有限差分法的介绍及简单应用共27页

合集下载

《有限差分方法基础》课件

《有限差分方法基础》课件
应用前景
总结了有限差分方法在科学计算、工程仿真、金融建模等 领域的应用前景,以及在未来的发展趋势和挑战。
展望
技术发展
展望了有限差分方法在未来的技术发展趋势,如高精度、高效率、并 行化等,以及与其他数值方法的结合应用。
应用领域拓展
探讨了有限差分方法在解决复杂问题中的应用潜力,如多物理场耦合 、非线性问题等。
有限差分方法的重要性
有限差分方法是一种通用、有效的数 值计算方法,适用于各种微分方程的 求解,尤其在偏微分方程的数值求解 中应用广泛。
它能够处理复杂的边界条件和初始条 件,提供精确度和稳定性较高的数值 解,是科学研究、工程技术和实际应 用中常用的数值计算工具之一。
有限差分方法的历史与发展
有限差分方法最早可以追溯到19世纪中叶,随着计算机技术的发展,有限差分方 法得到了广泛的应用和发展。有限差分方法的实现有限差分方法的编程实现
编程语言选择
选择适合的编程语言,如Python、C或Matlab,以 便高效地实现有限差分方法。
离散化过程
将连续的问题离散化,将连续的时间和空间变量转换 为离散的数值。
迭代过程
使用迭代法逐步逼近问题的解,每一步使用差分公式 进行计算。
有限差分方法的数值稳定性
数值稳定性定义
数值稳定性是指随着迭代次数的增加,解的 数值误差不会无限增大,而是逐渐收敛到真 实解。
稳定性和差分方案的关系
不同的差分方案对应不同的数值稳定性,需要选择 稳定的差分方案以获得可靠的数值结果。
数值稳定性的判定方法
通过分析差分方案的系数矩阵的特征值来判 断数值稳定性,确保特征值在稳定区域内。
理论完善
展望了有限差分方法的理论研究前景,如数学证明、误差估计、收敛 性分析等。

有限差分法

有限差分法

两端都要给定边界条件(双程坐标) 。
9
(C) 双曲型方程:适当的边界条件和初始条件,与波动传 播的性质有关 如:一维对流方程
∂u ∂u +c =0 ∂t ∂x u (x ,0) = f (x )
解为 u (x , t ) = f (x − ct ) ,代表一个向右(c > 0 时)或向左 ( c < 0 时)传播的波形。必须在波形传来的一侧提供边界条 件(单程坐标) 。
10
不适定的例子:
utt + u xx = 0 u (x ,0) = u t (x ,0) = 0
拉普拉斯方程+非闭域边界条件,解为 u (x , t ) ≡ 0 。 然而,若定解条件为 u (x ,0) = 0, ut (x ,0) =
u (x , t ) = 1 sin nx ,解为 n
1 sinh nt sin nx n
(
)
n n um+1 = um −
cτ n n um +1 − um −1 2h
(
)
设计算到第 n 步时的累积误差
n ~n εn = 计算值um − 差分法精确解um m
反之
n ~n um = εn + um m
15
则第 n+1 步的计算值
~n ~ n cτ u n − u n ~ ~ um+1 = um − m +1 m −1 2h cτ n cτ n n n = um − um +1 − um −1 + εn − εm +1 − εn −1 m m 2h 2h n = um+1 + εn +1 m
uin +1 − uin −1 uin+1 − uin +1 − uin −1 − uin−1 −α =0 Lh u = τ h2 ατ 2 ⎛ ∂ 2u ⎞ τ 2 ⎛ ∂ 3u ⎞ Ti = Lh u − Lu (x i , t n ) = 2 ⎜ 2 ⎟ + ⎜ 3 ⎟ − L 截断误差 6 ⎜ ∂t ⎟i h ⎜ ∂t ⎟i ⎝ ⎠ ⎝ ⎠

