2017年中考数学二模试卷含答案解析
2017年河南省开封市中考数学二模试卷(解析版)
2017年河南省开封市中考数学二模试卷一、选择题(本大题共10题,每小题3分,共30分.在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡上.1.﹣2的绝对值是()A.﹣2 B.﹣ C.2 D.2.人体中红细胞的直径约为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10﹣5B.7.7×10﹣6C.77×10﹣7D.0.77×10﹣53.下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标是()A.B.C.D.4.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2的度数为()A.54°B.63°C.72°D.82°5.某校参加校园青春健身操比赛的16名运动员的身高如表:身高(cm)172173175176人数(个)2635则该校16名运动员身高的众数和中位数分别是(单位:cm)()A.173cm,173cm B.174cm,174cm C.173cm,174cm D.174cm,175cm 6.下列运算正确的是()A.(x3)4=x7B.x+x2=x3C.(﹣x)4÷x=﹣x2 D.(﹣x)2•x3=x57.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.98.不等式组的整数解有()个.A.7 B.8 C.9 D.109.已知点A(4,y1),B(,y2),C(﹣2,y3)都在y=上,试判断y1,y2,y3的大小关系()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y210.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是()A. B. C. D.二、填空题(本大题共5题,每小题3分,共15分)11.计算:()0+﹣2sin45°=.12.如图,在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N.若AB=12,AC=18,则MD的长为.13.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.14.如图,在菱形ABCD中,∠B=60°,AB=2,扇形AEF的半径为2,圆心角为60°,则阴影部分的面积是.15.如图,在等边△ABC中,边长为30,点M为线段AB上一动点,将等边△ABC沿过M的直线折叠,折痕与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,设折痕为MN,则AN的值为.三、解答题(本大题共8题,共75分)16.先化简,再求值:(﹣1)÷,其中x=2+.17.2016年9月,我国又新设立7个自贸试验区河南自贸区是其中之一,作为旅游优势明显的开封也在自贸区范围内,某旅游公司注入外贸后,由于在自贸区范围内,在各个方面都享受到了国家的优惠政策,业务量逐渐增大,每月的营业额不断攀升,一数学课外小组收集了该公司从2016年11月至2017年3月这5个月的营业额信息,绘制了三张如下统计图,观察并回答:(1)公司这5个月总营业额共万元;(2)将条形统计图补充完整;(3)扇形统计图中,“12月份”所对圆心角的度数是;(4)小明观察图3后认为,3月份出境旅游营业额比2月份出境营业额减少了,你同意它的观点吗?说明理由.18.如图,点C是半径长为3的⊙O上任意一点,AB为直径,AC=3,过点C作⊙O的切线DC,点P为⊙O优弧AC上不与A、C重合的一个动点,点P从点C 出发以每秒π个单位的速度顺时针匀速运动,到达点A停止运动.(1)求∠DCA的度数;(2)填空;①当t=s时,四边形OBPC是菱形;②当t=s时,由点A、P、C三点构成的三角形与△ABC全等.19.放风筝是大家喜爱的一种运动星期天的上午小明在金明广场上放风筝,如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为50°,已知点A,B,C在同一条水平直线上,小明搬了一把梯子来取风筝,梯子能达到的最大高度为20米,请问小明能把风筝捡回来吗?(最后结果精确到1米)(风筝线AD,BD均为线段,≈1.732,sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)20.有这样一个问题,探究函数y=的图象和性质,小强根据学习反比例函数的经验,对函数y=的图象和性质进行了探究.下面是小强的探究过程,请补充完整:(1)函数y=自变量x的取值范围是;(2)如图,在平面直角坐标系xOy中,他通过列表描点画出了函数y=图象的部分,请结合自变量的取值范围,补出函数图象的另一部分;(3)进一步探究发现,该函数图象有一条性质是,在第一象限的部分,y随x 的增大而,而且,函数的图象无限接近直线x=2,但是与x=2不相交;(4)已知正比例函数y2=x与函数y1=的图象相交于点(3,3)和(﹣1,﹣1),请你画出正比例函数y2=x的图象,并结合函数图象,直接写出y1<y2时,x的取值范围,不写过程.21.开封市大力发展足球进校园活动,某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,两种足球一共买30个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买能使费用W最少?22.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.23.如图,已知抛物线y=a(x+1)(x﹣5)与x轴从左至右交于A,B两点,与y 轴交于点C(0,5).(1)求该抛物线的函数解析式;(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF ⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M 的坐标.2017年河南省开封市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10题,每小题3分,共30分.在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡上.1.﹣2的绝对值是()A.﹣2 B.﹣ C.2 D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.2.人体中红细胞的直径约为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10﹣5B.7.7×10﹣6C.77×10﹣7D.0.77×10﹣5【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077用科学记数法表示为7.7×10﹣6故选B.3.下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选B.4.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2的度数为()A.54°B.63°C.72°D.82°【考点】JA:平行线的性质.【分析】由AB∥CD,根据平行线的性质找出∠ABC=∠1,由BC平分∠ABD,根据角平分线的定义即可得出∠CBD=∠ABC,再结合三角形的内角和为180°以及对顶角相等即可得出结论.【解答】解:∵AB∥CD,∠1=54°,∴∠ABC=∠1=54°,又∵BC平分∠ABD,∴∠CBD=∠ABC=54°.∵∠CBD+∠BDC+∠DCB=180°,∠1=∠DCB,∠2=∠BDC,∴∠2=180°﹣∠1﹣∠CBD=180°﹣54°﹣54°=72°.故选:C.5.某校参加校园青春健身操比赛的16名运动员的身高如表:身高(cm)172173175176人数(个)2635则该校16名运动员身高的众数和中位数分别是(单位:cm)()A.173cm,173cm B.174cm,174cm C.173cm,174cm D.174cm,175cm 【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:这组数据中173出现次数最多,有6次,则其众数为173,16个数据的中位数为第8、9个数的平均数,即中位数为=174,故选:C6.下列运算正确的是()A.(x3)4=x7B.x+x2=x3C.(﹣x)4÷x=﹣x2 D.(﹣x)2•x3=x5【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=x12,故A错误;(B)x与x2不是同类项,故B错误;(C)原式=x4÷x=x3,故C错误;故选(D)7.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】L3:多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.8.不等式组的整数解有()个.A.7 B.8 C.9 D.10【考点】CC:一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【解答】解:解不等式x+5≥0,得:x≥﹣5,解不等式3﹣x>1,得:x<2,则不等式组的解集为﹣5≤x<2,∴其整数解有﹣5、﹣4、﹣3、﹣2、﹣1、0、1这7个,故选:A.9.已知点A(4,y1),B(,y2),C(﹣2,y3)都在y=上,试判断y1,y2,y3的大小关系()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2【考点】G6:反比例函数图象上点的坐标特征.【分析】分别把各点坐标代入反比例函数的解析式y=,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵A(4,y1),B(,y2),C(﹣2,y3)都在y=的图象上,∴y1=,y2=,y3=﹣,∴y3<y1<y2故选:C.10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是()A. B. C. D.【考点】D2:规律型:点的坐标.【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【解答】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2017次运动后,动点P的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,∴经过第2017次运动后,动点P的纵坐标为:2017÷4=504余1,故纵坐标为四个数中第1个,即为1,∴经过第2017次运动后,动点P的坐标是:,故选:B.二、填空题(本大题共5题,每小题3分,共15分)11.计算:()0+﹣2sin45°=﹣2﹣.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】直接利用零指数幂的性质以及立方根的性质、特殊角的三角函数值分别化简进而求出答案.【解答】解:原式=1﹣3﹣2×=﹣2﹣.故答案为:﹣2﹣.12.如图,在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N.若AB=12,AC=18,则MD的长为3.【考点】KX:三角形中位线定理;KJ:等腰三角形的判定与性质.【分析】根据等腰三角形三线合一的性质可得BD=DN,AB=AN,再求出CN,然后判断出DM是△BCN的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【解答】解:∵AD为∠BAC的平分线,BD⊥AD,∴BD=DN,AB=AN=12,∴CN=AC﹣AN=18﹣12=6,又∵M为△ABC的边BC的中点∴DM是△BCN的中位线,∴MD=CN=×6=3,故答案为:3.13.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.【考点】X6:列表法与树状图法.【分析】列表将所有等可能的结果列举出来,然后求得两次抽出的卡片所标数字不同的情况,再利用概率公式求解即可.【解答】解:列表得:1223111121213221222223221222223331323233∵共有16种等可能的结果,两次抽出的卡片所标数字不同的有10种,∴两次抽出的卡片所标数字不同的概率是=.故答案为:.14.如图,在菱形ABCD中,∠B=60°,AB=2,扇形AEF的半径为2,圆心角为60°,则阴影部分的面积是﹣.【考点】MO:扇形面积的计算;L8:菱形的性质.【分析】根据菱形的性质得出△ADC和△ABC是等边三角形,进而利用全等三角形的判定得出△ADH≌△ACG,得出四边形AGCH的面积等于△ADC的面积,进而求出即可.【解答】解:∵四边形ABCD是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=2,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC、△ADC都是等边三角形,∴AC=AD=2,∵AB=2,∴△ADC的高为,AC=2,∵扇形BEF的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF、DC相交于HG,设BC、AE相交于点G,在△ADH和△ACG中,,∴△ADH≌△ACG(ASA),∴四边形AGCH的面积等于△ADC的面积,∴图中阴影部分的面积是:S扇形AEF ﹣S△ACD=﹣×2×=﹣,故答案为:﹣.15.如图,在等边△ABC中,边长为30,点M为线段AB上一动点,将等边△ABC沿过M的直线折叠,折痕与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,设折痕为MN,则AN的值为21或65.【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质;PB:翻折变换(折叠问题).【分析】此题要分两种情况进行讨论::①当点A落在线段BC上时;②当A在CB的延长线上时,首先证明△BMD∽△CDN.根据相似三角形的性质可得= =,再设AN=x,则CN=30﹣x,然后利用含x的式子表示DM、BM,根据BM+DM=30列出方程,解出x的值可得答案.【解答】解:①当点A落在如图1所示的位置时,∵△ACB是等边三角形,∴∠A=∠B=∠C=∠MDN=60°,∵∠MDC=∠B+∠BMD,∠B=∠MDN,∴∠BMD=∠NDC,∴△BMD∽△CDN.∴==,∵DN=AN,∴==,∵BD:DC=1:4,BC=30,∴DB=6,CD=24,设AN=x,则CN=30﹣x,∴==,∴DM=,BM=,∵BM+DM=30,∴+=30,解得x=21,∴AN=21;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN.∴==,∵BD:DC=1:4,BC=30,∴DB=10,CD=40,设AN=x,则CN=x﹣30,∴==,∴DM=,BM=,∵BM+DM=30,∴+=15,解得:x=65,∴AN=65.故答案为:21或65.三、解答题(本大题共8题,共75分)16.先化简,再求值:(﹣1)÷,其中x=2+.【考点】6D:分式的化简求值.【分析】首先通分计算小括号里的算式,然后把除法转化成乘法进行约分计算,最后再把x=2+代入计算即可.【解答】解:(﹣1)÷=(﹣)÷=×==x﹣2当x=2+时,原式=2+﹣2=.17.2016年9月,我国又新设立7个自贸试验区河南自贸区是其中之一,作为旅游优势明显的开封也在自贸区范围内,某旅游公司注入外贸后,由于在自贸区范围内,在各个方面都享受到了国家的优惠政策,业务量逐渐增大,每月的营业额不断攀升,一数学课外小组收集了该公司从2016年11月至2017年3月这5个月的营业额信息,绘制了三张如下统计图,观察并回答:(1)公司这5个月总营业额共500万元;(2)将条形统计图补充完整;(3)扇形统计图中,“12月份”所对圆心角的度数是61.2°;(4)小明观察图3后认为,3月份出境旅游营业额比2月份出境营业额减少了,你同意它的观点吗?说明理由.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由11月份的营业额及其所占比例可得;(2)总营业额减去前四个月的营业额可得答案;(3)用360°乘以12月份营业额占总营业额的比例可得;(4)用营业额乘以出境游的营业额所占百分比分别求得两个月的出境游营业额,比较大小可得.【解答】解:(1)公司这5个月总营业额共75÷15%=500(万元),故答案为:500;(2)3月份的营业额为500﹣(75+85+108+112)=120(万元),补全条形图如下:(3)扇形统计图中,“12月份”所对圆心角的度数是360°×=61.2°,故答案为:61.2°;(4)不同意,理由:3月份出境旅游营业额为120×19%=22.8(万元),而2月份的出境旅游营业额为112×20%=22.4(万元),∵22.8>22.4,∴不同意它的观点.18.如图,点C是半径长为3的⊙O上任意一点,AB为直径,AC=3,过点C作⊙O的切线DC,点P为⊙O优弧AC上不与A、C重合的一个动点,点P从点C 出发以每秒π个单位的速度顺时针匀速运动,到达点A停止运动.(1)求∠DCA的度数;(2)填空;①当t=1s时,四边形OBPC是菱形;②当t=3s时,由点A、P、C三点构成的三角形与△ABC全等.【考点】MR:圆的综合题.【分析】(1)根据切线的性质得到∠OCD=90°,根据等边三角形的性质即可得到结论;(2)①当t=1s时,四边形OBPC是菱形;连接OP,根据弧长公式得到∠COP=60°,得到∠BOP=60°,推出△COP与△BOP是等边三角形,得到PC=PB=OB=OC,于是得到结论;②当t=3s时,由点A、P、C三点构成的三角形与△ABC全等,根据弧长公式得到∠COP=180°,推出C,O,P三点共线,得到CP=AB,∠P′=∠B,根据全等三角形的判定即可得到结论.【解答】解:(1)∵CD是⊙O的切线,∴∠OCD=90°,∵AC=OA=OC=3,∴∠ACO=60°,∴∠DCA=30°;(2)①当t=1s时,四边形OBPC是菱形;如图,1,连接OP,∵t=1s,∴的长度=π,设∠POC=α,∴=π,∴α=60°,∴∠COP=60°,∴∠BOP=60°,∴△COP与△BOP是等边三角形,∴PC=OC=OP=PB,∴PC=PB=OB=OC,∴四边形OBPC是菱形;②当t=3s时,由点A、P、C三点构成的三角形与△ABC全等,∵t=3s,设∠COP=α,∴的长==3π,∴α=180°,∴C,O,P三点共线,如图2,∴CP=AB,∠P′=∠B,在△ABC与△CP′A中,,∴△ABC≌△CP′A.故答案为:1,3.19.放风筝是大家喜爱的一种运动星期天的上午小明在金明广场上放风筝,如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为50°,已知点A,B,C在同一条水平直线上,小明搬了一把梯子来取风筝,梯子能达到的最大高度为20米,请问小明能把风筝捡回来吗?(最后结果精确到1米)(风筝线AD,BD均为线段,≈1.732,sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】作DH⊥BC于H,设DH=x米,根据三角函数表示出AH于BH的长,根据AH﹣BH=AB得到一个关于x的方程,解方程求得x的值,进而求得AD﹣BD 的长,即可解题.【解答】解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°=x,在直角△BDH中,∠DBH=50°,BH=,BD=DH•sin50°=sin50°x,∵AH﹣BH=AB=10米,∴x﹣=10,∴x=,∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣sin50°x=(2﹣sin50°)×=(2﹣0.766)×≈8米.答:小明此时所收回的风筝线的长度约是8米.20.有这样一个问题,探究函数y=的图象和性质,小强根据学习反比例函数的经验,对函数y=的图象和性质进行了探究.下面是小强的探究过程,请补充完整:(1)函数y=自变量x的取值范围是x≠2;(2)如图,在平面直角坐标系xOy中,他通过列表描点画出了函数y=图象的部分,请结合自变量的取值范围,补出函数图象的另一部分;(3)进一步探究发现,该函数图象有一条性质是,在第一象限的部分,y随x 的增大而减小,而且,函数的图象无限接近直线x=2,但是与x=2不相交;(4)已知正比例函数y2=x与函数y1=的图象相交于点(3,3)和(﹣1,﹣1),请你画出正比例函数y2=x的图象,并结合函数图象,直接写出y1<y2时,x的取值范围,不写过程.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)分母不为零;(2)取点画图象,x≠2;(3)呈下降趋势,y随x的增大而减小,(4)根据图象得出结论.【解答】解:(1)函数y=自变量x的取值范围是:x≠2,故答案为:x≠2;(2)如图所示,(3)由图象得:在第一象限的部分,呈下降趋势,y随x的增大而减小,故答案为:减小;(4)由图象得:当y1<y2时,x的取值范围是:x<3和﹣1<x<2.21.开封市大力发展足球进校园活动,某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,两种足球一共买30个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买能使费用W最少?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种足球单价为x元,则B足球单价为y元,根据:A种足球个数=2×B种足球个数,A种足球个数+B种足球个数=30,列方程组求解即可;(2)设再次购买A种足球x个,则B种足球为(18﹣x)个,购买总费用为W,根据:总费用=A种足球单价×A种足球数量+B种足球单价×B种足球数量,列出W关于x的函数关系式,由B种足球的数量不少于A种足球数量的2倍可得x的范围,继而根据一次函数性质可得最值情况.【解答】解:(1)A种足球单价为x元,则B足球单价为y元,根据题意得:,解得:,经检验:是方程组的解.答:A种足球单价为120元,B足球单价为200元.(2)设再次购买A种足球x个,则B种足球为(18﹣x)个,根据题意得:W=120x+200(18﹣x)=﹣80x+3600,∵18﹣x≥2x,∴x≤6,∵﹣80<0,∴W随x的增大而减小,∴当x=6时,W最小,此时18﹣x=12.答:本次购买A种足球6个,B种足球12个,才能使购买费用W最少.22.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【考点】LO:四边形综合题.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.23.如图,已知抛物线y=a(x+1)(x﹣5)与x轴从左至右交于A,B两点,与y 轴交于点C(0,5).(1)求该抛物线的函数解析式;(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF ⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M 的坐标.【考点】HF:二次函数综合题.【分析】(1)把C点坐标代入y=a(x+1)(x﹣5)中求出a的值即可得到抛物线解析式;(2)先解方程﹣(x+1)(x﹣5)=0得A(﹣1,0),B(5,0),再利用待定系数法确定直线BC的解析式为y=﹣x+5,设D(x,﹣x2+4x+5),则E(x,﹣x+5),F (x,0),(0<x<5),则DE=﹣x2+5x,EF=﹣x+5,利用三角形的面积公式进行讨论:当DE:EF=2:3时,S△BDE :S△BEF=2:3;当DE:EF=3:2时,S△BDE:S△BEF=3:2,从而可得到关于x的方程,然后解方程求出x就看得到对应的D点坐标;(3)先确定抛物线的对称轴,如图,设M(2,t),利用两点间的距离公式得到BC2=50,MC2=t2﹣10t+29,MB2=t2+9,利用勾股定理的逆定理分类讨论:当BC2+MC2=MB2时,△BCM为直角三角形,则50+t2﹣10t+29=t2+9;当BC2+MB2=MC2时,△BCM为直角三角形,则50+t2+9=t2﹣10t+29;当MC2+MM2=BC2时,△BCM 为直角三角形,则t2﹣10t+29+t2+9=50,然后分别解关于t的方程,从而可得到满足条件的M点坐标.【解答】解:(1)把C(0,5)代入y=a(x+1)(x﹣5)得﹣5a=5,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣5),即y=﹣x2+4x+5;(2)能.当y=0时,﹣(x+1)(x﹣5)=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),设直线BC的解析式为y=kx+b,把C(0,5),B(5,0)代入得,解得,所以直线BC的解析式为y=﹣x+5,设D(x,﹣x2+4x+5),则E(x,﹣x+5),F(x,0),(0<x<5),∴DE=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,EF=﹣x+5,当DE:EF=2:3时,S△BDE :S△BEF=2:3,即(﹣x2+5x):(﹣x+5)=2:3,整理得3x2﹣17x+10=0,解得x1=,x2=5(舍去),此时D点坐标为(,);当DE:EF=3:2时,S△BDE :S△BEF=3:2,即(﹣x2+5x):(﹣x+5)=3:2,整理得2x2﹣13x+15=0,解得x1=,x2=5(舍去),此时D点坐标为(,);综上所述,当点D的坐标为(,)或(,)时,直线BC能否把△BDF 分成面积之比为2:3的两部分;(3)抛物线的对称轴为直线x=2,如图,设M(2,t),∵B(5,0),C(0,5),∴BC2=52+52=50,MC2=22+(t﹣5)2=t2﹣10t+29,MB2=(2﹣5)2+t2=t2+9,当BC2+MC2=MB2时,△BCM为直角三角形,∠BCM=90°,即50+t2﹣10t+29=t2+9,解得t=7,此时M点的坐标为(2,7);当BC2+MB2=MC2时,△BCM为直角三角形,∠CBM=90°,即50+t2+9=t2﹣10t+29,解得t=﹣3,此时M点的坐标为(2,﹣3);当MC2+MM2=BC2时,△BCM为直角三角形,∠CMB=90°,即t2﹣10t+29+t2+9=50,解得t1=6,t2=﹣1,此时M点的坐标为(2,6)或(2,﹣1),综上所述,满足条件的M点的坐标为(2,7),(2,﹣3),(2,6),(2,﹣1).。
