
由题意,还可计算得到fi /n,即频率。
2 2 k ( f np ) f i 利用 2 i i n npi i 1 i 1 npi k
可得统计量的观测值为18.21。查卡方分布表,自由 度为k-1=4,显著性水平为0.05,分位点位9.448, 所以拒绝原假设,认为四面体不均匀。
由题意,m=119,n=418.
u xy s
2 1m
ms
2 2n
n
0.37
查N(0,1)分布表, u u0.05 1.65 所以接受原假设,即认为大城市养猫与不养猫 对 家庭灭鼠无显著差异。
4.5 分布拟合检验
设总体X的实际分布函数为F(x),它是未知的.
X 1 , X 2 ,, X n 为来自总体 X的样本.
试检验大麦穗长是否服从正态分布?(α=0.05)
解 检验假设 H 0 : X的概率密度为 f ( x)
2
1 2
e
2
( x )2 2 2
n 把X可能取值的全体 [3.95, 7.55] 划分为
k =12个互不重叠的小区间:
, 是未知的, 所以应首先估计 , 2 , 的最大似然估计为 1 2 2 2 ˆ ˆ x 5.921 , s 0.6034
(3)一般数据分成7到14组. 有时为了保证各组
npi 5
组数可以少于7组。
例 某农科站为了考察某种大麦穗长的分布情况 , 在一块实验地里随机抽取了100个麦穗测量其长度, 得到数据如下(单位: cm) 6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6 5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.5 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 5.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
2 设总体 X的均值为 1 ,方差为 1 2 总体 Y的均值为 2 ,方差为 2
求假设检验问题
H0 : 1 2 ,
H1 : 1 2
的拒绝域. 由中心极限定理知,当样本容量 n1 和
n2 都充分大时,U
X Y 1 2
2 12 n1 2 n2
如果选取 hi n / pi , 则上述统计量变成
( f i npi ) fi n npi i 1 i 1 npi
2 k 2 k 2
定理4.5.1 当H0为真且n充分大时, 统计量
2 2 k ( f np ) f i 2 i i n npi i 1 i 1 npi k
(二)若H0中X 的分布函数含有未知参数.
此时, 首先在假设下利用样本求出未知参数的最大 似然估计, 以估计值作为参数值, 然后再根据 H0中 所假设的 X 的分布函数 F(x)求出 pi的估计值
ˆ(A ) ˆi P p i 2 2 k k ( f i npi ) fi 2 n 并在 npi i 1 i 1 npi ˆ i 代替 pi , 得到统计量 中以 p
2 2 k ˆ ( f i npi ) fi 2 n ˆi ˆi np i 1 i 1 np k
定理4.5.2
当 H 0 为真,且 n 充分大时, 统计量
k
2 2 k ˆ ( f n p ) f i 2 i i n ˆi ˆi np i 1 i 1 np
1, 该产品为次品, Xi 0, 该产品为合格品. X i ~ b(1, p)
检验假设
H 0 : p 0.05, H1 : p 0.05
该假设检验问题的拒绝域为
x 0.05 u u / 2 0.05(1 0.05) / n 4 0.08, u / 2 u0.025 1.96 现在 n 50, x 50
近似服从 (k r 1) 分布, 其中r是 X的分布函数
2
F(x)包含的未知参数的个数. 若给定显著性水平α,则前述假设检验问题的拒绝域为
2 2 (k r 1)
注意:运用 检验法检验总体分布, 把样本数据进 行分类时:
2
(1)大样本, 通常取 n 50
ˆi 5 (2)要求各组的理论频数 npi 5 或 np
2 1
近似地服从标准正态分布.由于样本方差 S 和
2 S 分别为 12 和 2 的无偏估计量,因此 可以
2 2 2 2 S 分别用 1 和 S2 近似代替 1 和 2
2 2
,从而当原假设 H 0 成立时, 统计量