有限差分法的基本原理

有限差分法的基本原理

f (x) ≈
2h
中心二阶差商
′′
f (x+h)−2f (x)+f (x−h)
f (x) ≈
h2
O(h) O(h)
2
O(h )
2
O(h )
其中,h表示网格间距,O(hn)表示截断误差与hn成正比。可以看出,中心差商比前向或后向差商具有更高的精度。
误差分析
有限差分法求得的数值解与真实解之间存在误差,这些误差主要来源于以下几个方面:
常用差分格式
有限差分法中最重要的步骤是构造合适的差分格式来近似微分项。根据泰勒展开式,可以得到以下常用的一阶和二阶差分格式:
差分格式
表达式
截断误差
前向一阶差商

f (x+h)−f (x)
f (x) ≈
h
后向一阶差商

f (x)−f (x−h)
f (x) ≈
h
中心一阶差商

f (x+h)−f (x−h)
截断误差:由于使用有限项级数来近似无穷级数而产生的误差; 舍入误差:由于计算机对小数进行四舍五入而产生的误差;
离散误差:由于对连续区域进行离散化而产生的误差; 稳定性误差:由于数值格式的稳定性不足而导致误差的累积或放大。
为了减小误差,一般可以采取以下措施:
选择更高阶或更精确的差分格式; 减小网格间距或时间步长; 选择合适的初始条件和边界条件; 选择稳定且收敛的数值格式。
+
。 2
h)
为了验证上述方法的正确性,我们取M = 10, N = 100,则原问题可以写为如下形式:
则该问题对应的递推关系式为:
⎧ut (x, t) − uxx (x, t) = 0,

第五章 有限差分法 知识讲解课件

第五章  有限差分法 知识讲解课件

的 m=4,即此表对应差商的精度是四阶的。从这些表可以看出,一般地说,随着
差分阶数的增大和对应差商精度的提高,差分表达式所包含的项数将增多。
表 5-1
j
n0 1 2 34
1 -1
aj 1
2 1 -2 1
3 -1 3 -3 1
4 1 -4 6 -4 1
表 5-3 j
n0 1 2345 aj
1 -3 4 -1 2 2 -5 4 -1 3 -5 18 -24 14 -3 4 3 -14 26 -24 11 -2
依此类推,任何阶差分都可由其低一阶的差分再作一阶差分得到。例如 n 阶前差
分为
∆n y = ∆(∆n−1 y) = ∆[∆(∆n−2 y)]
⋯⋯ = ∆{∆⋯[∆(∆y)]} = ∆{∆⋯[∆( f (x + ∆x) − f (x)]}
n 阶的向后差分、中心差分的型式类似。
(5-6)
函数的差分与自变量的差分之比,即为函数对自变量的差商。如一阶向前差
二阶差商多取中心式,即
∆2 y ∆x 2
=
f (x + ∆x) − 2 f (x) + (∆x) 2
f (x − ∆x) 。
(5-9) (5-10) (后的二阶差商。 以上是一元函数的差分与差商。多元函数 f(x,y,…)的差分与差商也可以类推。
如一阶向前差商为
应地,上式中的 ∆y 、 ∆x 分别称为函数及自变量的差分, dy //#######为函数对 dx
自变量的差商。 在导数的定义中 ∆x 是以任意方式趋近于零的,因而 ∆x 是可正可负的。在差
分方法中, ∆x 总是取某一小的正数。这样一来,与微分对应的差分可以有 3 种
形式: 向前差分 向后差分 中心差分

5有限差分法及其应用

5有限差分法及其应用
5 有限差分法及其应用
微分方程及其解法
材料科学中的许多实际问题都可以归结为一个 微分方程的求解问题,例如扩散问题、传热问 题、焊接应力等。 一般来说,处理一个特定的物理问题,除了需 要知道其演化方程外,还应同时知道问题的定 解条件。 然而只有在十分简单的情况下并作许多简化的 假定,才有可能求得这些方程的解析解。
如采用向前差公式 ( y n 1 y n ) / h f ( x n , y n ) 向后差分公式 ( y n 1 y n ) / h f ( x n 1 , y n 1 ) 中心差分公式 ( y n 1 y n 1 ) / 2h f ( x n , y n )
移项整理解出yn+1 ,可以写出递推公式
2014-12-26
application of computer in materials
12
§5.2 FD的计算方法
很多物理问题都可抽象称微分方程或 方程组的求解,下面用一个例子来讨 论用差分法解微分方程和方程组的问 题。 设有微分方程及初始条件为
dy f ( x, y ) dx y ( x0 ) y 0
y dy x dx
application of computer in materials
5
§5.1 FD的基本思想
为了建立差分方程,首先应将定 义域离散化 , 通过网络划分方法 将函数定义域划分成大量相邻而 不重合的子区域。 网络分割是任意的,但通常根据边 界的形状 , 采用最简单 , 最有规律 , 和边界的拟合程度最佳的方法来 分割。 常常采用规则的分割方式,便于 计算机自动实现和减小计算复杂 性,如正方形、矩形和三角形分 割。对圆形场域,应用极网络。
2014-12-26 application of computer in materials 4