【配套K12】山东省潍坊市2017年中考数学二模试卷(含解析)
2017年山东省潍坊市中考数学二模试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是()A.a n•a2=a2n B.a3•a2=a6C.a n•(a2)n=a2n+2D.a2n﹣3÷a﹣3=a2n2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×1083.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米4.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠35.若关于x的方程x2﹣+cosα=0有两个相等的实数根,则锐角α为()A.30° B.45° C.60° D.75°6.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是()A.40π B.24π C.20 πD.12π7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°8.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A.B.C.D.9.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C. D.211.如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A .1﹣B .C .1﹣D .12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )A .B .C .D .二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.分解因式:x 2﹣y 2﹣3x ﹣3y= .14.计算﹣|2﹣2cos30°|+()﹣1﹣(1﹣π)0的结果是 . 15.如图,已知函数y=ax+b 与函数y=kx ﹣3的图象交于点P (4,﹣6),则不等式ax+b ≤kx ﹣3<0的解集是 .16.计算: = .17.如图,已知正方形ABCD 的对角线交于点O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE=4,CF=3,则EF 等于 .18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20= .三、解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤)19.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:请你选择其中的一种方法,求教学楼的高度(结果保留整数)20.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.21.小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s 千米,且s与t之间的函数关系的图象如图中的折线段OA﹣AB所示.(1)试求折线段OA﹣AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)22.LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?23.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).24.如图,在Rt△ABC中,∠C=90°,sinA=,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF.(1)求证:DF为⊙O的切线;(2)若AO=x,DF=y,求y与x之间的函数关系式.25.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2017年山东省潍坊市中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是()A.a n•a2=a2n B.a3•a2=a6C.a n•(a2)n=a2n+2D.a2n﹣3÷a﹣3=a2n【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】根据同底数幂的除法法则、同底数幂的乘法法则计算,判断即可.【解答】解:a n•a2=a2+n,A选项错误;a3•a2=a5,B选项错误;a n•(a2)n=a3n,C选项错误;a2n﹣3÷a﹣3=a2n,D选项正确,故选:D.2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B3.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】T8:解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.4.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】B2:分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C5.若关于x的方程x2﹣+cosα=0有两个相等的实数根,则锐角α为()A.30° B.45° C.60° D.75°【考点】AA:根的判别式;T5:特殊角的三角函数值.【分析】根据根与系数的关系,将原式转化为关于cosα的方程,然后根据特殊角的三角函数值解答.【解答】解:∵关于x的方程x2﹣+cosα=0有两个相等的实数根,∴△=0,即﹣4×1×cosα=0,∴cosα=,∴α=60°.故选C.6.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是()A.40π B.24π C.20 πD.12π【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l为5,然后根据圆锥的侧面积公式:S侧=πrl代入计算即可.【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故选C.7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠C AB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.8.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A.B.C.D.【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF,计算即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=,BC=,∴BD==3,∵BE=1.8,∴DE=3﹣1.8=1.2,∵AB∥CD,∴=,即=,解得,DF=,则CF=CD﹣DF=,∴==,故选A.9.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】HA:抛物线与x轴的交点;H3:二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C. D.2【考点】M2:垂径定理;D5:坐标与图形性质;M5:圆周角定理.【分析】连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.【解答】解:连接AD.∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD==.则圆的半径是.故选B.11.如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【考点】X5:几何概率;MC:切线的性质.【分析】根据切线的性质得到AE⊥BC,根据投资研究得到AE=BE=AB,根据求概率的公式即可得到结论.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S菱形ABCD=BC•AE=AB2,S阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选A.12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.分解因式:x2﹣y2﹣3x﹣3y= (x+y)(x﹣y﹣3).【考点】56:因式分解﹣分组分解法.【分析】根据观察可知,此题有4项且前2项适合平方差公式,后2项可提公因式,分解后也有公因式(x+y),直接提取即可.【解答】解:x2﹣y2﹣3x﹣3y,=(x2﹣y2)﹣(3x+3y),=(x+y)(x﹣y)﹣3(x+y),=(x+y)(x﹣y﹣3).14.计算﹣|2﹣2cos30°|+()﹣1﹣(1﹣π)0的结果是2+1 .【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用二次根式性质,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=3﹣+2﹣1=2+1,故答案为:2+115.如图,已知函数y=ax+b与函数y=kx﹣3的图象交于点P(4,﹣6),则不等式ax+b≤kx ﹣3<0的解集是﹣4<x≤4 .【考点】FD:一次函数与一元一次不等式.【分析】先把P点坐标代入y=kx﹣3得k=﹣,则可确定函数y=﹣x﹣3与x轴的交点坐标,然后利用函数图象写出在x轴下方,且直线y=ax+b不在直线y=kx﹣3上方所对应的自变量的范围即可.【解答】解:如图,把P(4,﹣6)代入y=kx﹣3得4k﹣3=﹣6,解得k=﹣,则y=0时,y=﹣x﹣3=0,解得x=﹣4,所以不等式ax+b≤kx﹣3<0的解集为﹣4<x≤4.故答案为﹣4<x≤4.16.计算: = .【考点】6B:分式的加减法.【分析】原式通分并利用同分母分式的加减法则计算即可得到结果.【解答】解:原式===,故答案为:17.如图,已知正方形ABCD的对角线交于点O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF等于 5 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】由△BOF全等于△AOE,得到BF=AE=4,在直角△BEF中,从而求得EF的值.【解答】解:解:∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE和COF全等(ASA),∴BF=AE=4,∵AB=BC,∴BE=CF=3,在Rt△BEF中,BF=4,BE=3,∴EF=5.故答案为5;18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20= 195π.【考点】MO:扇形面积的计算.【分析】先利用扇形的面积公式分别计算出S1=π;S2=π+π;S3=π+2π,则利用此规律得到S20=π+19π,然后把它们相加即可.【解答】解:S1=π•12=π;S2=π•(32﹣22)=π+π;S3=π•(52﹣42)=π+2π;…S 20=π+19π;∴S 1+S 2+S 3+…+S 20=5π+(1+2+3+…+19)π=195π. 故答案为195π.三、解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤) 19.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:请你选择其中的一种方法,求教学楼的高度(结果保留整数) 【考点】T8:解直角三角形的应用.【分析】若选择方法一,在Rt △BGC 中,根据CG=即可得出CG 的长,同理,在Rt △ACG 中,根据tan ∠ACG=可得出AG 的长,根据AB=AG+BG 即可得出结论.若选择方法二,在Rt △AFB 中由tan ∠AFB=可得出FB 的长,同理,在Rt △ABE 中,由tan∠AEB=可求出EB 的长,由EF=EB ﹣FB 且EF=10,可知﹣=10,故可得出AB的长.【解答】解:若选择方法一,解法如下:在Rt △BGC 中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∵CG=≈=30,在Rt△ACG中,∠AGC=90°,∠ACG=22°,∵tan∠ACG=,∴AG=30×tan22°≈30×0.40=12,∴AB=AG+BG=12+6.9≈19(米).答:教学楼的高度约19米.若选择方法二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∵tan∠AFB=,∴FB=≈,在Rt△ABE中,∠ABE=90°,∠AEB=32°,∵tan∠AEB=,∴EB=≈,∵EF=EB﹣FB且EF=10,∴﹣=10,解得AB=18.6≈19(米).答:教学楼的高度约19米.20.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V9:频数(率)分布折线图;VB:扇形统计图.【分析】(1)用B类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再计算出C类人数,然后补全条形统计图;(3)用10000乘以D类的百分比可估计持反对态度的家长的总数;(4)画树状图展示所有12种等可能的结果数,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)共调查的中学生家长数是:40÷20%=200(人);(2)扇形C所对的圆心角的度数是:360°×(1﹣20%﹣15%﹣60%)=18°,C类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人),补图如下:(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;(4)设初三(1)班两名家长为A1,A2,初三(2)班两名家长为B1,B2,画树状图为:共有12种等可能的结果数,其中2人来自不同班级共有8种,所以选出的2人来自不同班级的概率==.21.小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s 千米,且s与t之间的函数关系的图象如图中的折线段OA﹣AB所示.(1)试求折线段OA﹣AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)【考点】FH:一次函数的应用.【分析】(1)OA为正比例函数图象,可以用待定系数法求出;(2)AB段离家距离没发生变化说明在以家为圆心做曲线运动;(3)妈妈的速度正好是小明的2倍,所以妈妈走弧线路用(20﹣12)÷2=4分钟.【解答】解:(1)线段OA对应的函数关系式为:s=t(0≤t≤12)线段AB对应的函数关系式为:s=1(12<t≤20);(2)图中线段AB的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;(3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20﹣10=10分钟到达学校,可知小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,故D(16,1),小明花20﹣12=8分钟走圆弧形道路,则妈妈花4分钟走圆弧形道路,故B (20,1).妈妈的图象经过(10,0)(16,1)(20,1)如图中折线段CD﹣DB就是所作图象.22.LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡个,这批灯泡的总利润为W元,利用利润的意义得到W=(60﹣45)a+(30﹣25)=10a+600,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.【解答】解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,根据题意得,解得,答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡个,这批灯泡的总利润为W元,根据题意得W=(60﹣45)a+(30﹣25)=10a+600,∵10a+600≤[45a+25]×30%,解得a≤75,∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.23.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).【考点】KM:等边三角形的判定与性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N分别是BE、CD的中点”、等边△ABC的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【解答】解:(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS)∴CD=BE;(2)△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N分别是BE、CD的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形.24.如图,在Rt△ABC中,∠C=90°,sinA=,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF.(1)求证:DF为⊙O的切线;(2)若AO=x,DF=y,求y与x之间的函数关系式.【考点】ME:切线的判定与性质;KG:线段垂直平分线的性质;T7:解直角三角形.【分析】(1)连接OD,由于EF是BD的中垂线,DF=BF.从而可知∠FDB=∠B,又因为OA=OD,所以∠OAD=∠ODA,从而可证明∠ODF=90°;(2)连接OF,由题意可知:AO=x,DF=y,OC=6﹣x,CF=8﹣y,然后在Rt△COF中与Rt△ODF 中利用勾股定理分别求出OF,化简原式即可求出答案.【解答】(1)连接OD.∵OA=OD,∴∠OAD=∠ODA,∵EF是BD的中垂线,∴DF=BF.∴∠FDB=∠B,∵∠C=90°,∴∠OAD+∠B=90°.∴∠ODA+∠FDB=90°.∴∠ODF=90°,又∵OD为⊙O的半径,∴DF为⊙O的切线,(2)连接OF.在Rt△ABC中,∵∠C=90°,sinA=,AB=10,∴AC=6,BC=8,∵AO=x,DF=y,∴OC=6﹣x,CF=8﹣y,在Rt△COF中,OF2=(6﹣x)2+(8﹣x)2在Rt△ODF中,OF2=x2+y2∴(6﹣x)2+(8﹣x)2=x2+y2,∴y=﹣x+(0<x≤6)25.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)抛物线的解析式中,令x=0,能确定点B的坐标;令y=0,能确定点A的坐标.(2)四边形PBCA可看作△ABC、△PBA两部分;△ABC的面积是定值,关键是求出△PBA的面积表达式;若设直线l与直线AB的交点为Q,先用t表示出线段PQ的长,而△PAB的面积可由(PQ•OA)求得,在求出S、t的函数关系式后,由函数的性质可求得S的最大值.(3)△PAM中,∠APM是锐角,而PM∥y轴,∠AMP=∠ACO也不可能是直角,所以只有∠PAC 是直角一种可能,即直线AP、直线AC垂直,此时两直线的斜率乘积为﹣1,先求出直线AC 的解析式,联立抛物线的解析式后可求得点P的坐标.【解答】解:(1)抛物线y=﹣x 2+x+4中:令x=0,y=4,则 B (0,4);令y=0,0=﹣x 2+x+4,解得 x 1=﹣1、x 2=8,则 A (8,0);∴A (8,0)、B (0,4).(2)△ABC 中,AB=AC ,AO ⊥BC ,则OB=OC=4,∴C (0,﹣4).由A (8,0)、B (0,4),得:直线AB :y=﹣x+4;依题意,知:OE=2t ,即 E (2t ,0);∴P (2t ,﹣2t 2+7t+4)、Q (2t ,﹣t+4),PQ=(﹣2t 2+7t+4)﹣(﹣t+4)=﹣2t 2+8t ;S=S △ABC +S △PAB =×8×8+×(﹣2t 2+8t )×8=﹣8t 2+32t+32=﹣8(t ﹣2)2+64; ∴当t=2时,S 有最大值,且最大值为64.(3)∵PM ∥y 轴,∴∠AMP=∠ACO <90°;而∠APM 是锐角,所以△PAM 若是直角三角形,只能是∠PAM=90°;由A (8,0)、C (0,﹣4),得:直线AC :y=x ﹣4;所以,直线AP 可设为:y=﹣2x+h ,代入A (8,0),得:﹣16+h=0,h=16∴直线AP :y=﹣2x+16,联立抛物线的解析式,得:,解得、 ∴存在符合条件的点P ,且坐标为(3,10).。
2017年黑龙江省哈尔滨市香坊区中考数学二模试卷(解析版)