有限差分法

有限差分法

第四章有限差分方法4.1引言有限差分法:数值求解常微分方程或偏微分方程的方法。

物理学和其他学科领域的许多问题在被分析研究之后, 往往可以归结为常微分方程或偏微分方程的求解问题。

一般说来,处理一个特定的物理问题,除了需要知道它满足的数学方程外,还应当同时知道这个问题的定解条件,然后才能设计出行之有效的计算方法来求解。

有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变量的连续取值。

在有限差分方法中,我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变量离散取值后对应的函数值。

但是从原则上说,这种方法仍然可以达到任意满意的计算精度。

因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值插值计算来近似得到。

这种方法是随着计算机的诞生和应用而发展起来的。

其计算格式和程序的设计都比较直观和简单,因而,它的实际应用已经构成了计算数学和计算物理的重要组成部分。

有限差分法的具体操作分为两个部分:(1)用差分代替微分方程中的微分,将连续变化的变量离散化,从而得到差分方程组的数学形式; (2)求解差分方程组。

在第一步中,我们通过所谓的网络分割法,将函数定义域分成大量相邻而不重合的子区域。

通常采用的是规则的分割方式。

这样可以便于计算机自动实现和减少计算的复杂性。

网络线划分的交点称为节点。

若与某个节点P 相邻的节点都是定义在场域内的节点,则P 点称为正则节点;反之,若节点P 有处在定义域外的相邻节点,则P 点称为非正则节点。

在第二步中,数值求解的关键就是要应用适当的计算方法,求得特定问题在所有这些节点上的离散近似值。

有限差分法的差分格式:一个函数在x 点上的一阶和二阶微商,可以近似地用它所临近的两点上的函数值的差分来表示。

如对一个单变量函数f(x),x 为定义在区间[a,b]的连续变量。

以步长h=Δx 将[a,b]区间离散化,我们得到一系列节点x = a , x = x + h , x = x + h = a + 212132Δx , ..., x = x + h = b , 然后求出 f(x)在这些点上的近似值。

有限差分法初步

有限差分法初步
有限差分法初步
• 引言 • 有限差分法的原理 • 有限差分法的应用 • 有限差分法的实现 • 有限差分法的优缺点 • 结论与展望
01
引言
有限差分法的定义
有限差分法是一种数值计算方法,通 过将偏微分方程离散化为差分方程, 从而求解偏微分方程的近似解。
近似表示微 分,从而将微分方程转化为差分方程。
有限差分法。
COMSOL Multiphysics实现
COMSOL Multiphysics是一款基于有限元法的多物理场仿真软件,也支持有限差分法。 COMSOL提供了友好的用户界面和丰富的物理模型库,使得有限差分法的实现更加便
捷。
有限差分法的并行计算实现
MPI实现
MPI(Message Passing Interface)是一种并行计算的标准,支持多个处理 器之间的通信。通过MPI,可以实现有限差分法的并行计算,提高计算效率。
自适应网格技术
根据解的特性自适应地调整离散点间距,以 提高计算精度和效率。
并行化与优化
通过并行计算和算法优化等技术提高有限差 分法的计算效率。
与其他方法的结合
将有限差分法与其他数值方法或物理模型相 结合,以处理更复杂的问题。
06
结论与展望
结论
01
有限差分法是一种数值计算方 法,通过离散化连续问题为差 分方程,进而求解数值近似解 。
有限差分法原理简单,易于理解和实现,不需要复杂的数学工 具。
有限差分法可以方便地进行并行计算,提高计算效率。
有限差分法可以应用于各种不同类型的偏微分方程,具有广泛 的适用性。
有限差分法的缺点
精度问题
由于有限差分法是一种离散化方法,其精度受到离散点间距的限制, 可能导致计算结果不够精确。

有限差分法原理

有限差分法原理

有限差分法原理有限差分法(Finite Difference Method)是一种常见的数值计算方法,广泛应用于工程、物理、地质等领域的数值模拟和求解偏微分方程。

它的原理是将连续的微分方程转化为离散的差分方程,通过对网格节点上的数值进行逼近,从而求解微分方程的数值解。

在本文中,我们将介绍有限差分法的基本原理及其在实际问题中的应用。

首先,我们来看一维热传导方程的数值求解。

假设我们要求解一个长为L的均匀材料棒上的温度分布,其热传导方程可以写为:\[ \frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} \]其中,u(x, t)表示位置x上的温度分布,t表示时间,α为热扩散系数。

为了使用有限差分法求解这个方程,我们需要将空间和时间进行离散化。

假设我们在空间上取N个网格点,将材料棒分为N个小区间,每个小区间的长度为Δx。

在时间上也进行离散化,取时间步长为Δt。

这样,我们可以用u_i^n来表示位置为x_i的温度在时间t_n的值。

将热传导方程在离散点上进行近似,我们可以得到如下的差分格式:\[ \frac{u_i^{n+1} u_i^n}{\Delta t} = \alpha\frac{u_{i+1}^n 2u_i^n + u_{i-1}^n}{(\Delta x)^2} \]通过对时间和空间上的离散点进行迭代计算,我们可以逐步求解出温度在空间上的分布随时间的演化。

这就是有限差分法的基本原理。

除了一维热传导方程,有限差分法还可以应用于更加复杂的偏微分方程,比如二维热传导方程、波动方程、扩散方程等。

在这些情况下,我们需要在空间上取二维甚至三维的网格点,并相应地修改差分格式。

有限差分法的优点在于它简单易实现,而且可以直接应用于一般的偏微分方程,因此在实际工程和科学计算中得到了广泛的应用。

需要指出的是,有限差分法也有一些局限性。

有限差分法基本原理PPT课件

有限差分法基本原理PPT课件

uin1

uin

a
t x
(uin

un i 1
)

ui0 u (xi )
几种差分格式介绍
u a u 0 t x u(x,0) u(x)
FTFS格式(时间向前差分、空间向前差分)
uin1 uin uin1 uin 0
t
x

ui0 u (xi )
uin 1

uin

a
t x
(uin1

uin )

ui0 u (xi )
几种差分格式介绍
FTBS格式(时间向前差分、空间向后差分)
限差分方程的解是收敛T的(i。, n)

lim
x0,t
0
Ti
t
一般情况下,证明收敛性是非常难的,暂不予以证明。
3.稳定性 稳定性讨论的是差分解的误差在计算过程中的发展问题。
在 数值解中,引进误差是不可避免的,电子计算机也有舍入误差, 因此实际算得的有限差分方程的解是近似解。这种误差是要向其 他方向传播的,如果计算中引入的误差在以后逐层计算过程中影 响逐渐消失或者保持有界,则称差分方程是稳定的。否则就是不 稳定的。
Von Neumann稳定性分析方法简介
分析例题
T n1 i
Ti n

t x 2
(Ti
n 1

2Ti n

Ti
n 1
),
S


t x 2
Ti n1

STi n1

(1
2S )Tin

STi
n 1
上式T中i n 近似数值

有限差分法基础ppt课件

有限差分法基础ppt课件

由(1)得到,
f (x x) f (x) x d f (x) (x)2 d 2 f (x) (x)3 d 3 f (x) (x)4 d 4 f (x)
dx
2! dx2
3! dx3
4! dx4
d f (x) f (x x) f (x) O(x)
dx
x
(3) (4)
9
d f (x) f (x x) f (x) O(x)
如果1更靠近0点则可以用x方向的线性插值给出0点的函数值如果2更靠近0点则可以用x方向的线性插值给出0点的函数值21c双向插值法i1ji1ji1j1i1j1ij1i1j1i1j1i1i1j1变步长二次偏导数222第二类和第三类边界条件对于点o过o点向边界g做垂线pq交边界于q交网线段vr于popahprbhvpch因为p一般不是节点其值应当以点和pr点的插值给出代入第二三类边界条件23图中o与r重合图中v与r点重合2第二类和第三类边界条件2424差分方程对于具体地球物理问题的偏微分方程组利用上述差分格式可以给出偏导数的微商近似进一步得到差分方程组
3. 如何数值求解差分方程组
6
2.2 网格剖分
• 网格剖分就是研究区域和边界的离散化 • 1.矩形分割 • 2.三角形分割 • 3.极网格分割
7
对地球物理问题的连续求解区域通过网格划分离散为空间上得一系 列网格点,接下来需要利用一定的差分格式对偏微分方程组中的导 数用差商进行近似,从而将偏微分方程组离散化为差分方程组。
dx
2x
单侧,一阶精度 单侧,一阶精度 对称,二阶精度
d2 dx2
f (x)
f (x x) 2 f (x) (x)2
f (x-x)
二阶精度
13
• 定解问题的有限差分解法 1.离散