2017年黑龙江省哈尔滨市香坊区中考数学二模试卷一、选择题:每小题3分,共30分.1.(3分)的相反数是()A.B.C.﹣D.﹣2.(3分)下列各式中,运算结果正确的是()A.(﹣1)3+(﹣3.14)0+2﹣1=﹣B.2x﹣2=C.=﹣4D.a2•a3=a53.(3分)下列英文大写字母中既是轴对称图形又是中心对称图形的是()A.E B.M C.N D.H4.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定5.(3分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.6.(3分)如图,电线杆AB的中点C处有一标志物,在地面D点处测得标志物的仰角为45°,若测得DC的长度为a,则电线杆AB的长可表示为()A.a B.2a C.a D.a7.(3分)如图,DE∥BC,EF∥AB,则下列结论错误的是()A.=B.=C.=D.=8.(3分)如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x米,面积为S平方米,则下面关系式正确的是()A.S=x(40﹣x)B.S=x(40﹣2x)C.S=x(10﹣x)D.S=10(2x﹣20)9.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5C.4D.10.(3分)我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有()个.①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.A.1B.2C.3D.4二、填空题:每小题3分,共30分.11.(3分)103 000用科学记数法表示为.12.(3分)当x=时,分式的值为1.13.(3分)计算:﹣×=.14.(3分)因式分解:xy2﹣x2y=.15.(3分)抛物线y=(x﹣2)2﹣3的顶点坐标是.16.(3分)在半径为1的圆中,120°的圆心角所对的弧长是.17.(3分)李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤,若任意组合穿着,则李玲穿着“衣裤同色”的概率是.18.(3分)如图,在⊙O中,AC是弦,AD是切线,CB⊥AD于B,CB与⊙O相交于点E,连接AE,若AE平分∠BAC,BE=1,则CE=.19.(3分)在▱ABCD中(非矩形),连接AC,△ABC为直角三角形,若AB=4,AC=3,则AD=.20.(3分)如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC=,则tan∠BAD =.三、解答题:其中21-22题各7分,23-24题各8分,25-27题各10分,共60分.21.(7分)先化简,再求值:,其中a=2sin60°+3tan45°.22.(7分)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)如图1,在小正方形的顶点上确定一点C,连接AC、BC,使得△ABC为直角三角形,其面积为5,并直接写出△ABC的周长;(2)如图2,在小正方形的顶点上确定一点D,连接AD、BD,使得△ABD中有一个内角为45°,且面积为3.23.(8分)为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)求这次被抽查形体测评的学生一共有多少人?(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?24.(8分)如图,矩形ABCD中,P为AD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD.(1)求证:PE=DH;(2)若AB=10,BC=8,求DP的长.25.(10分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.(1)求A、B两种品牌套装每套进价分别为多少元?(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B 品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?26.(10分)四边形ABCD内接于⊙O,点E为AD上一点,连接AC、CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC=,EG=2,求AE的长.27.(10分)二次函数y=(x﹣1)2+k分别与x轴、y轴交于A、B、C三点,点A在点B 的左侧,直线y=﹣x+2经过点B,且与y轴交于点D.(1)如图1,求k的值;(2)如图2,在第一象限的抛物线上有一动点P,连接AP,过P作PE⊥x轴于点E,过E 作EF⊥AP于点F,过点D作平行于x轴的直线分别与直线FE、PE交于点G、H,设点P的横坐标为t,线段GH的长为d,求d与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,过点G作平行于y轴的直线分别交AP、x轴和抛物线于点M、T 和N,tan∠MEA=,点K为第四象限抛物线上一点,且在对称轴左侧,连接KA,在射线KA上取一点R,连接RM,过点K作KQ⊥AK交PE的延长线于Q,连接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ与△HKQ的面积相等,求点R的坐标.2017年黑龙江省哈尔滨市香坊区中考数学二模试卷参考答案与试题解析一、选择题:每小题3分,共30分.1.(3分)的相反数是()A.B.C.﹣D.﹣【考点】28:实数的性质.【解答】解:的相反数是﹣,故选:C.2.(3分)下列各式中,运算结果正确的是()A.(﹣1)3+(﹣3.14)0+2﹣1=﹣B.2x﹣2=C.=﹣4D.a2•a3=a5【考点】22:算术平方根;46:同底数幂的乘法;6E:零指数幂;6F:负整数指数幂.【解答】解:A、(﹣1)3+(﹣3.14)0+2﹣1=,故A错误;B、2x﹣2=,故B错误;C、=4,故C错误;D、a2•a3=a5,故D正确;故选:D.3.(3分)下列英文大写字母中既是轴对称图形又是中心对称图形的是()A.E B.M C.N D.H【考点】P3:轴对称图形;R5:中心对称图形.【解答】解:字母E和M都只是轴对称图形,字母N是中心对称图形,字母H既是轴对称图形又是中心对称的图形.故选:D.4.(3分)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】G6:反比例函数图象上点的坐标特征.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.5.(3分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【解答】解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选:C.6.(3分)如图,电线杆AB的中点C处有一标志物,在地面D点处测得标志物的仰角为45°,若测得DC的长度为a,则电线杆AB的长可表示为()A.a B.2a C.a D.a【考点】TA:解直角三角形的应用﹣仰角俯角问题.【解答】解:∵CD=a,∠D=45°,AB⊥BD,∴BC=CD•sin45°=a•=a.∵点C是AB的中点,∴AB=2BC=2a.故选:B.7.(3分)如图,DE∥BC,EF∥AB,则下列结论错误的是()A.=B.=C.=D.=【考点】S9:相似三角形的判定与性质.【解答】解:A、∵EF∥AB,∴△CEG∽△CAD,∴=,故本选项不符合题意;B、∵EF∥AB,∴=,故本选项不符合题意;C、∵DE∥BC,∴△DEG∽△CFG,∴=,故本选项不符合题意;D、∵EF∥AB,∴=,根据已知条件不能推出BF和AE相等,故本选项符合题意;故选:D.8.(3分)如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x米,面积为S平方米,则下面关系式正确的是()A.S=x(40﹣x)B.S=x(40﹣2x)C.S=x(10﹣x)D.S=10(2x﹣20)【考点】HD:根据实际问题列二次函数关系式.【解答】解:∵AB=x米,∴BC=40﹣2x米,∴S=x(40﹣2x).故选:B.9.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5C.4D.【考点】R2:旋转的性质.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选:B.10.(3分)我市某小区实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中,正确的个数有()个.①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.A.1B.2C.3D.4【考点】E6:函数的图象.【解答】解:由图象可得,甲队每天挖:600÷6=100米,故①正确,乙队开挖两天后,每天挖:(500﹣300)÷(6﹣2)=50米,故②正确,当甲乙挖的管道长度相等时,100x=300+(x﹣2)×50,得x=4,故③正确,甲队比乙队提前完成的天数为:(600﹣300)÷50+2﹣6=2(天),故④正确,故选:D.二、填空题:每小题3分,共30分.11.(3分)103 000用科学记数法表示为 1.03×105.【考点】1I:科学记数法—表示较大的数.【解答】解:103 000=1.03×105.12.(3分)当x=1时,分式的值为1.【考点】B3:解分式方程.【解答】解:据题意得=1.方程的两边同乘(x﹣2),得2x﹣3=x﹣2,解得:x=1.检验:把x=1代入(x﹣2)=﹣1≠0∴原方程的解为:x=1.∴当x=1时,分式的值为1.13.(3分)计算:﹣×=.【考点】79:二次根式的混合运算.【解答】解:原式=3﹣=3﹣2=.故答案为:.14.(3分)因式分解:xy2﹣x2y=xy(y﹣x).【考点】53:因式分解﹣提公因式法.【解答】解:xy2﹣x2y=xy(y﹣x).15.(3分)抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).【考点】H3:二次函数的性质.【解答】解:∵抛物线y=(x﹣2)2﹣3∴该抛物线的顶点坐标为:(2,﹣3),故答案为:(2,﹣3).16.(3分)在半径为1的圆中,120°的圆心角所对的弧长是.【考点】MN:弧长的计算.【解答】解:∵圆心角为120°,R=1,∴l===.故答案为.17.(3分)李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤,若任意组合穿着,则李玲穿着“衣裤同色”的概率是.【考点】X6:列表法与树状图法.【解答】解:画树状图得:∴一共有6种情况,李玲穿着“衣裤同色”的有2种情况;∴李玲穿着“衣裤同色”的概率是=.18.(3分)如图,在⊙O中,AC是弦,AD是切线,CB⊥AD于B,CB与⊙O相交于点E,连接AE,若AE平分∠BAC,BE=1,则CE=2.【考点】MC:切线的性质.【解答】解:∵AD是切线,∴∠C=∠BAE,∵∠BAE=∠CAE,∴∠C=∠BAE=∠CAE,∵CB⊥AD,∴∠C+∠BAE+∠CAE=90°,∴∠C=∠BAE=∠CAE=30°,∴CE=AE=2BE=2,故答案为2.19.(3分)在▱ABCD中(非矩形),连接AC,△ABC为直角三角形,若AB=4,AC=3,则AD=或5.【考点】L5:平行四边形的性质.【解答】解:分两种情况:①如图1,∵△ABC是直角三角形,∠ACB=90°,AB=4,AC=3,∴BC2=AB2﹣AC2=42﹣32=7.∴AD=BC=;②如图2,∵▱ABCD的对角线AC与BD相交于点O,∴BD=2BO,OC=OA=AC,∵∠BAC=90°,AB=4,AC=3,∴BC2=AB2+AC2=16+9=25,∴BC=5,∴AD=5;故答案为:或5.20.(3分)如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC=,则tan∠BAD=.【考点】T7:解直角三角形.【解答】解:延长AD到E使AD=DE,在△ADB与△ECD中,,∴△ABD≌△ECD,∴∠B=∠DCE,∠BAD=∠CED,∵∠BAD=∠B+∠ACB=∠ACB+∠DCE=∠ACE,∴∠E=∠ACE,∴△AEC是等腰三角形,过A作CF⊥EC,过D作CH⊥EC,设DH=11,HC=10,EH=x,则=,∴=,∴x=,∴tan∠BAD=tan∠DEC==.故答案为:.三、解答题:其中21-22题各7分,23-24题各8分,25-27题各10分,共60分.21.(7分)先化简,再求值:,其中a=2sin60°+3tan45°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【解答】解:原式=÷(﹣)=÷=,∵a=2sin60°+3tan45°=2×+3×1=+3∴原式==﹣.22.(7分)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)如图1,在小正方形的顶点上确定一点C,连接AC、BC,使得△ABC为直角三角形,其面积为5,并直接写出△ABC的周长;(2)如图2,在小正方形的顶点上确定一点D,连接AD、BD,使得△ABD中有一个内角为45°,且面积为3.【考点】KQ:勾股定理;N4:作图—应用与设计作图.【解答】解:(1)如图1所示:△ABC即为所求,△ABC的周长为:+2+5=5+3;(2)如图2所示:△ABD中,∠ADB=45°,且面积为3.23.(8分)为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)求这次被抽查形体测评的学生一共有多少人?(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【解答】解:(1)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(2)三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.24.(8分)如图,矩形ABCD中,P为AD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD.(1)求证:PE=DH;(2)若AB=10,BC=8,求DP的长.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【解答】解:(1)证明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH∴△DOP≌△EOH,∴OP=OH,∴PO+OE=OH+OD,∴PE=DH;(2)设DP=x,则EH=x,BH=10﹣x,CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,∴在Rt△BCH中,BC2+CH2=BH2(2+x)2+82=(10﹣x)2,∴x=∴DP=.25.(10分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.(1)求A、B两种品牌套装每套进价分别为多少元?(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B 品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【解答】解:(1)设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.根据题意得:=2×,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=10.答:A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(13﹣10)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a为正整数,∴a取最小值17.答:最少购进A品牌工具套装17套.26.(10分)四边形ABCD内接于⊙O,点E为AD上一点,连接AC、CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC=,EG=2,求AE的长.【考点】MR:圆的综合题.【解答】(1)证明:∵四边形ABCD内接于⊙O∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)连接AG,作GN⊥AC,AM⊥EG∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=EG=1,∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC=,∴设NG=5m,可得AN=11m,AG==14m,∵∠ACG=60°,∴CN=5m,AM=8m,MG==2m=1,∴m=,∴CE=CD=CG﹣EG=10m﹣2=3∴AE===7.27.(10分)二次函数y=(x﹣1)2+k分别与x轴、y轴交于A、B、C三点,点A在点B 的左侧,直线y=﹣x+2经过点B,且与y轴交于点D.(1)如图1,求k的值;(2)如图2,在第一象限的抛物线上有一动点P,连接AP,过P作PE⊥x轴于点E,过E 作EF⊥AP于点F,过点D作平行于x轴的直线分别与直线FE、PE交于点G、H,设点P的横坐标为t,线段GH的长为d,求d与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,过点G作平行于y轴的直线分别交AP、x轴和抛物线于点M、T 和N,tan∠MEA=,点K为第四象限抛物线上一点,且在对称轴左侧,连接KA,在射线KA上取一点R,连接RM,过点K作KQ⊥AK交PE的延长线于Q,连接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ与△HKQ的面积相等,求点R的坐标.【考点】HF:二次函数综合题.【解答】解:(1)在一次函数y=﹣x+2中,令y=0,得:0=﹣x+2,解得x=3,∴B(3,0).令x=0得y=2,∴D(0,2).将B(3,0),代入y=(x﹣1)2+k得:4+k=0,∴k=﹣4.(2)如答图1所示:∵PE⊥x轴,EF⊥AP,∴∠PEA=∠EF A=90°∵∠PEF+∠FEA=90°,∠P AE+∠FEA=90°∴∠PEF=∠P AE.∵DH∥x轴HE⊥x轴∴∠HDO=∠DOE=∠PEO=90°∴四边形DOEH为矩形.∴HE=2.∴=,∴=.∴d=2t﹣6.(t>3).(3)∵∠TGH=∠GTE=∠TEH=90°,∴GHET为矩形.∴GH=d=ET=2t﹣6.∵tan∠MEB=,∴=,∴MT=3t﹣9.∵=.∴=,解得t=4.∴P(4,5).∴AT=AE﹣ET=t+1﹣(2t﹣6)=7﹣t=3.∴M(2,3)把x=2代入y=x2﹣2x﹣3中,得N(2,﹣3)∴MT=TN=AT,∠MAT=90°.∵∠RAE﹣∠RMA=45°,∴∠RAE﹣45°=∠RMA,∴∠RAM=∠RMA,∵S△AKQ=S△HKQ,作HW⊥KQ.∴AK∥HW,AK=HW,∴四边形AKWH是矩形,∴∠RAH=∠HAK=90°,∴∠RAM=∠HAN.∵A(﹣1,0),H(4,2),N(2,﹣3),∴AH=HN=,∴∠HAN=∠HNA=∠RAM=∠RMA.又∵AM=AN,∴△RAM≌△HAN,∴AR=AH.过R作RL⊥x轴,∴∠RLA=∠AEH=90°,∵∠RAL+∠HAE=90,∠HAE+∠AHE=90,∴∠RAL=∠AHE,∴△ARL≌△AHE.∴RL=AE=5,AL=HE=3∴R(﹣3,5).由∠RAM﹣∠RMA=45°可知∠RAV=∠RVA,∠RMT=∠HAE,tan∠RMT=tan∠HAE=,V(,0),直线MR的解析式为y=x﹣2,直线AK的解析式为y=﹣x﹣,交点R(﹣,).。
湖北省黄石市2017年中考数学二模试卷(含解析)
2017年湖北省黄石市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣ B.C.﹣2 D.22.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A.B.C.D.3.五一假期,黄石市退出了东方山休闲娱乐、传统文化展演、游园赏景赏花、佛教文化体验等精品文化活动,共接待旅游总人数9 608 00人次,将9 608 00用科学记数法表示为()A.9608×102B.960.8×103C.96.08×104D.9.608×1054.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a5.如图是某几何体的三视图,该几何体是()A.三棱柱B.长方体C.圆锥 D.圆柱6.如图,AB∥CD,AD与BC相交于点O,若AO=2,DO=4,BO=3,则BC的长为()A.6 B.9 C.12 D.157.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.平均数、方差C.众数、中位数 D.众数、方差8.已知某圆锥的底面半径为3cm,母线长5cm,则它的侧面展开图的面积为()A.30cm2B.15cm2C.30πcm2D.15πcm29.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<310.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:mx2﹣2mx+m= .12.分式方程=的解是.13.若一元二次方程2x2﹣3x+k=0有两个相等实数根,则k的值是.14.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为.15.如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为米(结果保留根号)16.如图,正方形ABCD的面积为2cm2,对角线交于点O1,以AB、AO1为邻边做平行四边形AO1C1B,对角线交于点O2,以AB、AO2为邻边做平行四边形AO2C2B,…,以此类推,则平行四边形AO6C6B的面积为cm2.三、解答题(本大题共9小题,共72分)17.()﹣1﹣(3﹣)0﹣2sin60°+|﹣2|18.先化简,再求值:÷+,其中a=,b=+1.19.求不等式组的整数解.20.已知关于x的方程x2﹣3mx+2(m﹣1)=0的两根为x1、x2,且+=﹣,则m的值是多少?21.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC 于点E.(1)请说明DE是⊙O的切线;(2)若∠B=30°,AB=8,求DE的长.22.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数、中位数;(3)请你计算平均数,并估计这260名学生共植树多少棵?23.某商场经营A种品牌的玩具,购进时间的单价是30元,但据市场调查,在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请用含x的代数式表示该玩具的销售量;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付他库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?24.如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.25.如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y=(x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y=(x>0)图象上运动时,线段BD与CE的长始终相等.2017年湖北省黄石市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣ B.C.﹣2 D.2【考点】17:倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、可以看作是中心对称图形,不可以看作是轴对称图形,故本选项错误;B、既可以看作是中心对称图形,又可以看作是轴对称图形,故本选项正确;C、既不可以看作是中心对称图形,又不可以看作是轴对称图形,故本选项错误;D、既不可以看作是中心对称图形,又不可以看作是轴对称图形,故本选项错误.故选B.3.五一假期,黄石市退出了东方山休闲娱乐、传统文化展演、游园赏景赏花、佛教文化体验等精品文化活动,共接待旅游总人数9 608 00人次,将9 608 00用科学记数法表示为()A.9608×102B.960.8×103C.96.08×104D.9.608×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9 608 00用科学记数法表示为:9.608×105.故选:D.4.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.5.如图是某几何体的三视图,该几何体是()A.三棱柱B.长方体C.圆锥 D.圆柱【考点】U3:由三视图判断几何体.【分析】根据主视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,再根据俯视图的形状,可判断柱体是长方体.【解答】解:根据所给出的三视图得出该几何体是长方体;故选B.6.如图,AB∥CD,AD与BC相交于点O,若AO=2,DO=4,BO=3,则BC的长为()A.6 B.9 C.12 D.15【考点】S4:平行线分线段成比例.【分析】由平行线分线段成比例定理,得到=;利用AO、BO、DO的长度,求出CO的长度,再根据BC=BO+CO即可解决问题.【解答】解:∵AB∥CD,∴=;∵AO=2,DO=4,BO=3,∴=,解得:CO=6,∴BC=BO+CO=3+6=9.故选B.7.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.平均数、方差C.众数、中位数 D.众数、方差【考点】W7:方差;V7:频数(率)分布表;W2:加权平均数;W4:中位数;W5:众数.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为: =14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数;故选C.8.已知某圆锥的底面半径为3cm,母线长5cm,则它的侧面展开图的面积为()A.30cm2B.15cm2C.30πcm2D.15πcm2【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故选D.9.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】H5:二次函数图象上点的坐标特征.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为()A.B.C.D.【考点】E7:动点问题的函数图象;PB:翻折变换(折叠问题);S9:相似三角形的判定与性质.【分析】根据翻折变换的性质可得∠CPD=∠C′PD,根据角平分线的定义可得∠BPE=∠C′PE,然后求出∠BPE+∠CPD=90°,再根据直角三角形两锐角互余求出∠CPD+∠PDC=90°,从而得到∠BPE=∠PDC,根据两组角对应相等的三角形相似求出△PCD和△EBP相似,根据相似三角形对应边成比例列式求出y与x的关系式,再根据二次函数的图象解答即可.【解答】解:由翻折的性质得,∠CPD=∠C′PD,∵PE平分∠BPC1,∴∠BPE=∠C′PE,∴∠BPE+∠CPD=90°,∵∠C=90°,∴∠CPD+∠PDC=90°,∴∠BPE=∠PDC,又∵∠B=∠C=90°,∴△PCD∽△EBP,∴=,即=,∴y=x(5﹣x)=﹣(x﹣)2+,∴函数图象为C选项图象.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:mx2﹣2mx+m= m(x﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式m,进而利用完全平方公式分解因式得出即可.【解答】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2.故答案为:m(x﹣1)2.12.分式方程=的解是x=﹣2 .【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x+4=2x,解得:x=﹣2,经检验x=﹣2是分式方程的解,故答案为:x=﹣213.若一元二次方程2x2﹣3x+k=0有两个相等实数根,则k的值是.【考点】AA:根的判别式.【分析】根据判别式的意义得到△=(﹣3)2﹣4×2×k=0,然后解方程即可.【解答】解:根据题意得△=(﹣3)2﹣4×2×k=0,解得k=.故答案为.14.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为.【考点】X6:列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两枚骰子点数的和是9的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是9的结果数为4,所以两枚骰子点数的和是9的概率==,故答案为:.15.如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为(7+)米(结果保留根号)【考点】SA:相似三角形的应用.【分析】过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.【解答】解:如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,∵CD=4米,CD与地面成30°角,∴DE=CD=×4=2米,根据勾股定理得,CE===2米,∵1米杆的影长为2米,∴=,∴EF=2DE=2×2=4米,∴BF=BC+CE+EF=10+2+4=(14+2)米,∴=,∴AB=(14+2)=(7+)米.故答案为:(7+).16.如图,正方形ABCD 的面积为2cm 2,对角线交于点O 1,以AB 、AO 1为邻边做平行四边形AO 1C 1B ,对角线交于点O 2,以AB 、AO 2为邻边做平行四边形AO 2C 2B ,…,以此类推,则平行四边形AO 6C 6B 的面积为 cm 2.【考点】LE :正方形的性质;L5:平行四边形的性质.【分析】设平行四边形ABC 1O 1的面积为S 1,推出S △ABO1=S 1,又S △ABO1=S 正方形,推出S 1=S正方形;设ABC 2O 2为平行四边形为S 2,由S △ABO2=S 2,又S △ABO2=S 正方形,推出S 2=S 正方形,观察探究规律后即可解决问题.【解答】解:∵设平行四边形ABC 1O 1的面积为S 1,∴S △ABO1=S 1,又∵S △ABO1=S 正方形,∴S 1=S 正方形,设ABC 2O 2为平行四边形为S 2,∴S △ABO2=S 2,又∵S △ABO2=S 正方形,∴S2=S正方形,…,同理:设ABC6O6为平行四边形为S6,S6=•S正方形=×2=.故答案为.三、解答题(本大题共9小题,共72分)17.()﹣1﹣(3﹣)0﹣2sin60°+|﹣2|【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:()﹣1﹣(3﹣)0﹣2sin60°+|﹣2|=2﹣1﹣2×+2﹣=1﹣+2﹣=3﹣218.先化简,再求值:÷+,其中a=,b=+1.【考点】6D:分式的化简求值.【分析】先根据分式的混合运算顺序和法则化简原式,再将a、b的值代入求解可得.【解答】解:原式=•+=+=,当a=,b=+1时,原式==1.19.求不等式组的整数解.【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解,然后根据大大取大,小小取小,大小小大中间找,大大小小解不了,的口诀求出不等式组的解,进而求出整数解.【解答】解:解不等式①得x≤3;解不等式②得x≥;∴不等式组的解集为:≤x≤3;∴不等式组的整数解是320.已知关于x的方程x2﹣3mx+2(m﹣1)=0的两根为x1、x2,且+=﹣,则m的值是多少?【考点】AB:根与系数的关系.【分析】利用根与系数的关系得到x1+x2=3m,x1x2=2(m﹣1),再变形已知条件得到=﹣,则=﹣,然后解方程求出m,再利用判别式的意义可确定m的值.【解答】解:根据题意得x1+x2=3m,x1x2=2(m﹣1),∵+=﹣,∴=﹣,∴=﹣,解得m=,∵△>0,∴m的值为.21.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC 于点E.(1)请说明DE是⊙O的切线;(2)若∠B=30°,AB=8,求DE的长.【考点】MD:切线的判定;T7:解直角三角形.【分析】(1)要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可.(2)利用直角三角形和等边三角形的特点来求DE的长.【解答】解:(1)连接OD,则OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∴∠ODE=∠DEC=90°.∴DE是⊙O的切线.(2)连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∴.又∵AB=AC,∴CD=BD=,∠C=∠B=30°.∴.22.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数、中位数;(3)请你计算平均数,并估计这260名学生共植树多少棵?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)利用总人数20乘以对应的百分比即可求得D类的人数,从而补全直方图;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数260即可.【解答】解(1)D类的人数是:20×10%=2(人).;(2)众数为5棵,中位数为5棵(3)==5.3(棵).估计260名学生共植树5.3×260=1378(棵)23.某商场经营A种品牌的玩具,购进时间的单价是30元,但据市场调查,在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请用含x的代数式表示该玩具的销售量;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付他库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据销售量由原销量﹣因价格上涨而减少的销量可得;(2)根据利润=销售量×每件的利润,即可解决问题,根据题意确定自变的取值范围,再根据二次函数的性质,即可解决问题;(3)设取用资金为a元,先表示出两种方案的获取利润表达式,再分类讨论可得.【解答】解:(1)根据题意,得:销售单价为x元时,销售量为600﹣10(x﹣40)=1000﹣10x;(2)由题意可得,w=(x﹣30)[600﹣(x﹣40)×10]化简,得w=﹣10x2+1300x﹣30000即w与x的函数关系式是:w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵,∴44≤x≤55,∴当x=55时,W max=11250;(3)设取用资金为a元,则:y1=a(1+15%)(1+10%)﹣a=0.265a;y2=a(1+30%)﹣350﹣a=0.3a﹣350;当y1=y2时,即0.265a=0.3a﹣350,解得a=10000,此时获利相同;当y1>y2时,即0.265a>0.3a﹣350,解得a<10000,此时①获利多;当y1<y2时,即0.265a<0.3a﹣350,解得10000<a<11250,此时②获利多.24.如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A 点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.【考点】LO:四边形综合题.【分析】(1)四种情况:当点M为AC的中点时,AM=BM;当点M与点C重合时,AB=BM;当点M在AC上,且AM=2时,AM=AB;当点M在AC上,且AM=BM时,AM=时;当点M为CG的中点时,AM=BM;△ABM为等腰三角形;(2)在AB上截取AK=AN,连接KN;由正方形的性质得出∠ADC=90°,AB=AD,∠CDG=90°,得出BK=DN,先证出∠BKN=∠NDH,再证出∠ABN=∠DNH,由ASA证明△BNK≌△NHD,得出BN=NH 即可;(3)①当M在AC上时,即0<t≤2时,△AMF为等腰直角三角形,得出AF=FM=t,求出S=AF•FM=t2;当t=2时,即可求出S的最大值;②当M在CG上时,即2<t<4时,先证明△ACD≌△GCD,得出∠ACD=∠GCD=45°,求出∠ACM=90°,证出△MFG为等腰直角三角形,得出FG=MG•cos45°=4﹣t,得出S=S﹣S△CMJ﹣S△FMG,S为t的二次函数,即可求出结果.△ACG【解答】(1)解:存在;当点M为AC的中点时,AM=BM,则△ABM为等腰三角形;当点M与点C重合时,AB=BM,则△ABM为等腰三角形;当点M在AC上,且AM=2时,AM=AB,则△ABM为等腰三角形;当点M在AC上,且AM=BM时,AM=AC=×2=时,则△ABM为等腰三角形;当点M为CG的中点时,AM=BM,则△ABM为等腰三角形;(2)证明:在AB上截取AK=AN,连接KN;如图1所示:∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∴∠CDG=90°,∵BK=AB﹣AK,ND=AD﹣AN,∴BK=DN,∵DH平分∠CDG,∴∠CDH=45°,∴∠NDH=90°+45°=135°,∴∠BKN=180°﹣∠AKN=135°,∴∠BKN=∠NDH,在Rt△ABN中,∠ABN+∠ANB=90°,又∵BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°﹣∠BNH=90°,∴∠ABN=∠DNH ,在△BNK 和△NHD 中,,∴△BNK ≌△NHD (ASA ),∴BN=NH ;(3)解:①当M 在AC 上时,即0<t ≤2时,△AMF 为等腰直角三角形,∵AM=t ,∴AF=FM=t ,∴S=AF•FM=×t ×t=t 2;当t=2时,S 的最大值=×(2)2=2;②当M 在CG 上时,即2<t <4时,如图2所示:CM=t ﹣AC=t ﹣2,MG=4﹣t ,在△ACD 和△GCD 中,,∴△ACD ≌△GCD (SAS ),∴∠ACD=∠GCD=45°,∴∠ACM=∠ACD+∠GCD=90°,∴∠G=90°﹣∠GCD=45°,∴△MFG 为等腰直角三角形,∴FG=MG•cos45°=(4﹣t )•=4﹣t ,∴S=S △ACG ﹣S △CMJ ﹣S △FMG =×4×2﹣×CM ×CM ﹣×FG ×FG=4﹣(t ﹣2)2﹣(4﹣)2=﹣+4t ﹣8=﹣(t﹣)2+,∴当t=时,S的最大值为.25.如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y=(x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y=(x>0)图象上运动时,线段BD与CE的长始终相等.【考点】GB:反比例函数综合题.【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y=可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC 的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.【解答】解:(1)∵点C在y=的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y=(x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y=的图象上,∴B点坐标为(,4);(2)设A(a,),则C(a,),B(,),∴AB=a﹣=a,AC=﹣=,∴S△ABC=AB•AC=××=,即△ABC的面积不发生变化,其面积为;(3)如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴=,即=,∴EF=a,由(2)可知BG=a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.。
精品解析:2017年上海市青浦区中考数学二模试题(解析版)
2017年上海市青浦区中考数学二模试卷一、单项选择题1. 下列运算中,正确的是()A. 2a﹣a=1B. a+a=2aC. (a3)3=a6D. a8÷a2=a4【答案】B【解析】【分析】分别利用合并同类项法则以及结合幂的乘方运算法则以及同底数幂的除法运算法则化简求出答案.【详解】A、2a﹣a=a,故此选项错误;B、a+a=2a,故此选项正确;C、(a3)3=a9,故此选项错误;D、a8÷a2=a6,故此选项错误.故选B.【点睛】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的除法运算等知识,正确掌握相关运算法则是解题关键.2. 不等式组23120xx+≥⎧⎨-<⎩的解集在数轴上可表示为()A. B.C. D.【答案】B【解析】【分析】利用不等式的性质求出不等式组的解集,然后在数轴上表示出来即可.【详解】解不等式2x+3≥1,得:x≥﹣1,解不等式x﹣2<0,得:x<2,∴不等式组的解集为﹣1≤x<2,故选B.【点睛】本题考查解一元一次不等式组,熟练掌握不等式的性质和一元一次不等式组求解集是解题关键.3. 二次根式()23-的值是( ) A. ﹣3B. 3或﹣3C. 9D. 3【答案】D【解析】【分析】 本题考查二次根式的化简, 2(0)(0)a a a a a ⎧=⎨-<⎩. 【详解】2(3)|3|3-=-=.故选D .【点睛】本题考查了根据二次根式的意义化简.二次根式2a 化简规律:当a ≥0时,2a =a ;当a ≤0时,2a =﹣a .4. 在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A. 2B. 3C. 3D. 1【答案】A【解析】【分析】作AD ⊥BC ,可得AD=BD=5,利用勾股定理求得AB ,再由余弦函数的定义求解.【详解】作AD ⊥BC 于点D ,则AD=5,BD=5,∴AB=22BD AD +=2255+=52,∴cos ∠B=BD AB =52= 2. 故选A .【点睛】本题考查锐角三角函数的定义.5. 某集团公司有9个子公司,各个子公司所创年利润的情况如下表所示.各子公司所创年利润的众数和中位数分别是( )A. 4千万元,3千万元B. 6千万元,4千万元C. 6千万元,3千万元D. 3千万元,3千万元【答案】D【解析】【分析】 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】这组数据按照从小到大的顺序排列为:6,4,4,3,3,3,3,2,2,3出现次数最多,则众数为:3千万元,中位数为:3千万元.故选D .【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6. 如图,在四边形ABCD 中,动点P 从点A 开始沿A B C D →→→的路径匀速前进到D 为止,在这个过程中,APD ∆的面积S 随时间t 的变化关系用图象表示正确的是( )A. B. C. D.【答案】C【解析】【分析】根据点P 的运动过程可知:APD ∆的底边为AD ,而且AD 始终不变,点P 到直线AD 的距离为APD ∆的高,根据高的变化即可判断S 与t 的函数图象.【详解】解:设点P 到直线AD 的距离为h ,APD ∴∆的面积为:1·2S AD h =, 当P 在线段AB 运动时,此时h 不断增大,S 也不端增大当P 线段BC 上运动时,此时h 不变,S 也不变,当P 在线段CD 上运动时,此时h 不断减小,S 不断减少,又因为匀速行驶且CD AB >,所以在线段CD 上运动的时间大于在线段AB 上运动的时间故选C .【点睛】本题考查函数图象,解题的关键是根据点P 到直线AD 的距离来判断s 与t 的关系,本题属于基础题型.二、填空题7. 若x ∶y =2∶3,那么x ∶(x +y )=_____________.【答案】2∶5.【解析】【分析】试题分析:∵x∶y =2∶3,设,x=2k ,则y=3k ,∴x∶(x +y )=2k:(2k+3k )=2:5.故答案为2:5. 考点:比例的性质.【详解】请在此输入详解!8. 在实数范围内分解因式:x 2﹣3=_____.【答案】((x x +-【解析】【分析】把3【详解】解:x 2﹣3=x 22=(x (x .【点睛】本题考查平方差公式分解因式,把39. 已知函数1x f x x,那么1f _____. 【答案】2+【解析】【分析】根据题意可知1x =,代入原函数即可解答. 【详解】因为函数1x f x x, 所以当1x =时, 211()2221f x .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 10. 已知反比例函数1k y x-=的图象经过一、三象限,则实数k 的取值范围是_____. 【答案】k >1.【解析】【分析】 根据反比例函数1k y x-=的图象经过一、三象限得出关于k 的不等式,求出k 的取值范围即可. 【详解】∵反比例函数1k y x -=的图象经过一、三象限, ∴k ﹣1>0,即k >1.故答案为k >1.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键. 11. 已知关于x 的方程220x x a -+=有两个实数根,则实数a 的取值范围是_____.【答案】a≤1.【解析】试题分析:∵方程220x x a -+=有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为a≤1.考点:根的判别式.12. 1=的解为_____.【答案】x=2【解析】【分析】1=两边同时乘方,即可解答.【详解】方程两边平方得:x ﹣1=1,解得:x =2,经检验x =2是原方程的解,故答案为x =2【点睛】本题考点为无理方程求解,熟练掌握相关知识点是解题关键.13. 抛物线y =﹣ax 2+2ax +3(a ≠0)的对称轴是_____.【答案】直线x =1.【解析】【分析】直接利用抛物线对称轴公式求出答案.【详解】抛物线y =﹣ax 2+2ax +3(a ≠0)的对称轴是:直线2a 12(a)x. 故答案为直线x =1.【点睛】此题主要考查了二次函数的性质,正确记忆对称轴公式是解题关键.14. 布袋中装有3个红球和n 个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到球恰好是红球的概率是13,那么布袋中白球有_____个. 【答案】6.【解析】【分析】根据概率的概念建立等量关系:1133n,解方程即可.【详解】∵布袋中有n个白球,∴11 33n,解得:n=6,则布袋中白球有6个;故答案为6.【点睛】本题考查了概率的概念:所有等可能的结果有n个,其中某事件占m个,则这个事件的概率mPn =.15. 化简:1233a a b_____.【答案】3a b+【解析】【分析】先利用去括号法则将整式去括号,再合并同类项即可完成.【详解】1233a a b,23a a b,3a b.故答案为3a b+.【点睛】本题考查整式的加减运算,熟练掌握去括号法则以及合并同类项是解题关键.16. 如图,在菱形ABCD中,EF∥BC,AE1BE3,EF=3,则CD的长为_____.【答案】12 【解析】【分析】根据题意可知△AEF∽△ABC,可得14AEAB,进而求得BC=12,再根据菱形的性质,即可解答.【详解】∵EF∥BC,13AEBE,EF=3,∴△AEF∽△ABC,14 AEAB,∴EF AE BC AB,∴314 BC,解得,BC=12,∵四边形ABCD是菱形,∴CD=BC=12,故答案为12.【点睛】本题考点涉及三角形相似、菱形的性质等知识点,熟练掌握相关性质定理是解题关键.17. 在△ABC中,已知BC=4cm,以边AC的中点P为圆心1cm为半径画⊙P,以边AB的中点Q为圆心x cm 长为半径画⊙Q,如果⊙P与⊙Q相切,那么x=_____cm.