有限差分方法基础ppt课件

有限差分方法基础ppt课件



t


x
0
(x,0) (x)
这里 (x) 为某已知函数。同样,差分方程也必须有初始条件:
(2-7)


n1 i


n i



n i 1


n i 1
0
t
2x

0 i


(xi )
(2-8)
初始条件是一种定解条件。如果是初边值问题,定解条件中还应有适当的边界条件。差分方程和其定解条件一起, 称为相应微分方程定解问题的差分格式。
图1-3 均匀和非均匀网格实例2
22
第二节 差分方程、截断误差和相容性/差分方程(1/3)
差分相应于微分,差商相应于导数。差分和差商是用有限形式表 示的,而微分和导数则是以极限形式表示的。如果将微分方程中 的导数用相应的差商近似代替,就可得到有限形式的差分方程。 现以对流方程为例,列出对应的差分方程。
FTCS格式的截断误差为
Rin O(t, (x)2 )
FTFS和FTBS格式的截断误差为
Rin O(t, x)
3种格式对 t 都有一阶精度。
(2-12) (2-13)
30
第二节 差分方程、截断误差和相容性/相容性(1/3)
25
第二节 差分方程、截断误差和相容性/截断误差(1/6)
按照前面关于逼近误差的分析知道,用时间向前差商代替时间导数时的误差为 O(t) ,
用空间中心差商代替空间导数时的误差为 O((x)2 ) ,因而对流方程与对应的差分方程之间也存在一个误差,它是
Rin O(t) O((x)2 ) O(t, (x)2 )
表2

《有限差分法初步》课件

《有限差分法初步》课件

改进方向
高阶有限差分法
通过引入高阶差分方案,可以提高有限 差分法的精度,减少数值误差。
并行算法优化
进一步优化并行算法,提高有限差分 法的计算效率。
自适应网格技术
采用自适应网格技术,根据问题求解 的需要动态地调整网格的密度和分布 ,以提高计算效率和精度。
边界条件处理技术
研究和开发更有效的边界条件处理技 术,减少有限差分法的误差累积。
离散化原理
离散化原理是有限差分法的基础,它通过将连续 的问题离散化,将连续的函数和微分转化为离散 的数值和差分,从而将原问题转化为有限差分方 程组进行求解。
离散化原理的应用范围广泛,可以用于求解微分 方程、积分方程以及偏微分方程等。
离散化原理的关键在于选择合适的离散点,以确 保离散化的结果能够近似反映原问题的真实情况 。
《有限差分法初步》ppt课件
• 引言 • 有限差分法的原理 • 有限差分法的应用 • 有限差分法的实现 • 有限差分法的优缺点01
有限差分法是一种数值计算方法,通过将偏微分方 程离散化,将其转化为差分方程进行求解。
02
它将连续的空间离散为有限个点,并使用离散点的 差分近似表示原方程中的导数。
对学习者在学习过程中可能遇到的问 题进行了详细解答,帮助解决疑惑, 提高学习效果。
展望
深入研究
鼓励学习者在掌握有限差分 法的基础上,进一步探索该 方法的理论和应用,提高自 己的学术水平。
实际应用
提倡将有限差分法应用于实 际问题中,通过实践加深对 该方法的理解和掌握,提高 解决问题的能力。
交流与合作
04
有限差分法的实现
编程语言的选择
Python
Python是一种易于学习且功能强大的 编程语言,适合初学者和科学计算。