【答案】1或3【解析】【分析】根据三角形的中位线的性质得到122PQ BC cm,①当⊙P与⊙Q相外切时,②当⊙P与⊙Q相内切时,列方程即可得出结论.【详解】∵BC=4cm,点P是AC的中点,点Q是AB的中点,∴122PQ BC cm,①当⊙P与⊙Q相外切时,PQ=1+x=2,∴x=1cm,②当⊙P与⊙Q相内切时,PQ=|x﹣1|=2,∴x=3cm(负值舍去),∴如果⊙P与⊙Q相切,那么x=1cm或3cm,故答案为1或3.【点睛】本题考查了三角形中位线定理以及相切两圆的性质,熟练掌握相关性质定理是解题关键.18. 如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB.设BE=a,DC=b,那么AB=_____.(用含a、b的式子表示AB)【答案】2222a b a b【解析】【分析】 只要证明△F AE ≌△DAE ,推出EF =ED ,∠ABF =∠C =45°,由∠EBF =∠ABF +∠ABE =90°,推出22ED EF a b ,可得22BC a b a b ,根据AB =BC •cos45°即可解决问题.【详解】证明:如图,∵△DAC ≌△F AB ,∴AD =AF ,∠DAC =∠F AB,∴∠F AD =90°,∵∠DAE =45°,∴∠DAC +∠BAE =∠F AB +∠BAE =∠F AE =45°,在△F AE 和△DAE 中,DA FA DAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△DAE ,∴EF =ED ,∠ABF =∠C =45°,∵∠EBF =∠ABF +∠ABE =90°,∴22ED EF a b ,∴BC =a +b 22a b +∴222cos 45()2AB BC a b a b .故答案为222a b a b .【点睛】本题考查旋转变换、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题:19. 计算: 10120176cos30232. 【答案】1【解析】【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可. 【详解】10120176cos30|23|2 312623233323143 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20. 解方程: 24211422xx x x . 【答案】x =1.【解析】分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:4x ﹣2x ﹣4=x 2﹣4﹣x +2,即x 2﹣3x +2=0,解得:x =1或x =2,经检验x =2是增根,所以,分式方程的解为x =1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 21. 已知直线132y x =-+与x 轴、y 轴分别交于A 、B 两点,设O 为坐标原点. (1)求∠ABO 的正切值;(2)如果点A 向左平移12个单位到点C ,直线l 过点C 且与直线132y x =-+平行,求直线l 的解析式. 【答案】(1)tan 2ABO ;(2)132y x =--. 【解析】 【分析】(1)根据已知条件得到A (6,0),B (0,3),求得OA =6,OB =3,根据三角函数的定义即可得到结论; (2)将点A 向左平移12个单位到点C ,于是得到C (﹣6,0),设直线l 的解析式为12y x b =-+,把C (﹣6,0)代入12y x b =-+即可得到结论. 【详解】(1)∵直线132y x =-+与x 轴、y 轴分别交于A 、B 两点,∴A (6,0),B (0,3), ∴OA =6,OB =3, ∵∠AOB =90°, ∴6tan 23OAABOOB ;(2)将点A 向左平移12个单位到点C , ∴C (﹣6,0),∵直线l 过点C 且与直线132y x =-+平行, 设直线l 的解析式为12y x b =-+, 把C (﹣6,0)代入12y x b =-+得1(6)2b ,∴b =﹣3,∴直线l 的解析式为132y x =--. 【点睛】本题考查了两直线平行或相交问题,坐标与图形变换﹣平移,解直角三角形,正确的理解题意是解题的关键.22. 小明在海湾森林公园放风筝.如图所示,小明在A 处,风筝飞到C 处,此时线长BC 为40米,若小明双手牵住绳子的底端B 距离地面1.5米,从B 处测得C 处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米,3≈1.732)【答案】此时风筝离地面的高度CE是36.1米.【解析】【分析】过点B作BD⊥CE于点D,由锐角三角函数的定义求出CD的长,根据CE=CD+DE即可得出结论.【详解】过点B作BD⊥CE于点D,∵AB⊥AE,DE⊥AE,BD⊥CE,∴四边形ABDE是矩形,∴DE=AB=1.5米.∵BC=40米,∠CBD=60°,∴CD=BC·sin 60°=40×3=203,∴CE=CD+DE=203+1.5≈20×1.73+1.5≈36.1(米).答:此时风筝离地面的高度CE是36.1米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23. 如图,在△ABC中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,连接AD交线段PQ于点E,且CP QECD BD,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.(1)求证:PC =PE ;(2)当P 是边AC 的中点时,求证:四边形AECF 是矩形. 【答案】(1)见解析;(2)见解析 【解析】 【分析】(1)根据相似三角形的性质得出,QEAE PE AE BD AD CD AD ,等量代换得到PEQE CD BD ,推出CPPECD CD,于是得出结论;(2)根据平行线的性质得到∠PFC =∠FCG ,根据角平分线的性质得到∠PCF =∠FCG ,等量代换得到∠PFC =∠FCG ,根据等腰三角形的性质得到PF=PC ,得到PF=PE ,由已知条件得到AP=CP ,推出四边形AECF 是平行四边形,再证得∠ECF =90°,于是得出结论. 【详解】(1)证明:∵PQ ∥BC , ∴△AQE ∽△ABD ,△AEP ∽△ADC ,∴,QE AE PE AEBD AD CD AD, ∴PE QECD BD , ∵CP QECD BD , ∴CP PECDCD, ∴PC =PE ; (2)∵PF ∥DG , ∴∠PFC =∠FCG , ∵CF 平分∠PCG , ∴∠PCF =∠FCG , ∴∠PFC =∠FCG , ∴PF =PC , ∴PF =PE ,∵P 是边AC 的中点,∴AP =CP ,∴四边形AECF 是平行四边形, ∵PQ ∥CD , ∴∠PEC =∠DCE , ∴∠PCE =∠DCE , ∴1()902PCEPCFPCD PCG ,∴∠ECF =90°,∴平行四边形AECF 是矩形.【点睛】本题考查相似三角形的判定及性质以及矩形的判定,还涉及了平行线的性质、角平分线的性质、等腰三角形的性质、平行四边形的判定等知识点,属于综合题,难度适中,熟练掌握相关性质定理是解题关键.24. 已知△OAB 在直角坐标系中的位置如图,点A 在第一象限,点B 在x 轴正半轴上,OA =OB =6,∠AOB =30°.(1)求点A 、B 的坐标;(2)开口向上的抛物线经过原点O 和点B ,设其顶点为E ,当△OBE 为等腰直角三角形时,求抛物线的解析式;(3)设半径为2的⊙P 与直线OA 交于M 、N 两点,已知23MN =P (m ,2)(m >0),求m 的值. 【答案】(1)A 点坐标为(33,3),B 点坐标为(6,0);(2)2123y x x ;(3)m 的值为232或232- 【解析】 【分析】(1)根据30°角所对的直角边是斜边的一半,可得AC 的长,再根据锐角三角函数,可得OC ,根据点的坐标,可得答案;(2)根据等腰直角三角形,可得E 点坐标,再根据待定系数法,可得答案;(3)根据30°角所对的直角边是斜边的一半,可得∠CNP=30°,再根据勾股定理求得OE 的长,根据点的坐标,可得N 点坐标,根据点的左右平移,可得点P 坐标.【详解】(1)如图1,作 AC ⊥OB 于C 点,由OB =OA =6,得B 点坐标为(6,0), 由OB =OA =6,∠AOB =30°,得133,cos 3322ACOA OC OA AOCOA ,∴A 点坐标为(33,3);(2)如图2,由其顶点为E ,当△OBE 为等腰直角三角形,得132OC BC CEOB ,即E 点坐标为(3,﹣3).设抛物线的解析式为y =a (x ﹣3)2﹣3,将B 点坐标代入,解得13a =, 抛物线的解析式为21(3)33y x化简得2123yx x ;(3)如图3,PN =2, 3CN =PC =1,∠CNP =∠AOB =30°, NP ∥OB ,NE =2,得ON =4, 由勾股定理,得2223OEON NE ,即23,2N .N 向右平移2个单位得232,2P , N 向左平移2个单位,得232,2P ,m 的值为232+或232-.【点睛】本题为二次函数综合题,难度较大,考点涉及含30°角的直角三角形、锐角三角形函数、等腰直角三角形的性质、待定系数法求函数解析式以及勾股定理等知识点,熟练掌握各个知识点是解题关键. 25. 如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6cm ,BC =8cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k •AP (k >0),联接PC 、PQ .(1)求⊙O 的半径长;(2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△CPQ 与△ABC 相似,且∠ACB =∠CPQ ,求k 的值. 【答案】(1)5;(2)y=234224(04)55x x x ;(3)720k【解析】 【分析】(1)首先证明∠ACB =90°,然后利用勾股定理即可解决问题; (2)如图2中,作PH ⊥BC 于H .由PH ∥AC ,,推出PH PB AC AB ,推出10610PHx,得出3(10)5PH x ,根据12yCQ PH 计算即可; (3)因为△CPQ 与△ABC 相似,∠CPQ =∠ACB =90°,又因为∠CQP >∠B , 所以只有∠PCB =∠B ,推出PC =PB ,由∠B +∠A =90°,∠ACP +∠PCB =90°,推出∠A =∠ACP ,得出P A =PC =PB =5,由△COQ ∽△BCA ,推出CO CQBC AB, 推出585810k,即可解决问题. 【详解】(1)∵AB 是直径, ∴∠ACB =90°,∵AC =6,BC =8, ∴22226810ABAC BC ,∴⊙O 的半径为5.(2)如图2中,作PH ⊥BC 于H .∵PH ∥AC ,∴PH PBAC AB , ∴10610PH x, ∴3(10)5PH x , ∴2113342(82)(10)24(04)22555y CQ PH x x x x x .(3)如图2中,∵△CPQ 与△ABC 相似,∠CPQ =∠ACB =90°, 又∵∠CQP >∠B , ∴只有∠PCB =∠B , ∴PC =PB ,∵∠B +∠A =90°,∠ACP +∠PCB =90°,∴∠A=∠ACP,∴P A=PC=PB=5,∴△COQ∽△BCA,∴CO CQ BC AB,∴585 810k,∴720 k.【点睛】本题为圆的综合题,难度较大,考点涉及圆的性质、相似三角形的性质与判定等知识点,熟练掌握各个性质定理是解题关键.。
山东省德州市2017年中考数学二模试卷(有答案)
山东省德州市2017年中考数学二模试卷(解析版)一、选择题(共15小题,每小题3分,满分45分)1.下列各式中,正确的是()A.a5+a3=a8B.a2•a3=a6C.(﹣3a2)3=﹣9a6D.【分析】分别根据合并同类项、同底数幂的乘法法则、幂的乘方与积的乘方法则、负整数指数幂的运算法则分别计算出各选项即可.【解答】解:A、由于a5和a3不是同类项,故不能合并,故本选项错误;B、根据同底数幂的乘法法则可知a2•a3=a5,故本选项错误;C、幂的乘方与积的乘方法则可知(﹣3a2)3=﹣27a6,故本选项错误;D、由负整数指数幂的运算法则可知=9,故本选项正确.故选D.【点评】本题考查的是合并同类项、同底数幂的乘法法则、幂的乘方与积的乘方法则、负整数指数幂的运算法则等知识,熟知以上知识是解答此题的关键.2.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形【分析】根据菱形的判定方法对A进行判定;根据矩形的判定方法对B进行判定;根据正方形的判定方法对C、D进行判定.【解答】解:A、两邻边相等的平行四边形是菱形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、四个角相等的菱形是正方形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.已知不等边三角形的一边等于5,另一边等于3,若第三边长为奇数,则周长等于()A.13 B.11 C.11,13或15 D.15【分析】已知两边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围;再根据x为奇数,可知三角形的周长.【解答】解:设第三边为c,根据题意可得:2<c<8,又知第三边边长为奇数,即c=3,5,7,又知三角形是不等边三角形,故c=7,则三角形的周长为3+5+7=15,故选D.【点评】本题考查三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.还要注意奇数这一条件.4.下列根式是最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的两个条件,故本选项正确;B、被开方数含分母,不是最简二次根式,故本选项错误;C、被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误.故选A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.直线y=x﹣1与坐标轴交于A、B两点,点C在x轴上,若△ABC为等腰三角形且S△ABC=,则点C的坐标为()A.、(0,0 )B.(1﹣,0)或(1,0)C.、( +1,0 )D.、(﹣﹣1,0)或(﹣+1,0)【分析】由题意可得AC边上的高为BO=1,所以要使S△ABC=,则AC一定等于,在RT△AOB中,AB==,从而可得AC=AB,找到点C满足AC=即可.【解答】解:∵函数解析式为:y=x﹣1,故可得点A坐标为(1,0),点B坐标为(0,﹣1),在Rt△AOB中,AB==,又∵AC边上的高为BO=1,S△ABC=,∴只需满足AC=即可,①当点C在x轴左端时可得点C坐标为:(1﹣,0);②当点C在x轴右端时,可得点C坐标为:(1+,0).故点C的坐标为:(1﹣,0)或(1+,0).故选B.【点评】此题考查了一次函数的综合题,涉及了等腰三角形的性质,解答本题的关键是根据AC边上的高为1,确定AC=,注意不要漏解,有一定难度.6.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y3【分析】根据反比例函数图象的性质,点A1在第二象限,y1>0,所以,A2、A3在第四象限,因为在每个象限内,y随x的增大而增大,所以y2<y3.【解答】解:∵k=﹣<0,∴点A1在第二象限,点A2、A3在第四象限,如图,y2<y3<0<y1.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.7.函数y=中自变量x的取值范围是()A.1<x<2 B.1≤x≤2 C.x>1 D.x≥1【分析】根据二次根式有意义,被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.圆锥的轴截面是()A.梯形B.等腰三角形C.矩形D.圆【分析】根据圆锥的形状特点判断即可.【解答】解:圆锥的轴垂直于底面且经过圆锥的底面的圆心,因此圆锥的轴与将轴截面分成了两个全等的三角形,因此,轴截面应该是等腰三角形.故选B.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.9.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A.90°B.60°C.45°D.30°【分析】根据旋转的性质,观察图形,中心角是由8个度数相等的角组成,结合周角是360°求得每次旋转的度数.【解答】解:∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°.故选C.【点评】本题把一个周角是360°和图形的旋转的特点结合求解.注意结合图形解题的思想.10.一个等腰三角形的顶角是120°,底边上的高是1cm,那么它的周长是()A.(2)cm B.2(2)cm C.cm D.2cm【分析】根据等腰三角形的性质、三角形内角和定理求出∠C,根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】解:∵∠BAC=120°,AB=AC,∴∠C=30°,∴AC=2AD=2,∴CD=,则BC=2,∴三角形的周长为2+2+2=2(2)cm,故选:B.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.11.下列命题正确的个数是()①等腰三角形的腰长大于底边长;②三条线段a、b、c,如果a+b>c,那么这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两个三角形全等.A.0个B.1个C.2个D.3个【分析】根据三角形三边关系以及轴对称图形的性质和全等三角形的性质分别判断得出即可.【解答】解:①等腰三角形腰长大于底边,此选项不正确;②三条线段a、b、c,如果a+b>c,则这三条线段不一定可以组成三角形,c必须大于两边之差,此选项不正确;③等腰三角形是轴对称图形,它的对称轴是底边上的高所在直线,此选项不正确;④面积相等的两三角形不一定全等,故此选项错误.故正确的有0个.故选:A.【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.12.直角梯形的一个内角为120°,较长的腰为6cm,有一底边长为5cm,则这个梯形的面积为()A.cm2B.cm2C.25cm2D.cm2或cm2【分析】根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高为6×sin60°=3,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.【解答】解:根据题意可作出下图,BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=×(5+8)×3=cm2;当CD=5cm时,AB=5﹣3=2cm,梯形的面积=×(2+5)×3=cm2;故梯形的面积为cm2或cm2,选D.【点评】本题考查了直角梯形的性质及面积公式,涉及到特殊角的三角函数计算,注意当题意所给数据不明确时,要注意分类讨论思想.13.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形D.对角线互相垂直的四边【分析】根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.【点评】本题很简单,考查的是三角形中位线的性质及菱形的性质.14.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A. B. C. D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选A.【点评】本题的关键是利用垂径定理和勾股定理.15.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的大致图象应是()A.B.C.D.【分析】根据已知条件,采用数形结合的方法,探究图象经过的点,字母系数的符号对图象的影响,逐一排除.【解答】解:因为a+b+c=0,故函数图象过(1,0)排除D;因为a+b+c=0,a>b>c,所以a>0,排除C;由图B可知,c=1>0,对称轴x=﹣>0,得b<0,与b>c矛盾,排除B故选A.【点评】解答本题要结合图象进行验算,关键是掌握二次函数y=ax2+bx+c系数符号的确定.二、解答题(共5小题,满分40分)16.(8分)计算:.【分析】分别根据数的开方、0指数幂、特殊角的三角函数值计算出各数,再根据二次根式混合运算的法则进行计算即可.【解答】解:原式=+2﹣1+2﹣=3.【点评】本题考查的是二次根式的混合运算、零指数幂及特殊角的三角函数值,熟知二次根式混合运算的法则是解答此题的关键.17.(8分)先化简,再求值,并求a=1时的值.【分析】先将a﹣1根据平方差公式化为()(﹣1),a﹣2+1是完全平方公式为:,约分后再分母有理化,化简后代入计算可得结果.【解答】解:,=+,=﹣1,=﹣1,=,=,当a=1时,原式===4+2.【点评】本题是二次根式的化简求值问题,考查了分母有理化、完全平方公式和平方差公式及二次根式的混合运算法则,注意把a看作是.18.(8分)已知x=3是方程的一个根,求k的值和方程其余的根.【分析】本题考查解分式方程的能力,先由x=3求出k值,再将k代入原方程,通过去分母,解方程,检验,求出方程的另一个解.【解答】解:把x=3代入,得+=1,解得k=﹣3.将k=﹣3代入原方程得:,方程两边都乘以x(x+2),得10x﹣3(x+2)=x(x+2),整理得x2﹣5x+6=0,解得x1=2,x2=3.检验:x=2时,x(x+2)=8≠0∴x=2是原方程的根.x=3时,x(x+2)=15≠0∴x=3是原方程的根.∴原方程的根为x1=2,x2=3.故k=3,方程其余的根为x=2.【点评】解分式方程时要注意根据方程特点选择合适的方法.19.(8分)要用12米长的木条,做一个有一条横挡的矩形窗户(如图),怎样设计窗口的高和宽的长度,才能使这个窗户透进的光线最多.【分析】光线最多就是面积最大,可设高为x米,则宽为米,表示出面积为y,运用函数性质求解.【解答】解:要使窗户透进的光线最多,就是要使窗户的面积最大.设窗户的高为x(x<6)米,窗户的面积为y(平方米),则宽为米,因此可得到y与x的关系式为:y=x•(x<6),整理得:y=﹣+4x,在这个二次函数中,a=﹣,b=4,c=0,∴当x=﹣=﹣=3时,y取得最大值:=6(平方米),当x=3时,=2(米),所以取矩形窗户的高为3米,宽为2米时,窗户的面积最大(最大值为6平方米),即窗户透进的光线最多.【点评】本题是二次函数的应用,此题的关键是理解光线最多就是窗子面积最大时,据此求面积表达式,运用函数性质求解.20.(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24厘米,AB=8厘米,BC=30厘米,动点P从A开始沿AD边向D以每秒1厘米的速度运动,动点Q从点C开始沿CB边向B以每秒3厘米的速度运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒.(1)当t在什么时间范围时,CQ>PD?(2)存在某一时刻t,使四边形APQB是正方形吗?若存在,求出t值;若不存在,请说明理由.【分析】(1)根据CQ>PD列出方程即可解决问题;(2)若四边形是正方形,则AP=AB且BQ=AB,则1×t=8且30﹣3t=8,显然无解,即不存在t的值使得四边形APQB是正方形;【解答】解:(1)∵CQ=3t,24﹣t,∴由CQ>PD有3t>24﹣t,解得t>6.又∵P、Q点的运动时间只能是30÷3=10(s),∴6<t≤10,即当6<t≤10时,CQ>PD.(2)若四边形是正方形,则AP=AB且BQ=AB,∴1×t=8且30﹣3t=8,显然无解,即不存在t的值使得四边形APQB是正方形.【点评】本题考查直角梯形、正方形的判定等知识,解题的关键是学会构建方程或不等式解决问题,属于中考常考题型.三、填空题(共7小题,每小题3分,满分21分)21.已知:不等式2x﹣m≤0只有三个正整数解,则化简+|m﹣9|=5.【分析】首先根据不等式2x﹣m≤0只有三个正整数解即可求得m的值,然后根据二次根式以及绝对值的意义即可化简求值.【解答】解:解不等式2x﹣m≤0得:x≤∵不等式2x﹣m≤0只有三个正整数解.∴=3,∴m=6,∴+|m﹣9|=|4﹣m|+|m﹣9|=m﹣4+9﹣m=5.故答案是:5.【点评】本题主要考查了不等式的解的求解,以及二次根式的化简求值,正确求得m的值是解题的关键.22.数据80,82,85,89,100的标准差为7.1(小数点后保留一位).【分析】根据题目中的数据,先求出这组数据的平均数,然后根据标准差的定义即可解答本题.【解答】解:数据80,82,85,89,100的平均数是:=87.2,∴这组数据的标准差是:s=≈7.1,故答案为:7.1.【点评】本题考查标准差,解答本题的关键是明确题意,利用标准差的公式进行解答.23.请给出一元二次方程x2﹣x+ =0的一个常数项,使这个方程有两个相等的实数根.【分析】根据根的判别式,方程有两个相等的实数根,△=0,列式计算即可.【解答】解:设方程的常数项为m,∵方程有两个相等的实数根,∴△=b2﹣4ac=0,即1﹣4×1×m=0,解得m=,故答案为【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣8,﹣5),白棋④的坐标为(﹣7,﹣9),那么黑棋①的坐标应该是(﹣4,﹣8).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣8,﹣5),白棋④的坐标为(﹣7,﹣9)得出:棋盘的横坐标是以左侧第一条线为﹣10,从左向右依次为﹣10,﹣9,﹣8,…;纵坐标是以下边第一条线为﹣1,向上依次为﹣9,﹣8,﹣7,….∴黑棋①的坐标应该是(﹣4,﹣8).故答案为:(﹣4,﹣8).【点评】本题主要考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.25.三角形的内切圆的切点将该圆周分为5:9:10三条弧,则此三角形的最小的内角为30°.【分析】连接OF、OE、OD,设弧ED:弧EF:弧FD=5:9:10,求出∠EOF,∠EOD,∠FOD,根据⊙O是△ABC的内切圆得出∠AFO=∠AEO=∠CEO=∠CDO=∠BDO=∠BFO=90°,求出∠B的度数即可.【解答】解:连接OF、OE、OD,设弧ED:弧EF:弧FD=5:9:10,则∠EOF=×360°=135°,∠EOD=×360°=75°,∠FOD=×360°=150°,∵⊙O是△ABC的内切圆,切点分别为E、D、F,∴∠AFO=∠AEO=∠CEO=∠CDO=∠BDO=∠BFO=90°,∴∠FOD对的角B最小,即∠B=180°﹣150°=30°,故答案为:30°.【点评】本题考查了三角形的内切圆与内心的应用,关键是求出∠FOD的度数和得出∠B=180°﹣∠FOD.26.如图,工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,则这个小孔的直径AB是毫米.【分析】已知钢珠的直径是12毫米,本题是有关圆的半径,弦长,弦心距之间的运算,通常是利用垂径定理,转化为解直角三角形问题.【解答】解:连接OA,通过圆心O,作弦AB的垂线交AB于C则在Rt△OAC中,OA=6mm,OC=9﹣6=3mmAC2+OC2=OA2,即AC2+32=62,∴mm∴mm.【点评】有关圆的半径,弧长,弦长之间的计算一般是转化为解直角三角形.27.如图,AB是⊙O的直径,⊙O交BC于D,过D作⊙O的切线DE交AC于E,且DE⊥AC,由上述条件,你能推出的正确结论有:∠ADB=∠AED=∠CED=90°,△ADE∽△ABD,∠ADE=∠B,∠CAD=∠BAD,(要求:不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,至少写出4个结论,结论不能类同).【分析】由弦切角定理可证∠EDA=∠B,又已知DE⊥AC,则有∠EAD=∠B,即可证△ADE∽△ABD;又因为AB是直径,可证∠ADB=∠ADC=∠DEA=90°.【解答】解:由弦切角定理知,∠EDA=∠B,∵DE⊥AC,AB是⊙O的直径,∴∠DEA=∠ADB=90°,∵∠EDA=∠B,∴△ADE∽△ABD;∵AB是直径,∴∠ADB=∠ADC=∠DEA=90°,∠ADB=∠AED=∠CED=90°,∴△ADE∽△ABD,∠ADE=∠B,∠CAD=∠BAD.【点评】本题利用了弦切角定理,直径对的圆周角是直角,直角三角形的性质,相似三角形的判定求解.四、解答题(共4小题,满分39分)28.(9分)阅读后填空:某家灯具厂为了比较甲、乙两种灯的使用寿命,各抽出8支做试验,结果如下(单位:小时).甲:457,438,460,443,464,459,444,451;乙:466,455,467,439,459,452,464,438.试说明哪种灯的使用寿命长?哪种灯的质量比较稳定?【分析】先根据平均数的计算公式求出甲、乙两种灯的平均寿命,再根据方差和标准差公式进行计算即可得出答案.【解答】解:∵甲种灯的平均寿命是:×(457+438+460+443+464+459+444+451)=452(小时),乙种灯的平均寿命是:×(466+455+467+439+459+452+464+438)=455(小时),∴乙种灯的使用寿命长;甲种灯的方差S2=×[42+(﹣14)2+…+(﹣1)2]=78,标准差为S甲=8.83,同理乙种灯的标准差为S乙=10.70.故甲种灯的质量比较稳定.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.29.(10分)如图,⊙O是Rt△ABC中以直角边AB为直径的圆,⊙O与斜边AC交于D,过D作DH⊥AB 于H,又过D作直线DE交BC于点E,使∠HDE=2∠A.求证:(1)DE是⊙O的切线;(2)OE是Rt△ABC的中位线.【分析】(1)连接OD,利用同弧所对的圆周角等于所对圆心角的一半,得到∠HOD=2∠A,然后用等量代换得到∠ODE=90°,证明DE是⊙O的切线.(2)利用(1)的结论有∠ODE=90°,又已知∠OBE=90°,证明△BOE≌△DOE,得到∠BOE=∠A,所以OE ∥AD,得到点E是BC的中点,可以证明OE是△ABC的中位线.【解答】解:(1)连接OD,则∠HOD=2∠A,已知∠HDE=2∠A,则∠HOD=∠HDE,∵HD⊥AB,∴∠HOD+∠HDO=90°,∴∠HDE+∠HDO=90°,即OD⊥DE,又OD是半径,∴DE是⊙O的切线;(2)∵DE是⊙O的切线,∠ABC=90°,∴∠OBE=∠ODE=90°,又OB=OD,OE=OE,∴Rt△BOE≌Rt△DOE,∴∠BOE=∠DOE,∴∠HOD=∠BOE+∠DOE=2∠BOE,又∠HOD=2∠A,∴∠BOE=∠A,∴OE∥AD,而O是AB的中点,故OE是Rt△ABC的中位线.【点评】本题考查的是切线的判定,(1)利用同弧所对的圆周角和圆心角的关系,以及等量代换求出∠ODE 的度数,证明DE是⊙O的切线.(2)利用(1)的结论证明两三角形全等,得到相等的角度,再用同位角相等两直线平行和三角形中位线的性质证明OE是△ABC的中位线.30.(10分)阅读材料,回答问题在边长为1的正方形ABCD中,E是AB的中点,CF⊥DE,F为垂足.(1)△CDF与△DEA是否相似?说明理由;(2)求CF的长.【分析】(1)利用正方形是性质和平行线的性质,由“两角法”证明△ADE∽△FCD;(2)根据相似三角形的对应边的比相等求解.【解答】解:(1)△ADE∽△FCD,理由如下:∵四边形ABCD是正方形,∴∠A=90°,AB∥CD,∴∠CDF=∠DEA.又CF⊥DE,∴∠CFD=90°,即∠CFD=∠A,因而,△ADE∽△FCD;(2)由题意知,AD=CD=1,AE=.在直角△DEA中,有DE===.由(1)可得:=,则CF==.【点评】本题考查了相似三角形的判定与性质,以及勾股定理的应用,正确证明△ADE∽△FCD是关键.31.(10分)阅读材料,回答问题一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数,≈3.6)?【分析】(1)首先表示出AC=20t,AE=AB﹣BE=100﹣40t,再利用勾股定理得出t的值,进而得出答案;(2)直接表示出FM=FA+AB﹣BM=130﹣40t,MD=20,进而利用勾股定理得出答案.【解答】解:(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C处,台风中心移到E处,则有,AC=20t,AE=AB﹣BE=100﹣40t,EC=20,在Rt△AEC中,AC2+AE2=EC2,则(20t)2+(100﹣40t)2=(20)2,整理得:t2﹣4t+3=0,解得:t1=1,t2=3,所以,途中将遇到台风,最初遇到台风的时间为1小时;(2)设台风抵达D港为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连接DM,在Rt△ADF中,AD=60,∠FAD=60°,则DF=30,FA=30,∵FM=FA+AB﹣BM=130﹣40t,MD=20,∴(30)2+(130﹣40t)2=(20)2,整理得:4t2﹣26t+39=0,解得:t1=,t2=,∴台风抵达D港时间为:小时,因轮船从A处用小时到达D港,其速度为:60÷≈25.5,故为使台风抵达D港之前轮船到达D港,轮船至少应提速6海里/时.【点评】此题主要考查了解直角三角形的应用和勾股定理的应用,正确应用勾股定理是解题关键.1.下列各式中,正确的是()A.a5+a3=a8B.a2•a3=a6C.(﹣3a2)3=﹣9a6D.【分析】分别根据合并同类项、同底数幂的乘法法则、幂的乘方与积的乘方法则、负整数指数幂的运算法则分别计算出各选项即可.【解答】解:A、由于a5和a3不是同类项,故不能合并,故本选项错误;B、根据同底数幂的乘法法则可知a2•a3=a5,故本选项错误;。
2017年安徽省六区中考数学二模试卷(解析版)
2017年安徽省六区中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.20172.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5 3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104 4.(4分)下面几何体的俯视图是()A.B.C.D.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,207.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣110.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=.12.(5分)分式方程=的解是.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.2017年安徽省六区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.2017【解答】解:2017的相反数是﹣2017.故选:C.2.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104【解答】解:将902万用科学记数法表示为:9.02×106.故选:C.4.(4分)下面几何体的俯视图是()A.B.C.D.【解答】解:图中几何体的俯视图是B在的图形,故选:B.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选:A.6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,20【解答】解:∵周长为x公分,∴边长为公分,∴()2=20,∴=20,∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选:B.7.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【解答】解:∵==9.7,S2甲>S2丙,∴选择丙.故选:C.8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选:C.10.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.【解答】解:由题意可得,FE=GE,AB=FG=4,∠FEG=90°,则FE=GE=2,点E到FG的距离为2,当点E从开始到点E到边BC上的过程中,S==﹣t2+4t(0≤t≤2),当点E从BC边上到边FG与DC重合时,S=(2≤t≤4),当边FG与DC重合到点E到边DC的过程中,S==(6﹣t)2(4≤t≤6),由上可得,选项B中函数图象符合要求,故选:B.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=2m(x﹣y)2.【解答】解:2mx2﹣4mxy+2my2,=2m(x2﹣2xy+y2),=2m(x﹣y)2.故答案为:2m(x﹣y)2.12.(5分)分式方程=的解是x=2.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.【解答】解:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52∴1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.故答案为:(n+2)2.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是①③④.【解答】解:如图,连接CF,设AC与BD的交点为点O,∵点F是AE中点,∴AF=EF,∵CE=CA,∴CF⊥AE,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵点F是Rt△ABE斜边上的中点,∴AF=BF,∴∠BAF=∠FBA,∴∠F AC=∠FBD,在△BDF和△ACF中,,∴△BDF≌△ACF,∴∠BFD=∠AFC=90°,∴BF⊥DF,所以①正确;过点F作FH⊥AD交DA的延长线于点H,在Rt△AFH中,FH<AF,在Rt△BFG中,BG>BF,∵AF=BF,∴BG>FH,∵S△ADF=FH×AD,S△BDG=BG×AD,∴S△BDG>S△ADF,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG,∵∠BAF=∠FBA,∴∠BAF=∠ADG,∵∠AFG=∠DF A,∴△AFG∽△DF A,∴=,∴AF2=FG•FD,∵EF=AF,∴EF2=FG•FD,所以③正确;∵BF=EF,∴BF2=FG•FD,∴=,∵∠BFG=∠DFB,∴△BFG∽△DFB,∴∠ABF=∠BDF,∵由③知,∠ABF=∠ADF∴∠ADF=∠BDF,∴=(利用角平分线定理),∵BD=AC,AD=BC,∴,所以④正确,故答案为:①③④.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.【解答】解:原式=1+3﹣3﹣2=﹣1.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.【解答】(1)C1的坐标是(﹣4,﹣1);(2)C2的坐标是:(4,1);(3)C3的坐标是(﹣2,1).18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)【解答】解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×2.732≈40.98(m).则CD=40.98+1.5=42.48(m).答:这栋建筑物CD的高度约为42m.19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.【解答】(1)证明:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB.(2)解:设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.【解答】解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2种可能,∴P(恰好是1男1女的)=.(2)画树状图如下:或由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P(这三个小孩中至少有1个女孩)=.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.【解答】解:(1)把点A的坐标(2,3)代入一次函数的解析式中,可得:3=2+b,解得:b=1,所以一次函数的解析式为:y=x+1;把点A的坐标(2,3)代入反比例函数的解析式中,可得:k=6,所以反比例函数的解析式为:y=;(2)把一次函数与反比例函数的解析式联立得出方程组,可得:,解得:x1=2,x2=﹣3,所以点B的坐标为(﹣3,﹣2);(3)∵A(2,3),B(﹣3,﹣2),∴使一次函数值大于反比例函数值的x的范围是:﹣3<x<0或x>2.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得5万元利润.23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠ACB+∠ADE=180°,∴∠ADE=90°,∴∠BDE=90°,∵∠F AC=∠ACB+∠B=90°+∠B,∠CED=∠EDB+∠B=90°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△AFC≌△EDC(ASA),∴F A=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△F AC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.。
2017年河南省平顶山市中考数学二模试卷含答案解析
2017年河南省平顶山市中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代码号字母用2B铅笔涂在对应的答题卡上。
1.的绝对值是()A.B.C.2 D.﹣22.使分式有意义的x的取值范围是()A.x≠﹣1 B.x≠1 C.x>﹣1 D.x<13.已知关于x的方程x2+mx﹣6=0的一个根为2,则m的值及另一个根是()A.1,3 B.﹣1,3 C.1,﹣3 D.﹣1,﹣34.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°5.为建设生态平顶山,某校学生在植树节那天,组织九年级八个班的学生到山顶公园植树,各班植树情况如下表:下列说法错误的是()班级一二三四五六七八棵数1518222529141819A.这组数据的众数是18 B.这组数据的平均数是20C.这组数据的中位数是18.5 D.这组数据的方差为06.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.一个几何体由几个相同的小正方体搭成,它的三视图如图所示,搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.88.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点9.如图,AB是⊙O的直径,点F、C是⊙O上两点,且==,连接AC、AF,过点C作CD⊥AF,交AF的延长线于点D,垂足为D,若CD=2,则⊙O的半径为()A.2B.4C.2 D.410.如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP⊥AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是()A.B.C.D.二、填空题:本大题共5个小题,每小题3分,共15分.11.(﹣1)2017﹣=.12.如图,点A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积为4,则k=.13.现有三张分别画有正三角形、平行四边形、菱形图案的卡片,它们除图案外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的每一张卡片的图案既是轴对称图形又是中心对称图形的概率是.14.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为.15.如图,在矩形纸片ABCD中,AB=5,AD=2,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则四边形EPFD为菱形时,x的取值范围是.三、解答题:本大题共8小题,共75分.16.判断代数式()的值能否等于﹣1?并说明理由.17.某校为了了解学生在家使用电脑的情况(分为“总是、较多、较少、不用”四种情况),随机在八、九年级各抽取相同数量的学生进行调查,绘制成部分统计图如下所示.请根据图中信息,回答下列问题:(1)九年级一共抽查了名学生,图中的a=,“总是”对应的圆心角为度.(2)根据提供的信息,补全条形统计图.(3)若该校九年级共有900名学生,请你统计其中使用电脑情况为“较少”的学生有多少名?18.已知函数y=2+.(1)写出自变量x的取值范围:;(2)请通过列表,描点,连线画出这个函数的图象:①列表:x…﹣8﹣4﹣3﹣2﹣1﹣12348…y…10 ﹣2﹣61064 3…②描点(在下面给出的直角坐标系中补全表中对应的各点);③连线(将图中描出的各点用平滑的曲线连接起来,得到函数的图象).(3)观察函数的图象,回答下列问题:①图象与x轴有个交点,所以对应的方程2+=0实数根是;②函数图象的对称性是.A、既是轴对称图形,又是中心对称图形B、只是轴对称图形,不是中心对称图形C、不是轴对称图形,而是中心对称图形D、既不是轴对称图形也不是中心对称图形(4)写出函数y=2+与y=的图象之间有什么关系?(从形状和位置方面说明)19.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).20.如图,已知ED为⊙O的直径且ED=4,点A(不与E、D重合)为⊙O上一个动点,线段AB经过点E,且EA=EB,F为⊙O上一点,∠FEB=90°,BF的延长线交AD的延长线交于点C.(1)求证:△EFB≌△ADE;(2)当点A在⊙O上移动时,直接回答四边形FCDE的最大面积为多少.21.小张前往某精密仪器产应聘,公司承诺工资待遇如图.进厂后小张发现:加工1件A型零件和3件B型零件需5小时;加工2件A型零件和5件B型零件需9小时.工资待遇:每月工资至少3000元,每天工作8小时,每月工作25天,加工1件A型零件计酬16元,加工1件B型零件计酬12元,月工资=底薪+计件工资.(1)小张加工1件A型零件和1件B型零件各需要多少小时?(2)若公司规定:小张每月必须加工A、B两种型号的零件,且加工B型的数量不大于A型零件数量的2倍,设小张每月加工A型零件a件,工资总额为W 元,请你运用所学知识判断该公司颁布执行此规定后是否违背了工资待遇承诺?22.已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的上边作正方形ADEF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:.(2)数学思考:如图2,当点D在线段CB的延长线上时,以上①②关系是否成立,请在后面的横线上写出正确的结论.①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:.(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若已知AB=2,CD=BC,请求出DG的长(写出求解过程).23.如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)抛物线y=x2+bx﹣2的图象过C点,交y轴于点D.(1)在后面的横线上直接写出点D的坐标及b的值:,b=;(2)平移该抛物线的对称轴所在直线l,设l与x轴交于点G(x,0),当OG 等于多少时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,直接写出P点坐标;若不存在,说明理由.2017年河南省平顶山市中考数学二模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代码号字母用2B铅笔涂在对应的答题卡上。