有限差分法基本原理-较好

有限差分法基本原理-较好

如折射、反射、散射等现象。
电磁波控制
03
在电磁场模拟中,有限差分法还可以用于研究电磁波的调控技
术,如波导、滤波器等器件的设计和优化。
有限差分法在气候模拟中的应用
气候模型
气候模拟是有限差分法的另一个重要应用领域,用于研究地球气 候系统的演变和预测。
大气环流模型
通过有限差分法,可以建立大气环流模型,模拟大气中温度、湿 度、风速等变量的变化和传播。
有限差分法的稳定性分析
稳定性定义
有限差分法的稳定性是指当时间步长趋于无 穷小时,数值解的误差不会发散,而是趋于 零。
稳定性条件
为了确保有限差分法的稳定性,需要满足一定的条 件,例如CFL条件(Courant-Friedrichs-Lewy条件 )等。
不稳定性分析
对于某些初始条件和参数,有限差分法可能 会出现数值不稳定的情况,需要进行不稳定 性分析并采取相应的措施。
3
边界条件处理
在流体动力学应用中,有限差分法需要考虑复杂 的边界条件,如固壁、滑移边界等,以实现准确 的数值模拟。
有限差分法在电磁场模拟中的应用
麦克斯韦方程
01
有限差分法可以用于求解电磁场中的麦克斯韦方程,以模拟电
磁波的传播和散射等行为。
电磁波传播
02
通过有限差分法,可以模拟电磁波在复杂介质中的传播特性,
THANKS FOR WATCHING
感谢您的观看
未来研究方向与展望
研究方向 展望
针对有限差分法的局限性和不足,未来的研究可 以关注如何改进算法,提高计算精度和稳定性, 以及如何拓展该方法的应用范围。
随着计算机技术的不断发展和数值计算方法的进 步,有限差分法有望在未来得到更广泛的应用和 更深入的研究,为解决各种科学和工程问题提供 更加有效的数值计算方法。

有限差分法及其应用

有限差分法及其应用

有限差分法及其应用1有限差分法简介有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。

有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

2有限差分法的数学基础有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。

而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。

3有限差分解题基本步骤有限差分法的主要解题步骤如下:1)建立微分方程根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。

2)构建差分格式首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。

3)求解差分方程差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。

其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。

4)精度分析和检验对所得到的数值进行精度与收敛性分析和检验。

4商用有限差分软件简介商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

完整版有限差分方法概述.doc

完整版有限差分方法概述.doc

有限差分法( Finite Difference Method,简称FDM)是数值方法中最经典的方法,也是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

下面我们从有限差分方法的基本思想、技术要点、应用步骤三个方面来深入了解一下有限差分方法。

1.基本思想有限差分算法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

在采用数值计算方法求解偏微分方程时,再将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。

有限差分法

有限差分法

有限差分法一、有限差分法的定义有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。

其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数ϕ的泊松方程的问题转换为求解网格节点上ϕ的差分方程组的问题。

二、有限差分法的应用例3.7.1 有一个无限长直的金属槽,截面为正方形,两侧为正方形,两侧面及底板接地,上盖板与侧面绝缘,其上的电位为ϕ=100V, 试用有限差分法计算槽内电位。

(1)用Matlab 中的有限差分法计算槽内电位;(2)对比解析法和数值法的异同点;(3)选取一点,绘制收敛曲线;(4)总的三维电位图;1、根据有限差分公式计算出电位最终近似值为1,12,13,11,22,23,21,32,33,3=7.144=9.823=7.144=18.751=25.002=18.751=42.857=52.680=42.857ϕϕϕϕϕϕϕϕϕ,,,,,,用Matlab有限差分法计算出来结果:(见附录程序一)2、解析法和数值法的异同点解析法数值法定义在分析具体问题的基础上,抽取出一个数学模型,这个数学模型能用若干个解析表达式表示出来,解决了这些表达式,问题也就得以解决。

数值法是用高性能的计算机以数值的、程序的形式解决问题,主要是指有限元法和差分法相同点都是在具体问题的基础上取一个用解析表达式表示的数学模型来解决问题;数值法是在解析法的基础上在不同尺度上进行有限元离散,离散单元尺度不同,进行有限元计算时要满足的连续性条件不同,预测结果的精确度就不同不同点解析法可以计算出精确的数值结果;可以作为近似解和数值解的检验标准;解析法过程可以观察到问题的内在和各个参数对数值结果起的作用。

但是分析过程困难又复杂使其仅能解决很少量的问题。

数值法求解过程简单,普遍性强,用户拥有的弹性大;用户不必具备高度专业化的理论知识就可以用提供的程序解决问题。

但求解结果没有解析法精确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档