2017年河北省石家庄市中考数学二模试卷含答案解析
2017年河北省石家庄市中考数学二模试卷含答案解析2017年河北省石家庄市中考数学二模试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和D.0和02.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60° D.50°3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+15.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70° B.40° C.70°或40°D.70°或55°8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个C.众数是2个D.众数是5个10.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A. = B. = C. = D. =11.(2分)定义新运算:a※b=,则函数y=3※x的图象大致是()A.B.C.D.12.(2分)如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x轴、y轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A.1 B.2 C.3 D.413.(2分)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60° B.65° C.70° D.75°14.(2分)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.15.(2分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C .D .16.(2分)在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ,2n ﹣1)C .(2n ﹣1,2n +1)D .(2n ﹣1,2n )二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为 .18.如图,在正方形纸片ABCD 中,EF ∥AD ,M ,N 是线段EF 的六等分点,若把该正方形纸片卷成一个圆柱,使点A 与点D 重合,此时,底面圆的直径为10cm ,则圆柱上M ,N 两点间的距离是 cm .19.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,点F 在边AC 上,并且CF=2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .三、解答题(本题共69分)20.(4分)计算:(﹣1)0+2﹣1﹣+|1﹣|21.(5分)如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD 位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)22.(9分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.23.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是.(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.24.(10分)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求扇形AOE的面积.25.(10分)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.26.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?27.(12分)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE= ,EN= ;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?2017年河北省石家庄市中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和D.0和0【考点】17:倒数.【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60° D.50°【考点】JA:平行线的性质.【分析】先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.【解答】解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.5.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选A【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70° B.40° C.70°或40°D.70°或55°【考点】KH:等腰三角形的性质.【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①70°是底角,则顶角为:180°﹣70°×2=40°;②70°为顶角;综上所述,顶角的度数为40°或70°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】因为AB⊥BC,所以∠ABC=90°,则x+y=90°;∠ABD的度数比∠DBC的度数的2倍少15°,则x=2y﹣15;由此联立得出方程组即可.【解答】解:设∠ABD与∠DBC的度数分别为x,y,根据题意得.故选:B.【点评】此题考查二元一次方程组的运用,注意此题的等量关系:第一个等量关系从垂直定义可得∠ABD+∠DBC=90°,第二个是∠ABD的度数=∠DBC的度数×2倍﹣15.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个C.众数是2个D.众数是5个【考点】VB:扇形统计图;W4:中位数;W5:众数.【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选C.【点评】本题考查了扇形统计图的知识,通过图形观察出投进2球的人数最多是解题的关键.10.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A. = B. = C. = D. =【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:∵AB∥CD∥EF,∴=,A错误;=,B错误;=,∴=,C正确;=,D错误,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.定义新运算:a※b=,则函数y=3※x的图象大致是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】先根据新定义运算列出y的关系式,再根据此关系式及x的取值范围画出函数图象即可.【解答】解:根据新定义运算可知,y=3※x=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x 轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.【点评】此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x轴、y轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A.1 B.2 C.3 D.4【考点】F8:一次函数图象上点的坐标特征;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】根据角平分线的作法可得①正确,再直线的斜率可得∠BAO=60°,再根据线段垂直平分线的性质逆定理可得③正确,根据直角三角形的性质得出AF=2OF,再由AF=BF得出BF=2OF,进而可得④正确.【解答】解:由题意可知AF是∠BAO的平分线,故①正确;∵一次函数y=x+1∴k=,∴∠BAO=60°,故②正确;∵∠BAO=60°,∴∠ABO=30°,∵AF是∠BAO的平分线,∴∠BAF=30°,∴∠BAF=∠ABO,∴AF=BF,∴点F在AB的垂直平分线上,故③正确;∵∠OAF=30°,∴AF=2OF.∵AF=BF,∴BF=2OF,∴S△AOF:S△ABF=1:2,故④正确.故选D.【点评】此题考查的是作图﹣基本作图,角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.13.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60° B.65° C.70° D.75°【考点】L3:多边形内角与外角.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知, =⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故选D.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.14.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.【考点】G5:反比例函数系数k的几何意义.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x轴,即可用m 表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(﹣+﹣)×(2m﹣m)=.故选B.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及梯形的面积,解题的关键是用m表示出来A、B、E、D四点的坐标.本题属于基础题,难度不大,解决该题型题目时,只要设出一个点的坐标,再由该点坐标所含的字母表示出其他点的坐标即可.15.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n,2n﹣1) C.(2n﹣1,2n+1)D.(2n﹣1,2n)【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标.【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故选A.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“A n(2n﹣1,2n﹣1﹣1)”是解题的关键.二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为3×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30 000 000=3×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是5cm.【考点】M4:圆心角、弧、弦的关系.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN 的长.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.所对的圆心角为:×360°=120°,所以圆柱上M,N两点间的距离为:2×5×sin60°=5cm.故答案为:5.【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是1.2 .【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.三、解答题(本题共69分)20.计算:(﹣1)0+2﹣1﹣+|1﹣|【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣1)0+2﹣1﹣+|1﹣|=1+﹣3+﹣1=﹣2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD 位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)【考点】SD:作图﹣位似变换;KQ:勾股定理.【分析】(1)分别延长BA、BC、BD到A′、C′、D′,使BA′=2BA,BC′=2BC,BD′=2BD,然后顺次连接A′BC′D′即可得解;(2)根据网格图形,重叠部分正好是以格点为顶点的平行四边形,求出两邻边的长的,然后根据平行四边形的周长公式计算即可.【解答】解:(1)如图所示:四边形A′BC′D′就是所要求作的梯形;(2)四边形A′BC′D′与五边形EFGHK重叠部分是平行四边形EFGD′,ED′=FG=1,在Rt△EDF中,ED=DF=1,由勾股定理得EF==,∴D′G=EF=,∴四边形A′BC′D′与五边形EFGHK重叠部分的周长=ED′+FG+D′G+EF,=1+1++,=2+2.故答案为:2+2.【点评】本题考查了利用位似变换作图,关键是根据位似变换的定义找出点A、C、D的对应点的位置.22.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)在Rt △ABE 中,由tan60°==,即可求出AB=10•tan60°=17.3米;(2)假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H .由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF ﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC 这个侧面上,故小猫仍可以晒到太阳.【解答】解:(1)当α=60°时,在Rt △ABE 中,∵tan60°==,∴AB=10•tan60°=10≈10×1.73=17.3米. 即楼房的高度约为17.3米;(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H .∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=17.3米,∴CF=AF ﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大楼的影子落在台阶MC 这个侧面上,∴小猫仍可以晒到太阳.【点评】本题考查了解直角三角形的应用,锐角三角函数定义,理解题意,将实际问题转化为数学问题是解题的关键.23.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为12 ;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是44% .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)①根据各组频数之和等于总数可得a的值;②由频数分布表即可补全直方图;(2)用成绩大于或等于80分的人数除以总人数可得;(3)列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,②补充完整的频数分布直方图如下图所示,故答案为:12;(2)∵测试成绩不低于80分为优秀,∴本次测试的优秀率是:×100%=44%,故答案为:44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BA、BC、BD,所以小明和小强分在一起的概率为: =.【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.24.(10分)(2017•石家庄二模)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求扇形AOE的面积.【考点】MR:圆的综合题.【分析】(1)首先利用对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,进而利用菱形的判定方法得出答案;(2)①首先求出△ABD的面积进而得出S△OBE=S△ABD;②首先求出扇形AOE的圆心角,进而利用扇形面积求出答案.【解答】(1)证明:∵AE=EC,BE=ED,∴四边形ABCD是平行四边形,∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)解:①连结OF,∵DC的延长线于半圆相切于点F,∴OF⊥CF,∵FC∥AB,∴OF即为△ABD中AB边上的高,∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4;②过点D作DH⊥AB于点H,∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°,∴四边形OHDF为矩形,即DH=OF=4,∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°,∵D点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°,∴∠AOE=180°﹣∠EOB=150°,∴S扇形AOE==π.【点评】此题主要考查了圆的综合以及菱形、矩形的判定方法、扇形面积求法等知识,正确掌握菱形的判定与性质是解题关键.25.(10分)(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式.【分析】(1)根据抛物线F:y=x2﹣2mx+m2﹣2过点C(﹣1,﹣2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或或,解得,﹣2≤m≤0或2≤m≤4.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.(10分)(2017•石家庄二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:。
2017年安徽省中考数学二模试卷解析及答案
2017年安徽省中考数学⼆模试卷解析及答案2017年安徽省中考数学⼆模试卷参考答案与试题解析⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)每⼩题都给出代号为A、B、C、D的四个选项,其中只有⼀个是正确的,请把正确选项的代号写在题后的括号内,每⼀⼩题选对得4分,不选、选错或选出的代号超过⼀个的(不论是否写在括号内)⼀律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的⼩⽴⽅体组成的⽴体图形的主视图和左视图,那么这个⽴体图形不可能是()A.B. C. D.【考点】由三视图判断⼏何体.【分析】依次分析所给⼏何体从正⾯看及从左⾯看得到的图形是否与所给图形⼀致即可.【解答】解:A、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正⽅形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正⽅形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2?x2=x4【考点】幂的乘⽅与积的乘⽅;合并同类项;同底数幂的乘法;完全平⽅公式.【分析】结合幂的乘⽅与积的乘⽅、同底数幂的乘法的概念和运算法则进⾏求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2?x2=x4,计算正确,本选项正确.故选D.4.2016年2⽉初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学⽣约为27600⼈,与去年相⽐增加300多⼈,⽤科学记数法表⽰“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平⾏线的性质;三⾓形的外⾓性质.【分析】根据两直线平⾏,内错⾓相等以及三⾓形外⾓和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,⼜∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄⾦周”期间,⼩东和爸爸、妈妈外出旅游,⼀家三⼈随机站在⼀排拍照纪念,⼩东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展⽰所有6种等可能的结果数,再找出⼩东站在中间的结果数,然后根据概率公式求解.【解答】解:设⼩东和爸爸、妈妈分别为:甲、⼄、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以⼩东在中间的概率=.故选:B.7.甲、⼄两个车站相距96千⽶,快车和慢车同时从甲站开出,1⼩时后快车在慢车前12千⽶,快车⽐慢车早40分钟到达⼄站,快车和慢车的速度各是多少?设快车的速度为x千⽶/时,则下列⽅程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式⽅程.【分析】设快车的速度为x千⽶/时,根据快车⽐慢车早40分钟到达⼄站,列⽅程求解.【解答】解:设快车的速度为x千⽶/时,可得:,故选C8.如图所⽰,△ABC是等边三⾓形,点D为AB上⼀点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三⾓形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表⽰出AE=DE=2EG=2x、DG=x,继⽽在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从⽽得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x?=(2﹣2)x,∴==,故选:D.9.如图,原有⼀⼤长⽅形,被分割成3个正⽅形和2个长⽅形后仍是中⼼对称图形.若原来该⼤长⽅形的周长是120,则分割后不⽤测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中⼼对称图形.【分析】⾸先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该⼤长⽅形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来⼤长⽅形的周长的,所以它们的周长不⽤测量就能知道,⽽图形③的周长不⽤测量⽆法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该⼤长⽅形的周长是120,∴2(a+2b+c)=120.根据图⽰,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不⽤测量就能知道,图形③的周长不⽤测量⽆法知道.∴分割后不⽤测量就能知道周长的图形的标号为①②.故选:A.10.⼀元⼆次⽅程m1x2+x+1=0的两根分别为x1,x2,⼀元⼆次⽅程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的⼤⼩关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,⽅程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是⼀元⼆次⽅程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成⽴,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这⼀关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是⼀元⼆次⽅程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是⼀元⼆次⽅程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.化简:﹣=.【考点】⼆次根式的加减法.【分析】先把各根式化为最简⼆次根式,再根据⼆次根式的减法进⾏计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,⾃变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代⼊函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】⾸先根据n=1、2、3、4时,“?”的个数分别是3、6、9、12,判断出第n个图形中“?”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n的值是多少即可.【解答】解:∵n=1时,“?”的个数是3=3×1;n=2时,“?”的个数是6=3×2;n=3时,“?”的个数是9=3×3;n=4时,“?”的个数是12=3×4;∴第n个图形中“?”的个数是3n;⼜∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,解得n=11或n=0(舍去),故答案为:11.14.如图,反⽐例函数y=(x>0)的图象经过矩形OABC对⾓线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是①④(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.【考点】反⽐例函数综合题.=S△OBA,由点E、点D在反【分析】①正确.由四边形ABCD是矩形,推出S△OBC=S△OAD=,即可推出S△OEB=S△OBD.⽐例函数y=(x>0)的图象上,推出S△CEO②错误.设点B(m,n),D(m,n′)则M(m,n,),由点M,点D在反⽐例函数y=(x>0)的图象上,可得m?n=m?n′,推出n′=n,推出AD=AB,推出BD=3AD,故②错误.=S△OBD﹣S△BDM=?b?a﹣?b?a=ab,S△CEO=S△OAD=③错误.因为S△ODMab=ab,所以S△ODM:S△OCE=ab:ab=3:2,故③错误.④正确.由==3,推出DE∥AC,推出△BED∽△BCA.【解答】解:∵四边形ABCD是矩形,=S△OBA,∴S△OBC∵点E、点D在反⽐例函数y=(x>0)的图象上,=S△OAD=,∴S△CEO=S△OBD,故①正确,∴S△OEB设点B(m,n),D(m,n′)则M(m,n,),∵点M,点D在反⽐例函数y=(x>0)的图象上,∴m?n=m?n′,∴n′=n ,∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =?b?a ﹣?b?a=ab ,∵S △CEO =S △OAD =?a?b=ab ,∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC ,∴BE=3EC ,∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确.故答案为①④三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】⾸先把括号内的分式进⾏通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代⼊数值计算即可.【解答】解:原式=(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可.【解答】解:解不等式x﹣1>3x,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本⼤题共2⼩题,每⼩题8分,满分16分)17.现有⼀个“Z”型的⼯件(⼯件厚度忽略不计),如图⽰,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该⼯件如图摆放时的⾼度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直⾓三⾓形的应⽤.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:⼯件如图摆放时的⾼度约为58.8cm.18.在平⾯直⾓坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中⼼,将△AEF作位似变换且缩⼩为原来的,在⽹格内画出⼀个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利⽤⽹格特点和旋转的性质,画出点O,B对应点E,F,从⽽得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从⽽得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.如图,在平⾯直⾓坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反⽐例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反⽐例函数的解析式.【考点】待定系数法求反⽐例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反⽐例函数y=(x>0)的图象上,得到⽅程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反⽐例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反⽐例函数的解析式为:y=.20.如图,已知△ABC为直⾓三⾓形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆⼼O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直⾓三⾓形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平⾏线的性质和等腰三⾓形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,⼜∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出⼤省,农民外出务⼯增长家庭收⼊的同时,也⼀定程度影响了⼦⼥的管理和教育,缺少管理和教育的留守⼉童的学习和⼼理健康状况等问题⽇趋显现,成为社会关注的焦点.该省相关部门就留守⼉童学习和⼼理健康状况等问题进⾏调查,本次抽样调查了该省某县部分留守⼉童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下⾯两幅不完整的统计图,请根据图中的信息解决下⾯的问题.(1)在这次随机抽样调查中,共抽查了多少名学⽣留守⼉童?(2)扇形统计图中C类所占的圆⼼⾓是144°;这次调查中为D类的留守⼉童有20⼈;(3)请你估计该县20000名留守⼉童中,出现较为严重问题及以上的⼈数.【考点】条形统计图;全⾯调查与抽样调查;⽤样本估计总体;扇形统计图.【分析】(1)根据A类⼈数是10,所占的百分⽐是10%,据此即可求得总⼈数;(2)利⽤360°乘以对应的百分⽐即可求得C类圆⼼⾓的度数;利⽤总⼈数乘以对应的百分⽐求得D类的⼈数;(3)利⽤总⼈数乘以对应的百分⽐即可求解.【解答】解:(1)抽查的⼈数是10÷10%=100(⼈);(2)C类所占的圆⼼⾓是360°×=144°,D类的留守⼉童⼈数所占的百分⽐是:=40%,则D类的⼈数是100×(1﹣10%﹣30%﹣40%)=20(⼈),故答案是:144;20;(3)出现较为严重问题及以上的⼈数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业⽣成⼀种节能产品,投放市场供不应求.若该企业每⽉的产量保持在⼀定的范围,每套产品的⽣产成本不⾼于50万元,每套产品的售价不低于120万元.已知这种产品的⽉产量x(套)与每套的售价y1(万元)之间满⾜关系式y1=190﹣2x.⽉产量x(套)与⽣成总成本y2(万元)存在如图所⽰的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求⽉产量x的取值范围;(4)当⽉产量x(套)为多少时,这种产品的利润W(万元)最⼤?最⼤利润是多少?【考点】⼆次函数的应⽤.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从⽽可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最⼤值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即⽉产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最⼤值,此时W=2650,即当⽉产量x(套)为35套时,这种产品的利润W(万元)最⼤,最⼤利润是2650万元.⼋、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对⾓线AC平分,且AC2=AB?AD.我们称该四边形为“可分四边形”,∠DAB称为“可分⾓”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分⾓”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分⾓”,且AC=4,则△DAB 的最⼤⾯积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三⾓形内⾓和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成⽐例,得出AC2=AB?AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三⾓形内⾓和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB?AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB?AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB?AD=AC2=16,当DA⊥DB时,△DAB的最⼤,最⼤⾯积为8,故答案为:8.。
2017年云南省昆明市官渡区中考数学二模试卷含答案解析
2017年云南省昆明市官渡区中考数学二模试卷一、填空题(共6小题,每小题3分,满分18分)1.﹣3的绝对值是.2.函数y=的自变量x取值范围是.3.如图,在△ABC中,AB=AC,边AB的垂直平分线MN交AC于点D,若△BCD的周长为24cm,BC=10cm,则AB的长为cm.4.如图,AB、CD相交于点O,OC=4,OD=6,AC∥BD,EF是△ODB的中位线,且EF=4,则AC 的长为.5.用一个圆心角为90°半径为16cm的扇形做成一个圆锥的侧面(接缝处不重叠),则这个圆锥底面圆的半径为cm.6.如图有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,第4幅图中有7个菱形,第n(n是正整数)幅图中共有个菱形.二、选择题(共8小题,每小题4分,满分32分)7.﹣的倒数是()A.B.﹣ C.﹣ D.8.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中既是轴对称图形又是中心对称图形的个数有()A.4个B.3个C.2个D.1个9.H7N9禽流感病毒的直径大约为0.0000000805米,这个数用科学记数法表示为()A.8.05×10﹣8B.8.05×10﹣7C.80.5×10﹣9D.0.805×10﹣710.下列运算正确的是()A.(﹣)2=﹣ B.(3a2)3=9a6C.5﹣3÷5﹣5=D.11.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,112.化简的结果为()A.B. C. D.﹣b13.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 14.已知⊙O是△ABC的外接圆,边BC=4cm,且⊙O半径也为4cm,则∠A的度数是()A.30° B.60°或120°C.150°D.30°或150°三、解答题(共9小题,满分70分)15.解分式方程:16.我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A、B、C、D、E五个组,x表示测试成绩),A组:90≤x≤100 B组:80≤x<90 C组:70≤x<80 D组:60≤x<70 E组:x<60;通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.(1)填空:参加调查测试的学生共有人;A组所占的百分比为,在扇形统计图中,C组所在扇形的圆心角为度;(2)请将条形统计图补充完整.(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?17.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.18.如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.19.已知有甲、乙两个不透明的袋子,甲袋内装有标记数字﹣1,2,3的三张卡片,乙袋内装有标记数字2,3,4的三张卡片(卡片除数字不同其余都相同).先从甲袋中随机抽取一张卡片,记录下数字,再从乙袋中随机抽取一张卡片,记录下数字.(1)利用列表或画树状图的方法(只选其中一种)表示出所抽两张卡片上数字之积所有可能的结果:(2)求抽出的两张卡片上的数字之积是3的倍数的概率.20.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).21.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:(1)该采购员最多可购进篮球多少只?(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?22.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.23.如图,在平面直角坐标系中,抛物线y=ax2+6x+c(a≠0)交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5),点B的坐标为(1,0).(1)求此抛物线的解析式及定点坐标;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并说明理由;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2017年云南省昆明市官渡区中考数学二模试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.﹣3的绝对值是 3 .【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.2.函数y=的自变量x取值范围是x≠2 .【考点】E4:函数自变量的取值范围;62:分式有意义的条件.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,解得答案.【解答】解:根据题意得x﹣2≠0,解得:x≠2;故答案为:x≠2.3.如图,在△ABC中,AB=AC,边AB的垂直平分线MN交AC于点D,若△BCD的周长为24cm,BC=10cm,则AB的长为14 cm.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AD=BD,然后求出△DBC的周长=AC+BC=AB+BC,再代入数据进行计算即可得解.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC,∵BC=10cm,△DBC的周长是24cm,∴AC=24﹣10=14cm.故答案为:14cm.4.如图,AB、CD相交于点O,OC=4,OD=6,AC∥BD,EF是△ODB的中位线,且EF=4,则AC的长为.【考点】KX:三角形中位线定理.【分析】根据三角形中位线定理求出BD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵EF是△ODB的中位线,∴BD=2EF=8,∵AC∥BD,∴=,即=,解得,AC=,故答案为:.5.用一个圆心角为90°半径为16cm的扇形做成一个圆锥的侧面(接缝处不重叠),则这个圆锥底面圆的半径为 4 cm.【考点】MP:圆锥的计算.【分析】半径为16cm,圆心角为90°的扇形的弧长是=8π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是8π,设圆锥的底面半径是r,则得到2πr=8π,求出r的值即可.【解答】解:∵ =8π,圆锥的底面周长等于侧面展开图的扇形弧长,∴圆锥的底面周长是8ππcm,设圆锥的底面半径是r,则得到2πr=8π,解得:r=4(cm).故答案为:4.6.如图有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,第4幅图中有7个菱形,第n(n是正整数)幅图中共有(2n﹣1)个菱形.【考点】38:规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:分析可得:第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,…,∵1=1×2﹣1,3=2×2﹣1,5=3×2﹣1,∴故第n幅图中共有(2n﹣1)个.故答案为:(2n﹣1).二、选择题(共8小题,每小题4分,满分32分)7.﹣的倒数是()A.B.﹣ C.﹣ D.【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣的倒数是﹣,故选:B.8.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中既是轴对称图形又是中心对称图形的个数有()A.4个B.3个C.2个D.1个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:从左数第一、四个是轴对称图形,也是中心对称图形.第二是不轴对称图形,故不合题意,第三个图形不是中心对称图形,是轴对称图形,不合题意.故选:C.9.H7N9禽流感病毒的直径大约为0.0000000805米,这个数用科学记数法表示为()A.8.05×10﹣8B.8.05×10﹣7C.80.5×10﹣9D.0.805×10﹣7【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000000805=8.05×10﹣8,故选:A.10.下列运算正确的是()A.(﹣)2=﹣ B.(3a2)3=9a6C.5﹣3÷5﹣5=D.【考点】47:幂的乘方与积的乘方;1E:有理数的乘方;22:算术平方根;6F:负整数指数幂.【分析】分别利用积的乘方运算法则以及二次根式的加减运算法则、同底数幂的除法运算法则分别化简求出答案.【解答】解:A、(﹣)2=,故此选项错误;B、(3a2)3=27a6,故此选项错误;C、5﹣3÷5﹣5=25,故此选项错误;D、﹣=2﹣5=﹣3,正确;故选:D.11.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,1【考点】W7:方差;VD:折线统计图;W4:中位数;W5:众数.【分析】根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是: [2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1;故选:A.12.化简的结果为()A.B. C. D.﹣b【考点】66:约分.【分析】把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,把互为相反数的因式化为相同的因式.【解答】解: =.故选:B.13.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 【考点】AC:由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.14.已知⊙O是△ABC的外接圆,边BC=4cm,且⊙O半径也为4cm,则∠A的度数是()A.30° B.60°或120°C.150°D.30°或150°【考点】MA:三角形的外接圆与外心.【分析】利用等边三角形的判定与性质得出∠BOC=60°,再利用圆周角定理得出答案【解答】解:如图:连接BO,CO,∵△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°.若点A′在劣弧BC上时,∠A′=150°.∴∠A=30°或150°.故选D.三、解答题(共9小题,满分70分)15.解分式方程:【考点】B3:解分式方程.【分析】因为3﹣x=﹣(x﹣3),所以可确定方程最简公分母为:(x﹣3),去分母时要注意符号变化.【解答】解:去分母得:1﹣x=2(x﹣3),整理方程得:﹣3x=﹣7,∴x=,经检验x=是原方程的解,∴原方程的解为x=.16.我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A、B、C、D、E五个组,x表示测试成绩),A组:90≤x≤100 B组:80≤x<90 C组:70≤x<80 D组:60≤x<70 E组:x<60;通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.(1)填空:参加调查测试的学生共有400 人;A组所占的百分比为25% ,在扇形统计图中,C组所在扇形的圆心角为72 度;(2)请将条形统计图补充完整.(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据E组有40人,所占的百分比是10%,据此即可求得总人数,根据百分比的意义求得A组所占百分比,利用360°乘以对应的百分比求得C组所在扇形的圆心角度数;(2)利用总人数乘以对应的百分比求得B组的人数,从而补全直方图;(3)利用总人数乘以对应的百分比求解.【解答】解:(1)参加调查的学生数是40÷10%=400(人),A组所占的百分比是=25%,C组所在扇形的圆心角的度数是360×=72°.故答案是:400,25%,72°;(2)B组的人数是400×30%=120(人).(3)3000×55%=1650(人).答:全校测试成绩为优秀的学生大约有1650人.17.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【考点】LB:矩形的性质;L6:平行四边形的判定;L8:菱形的性质.【分析】(1)首先根据矩形的性质可得AB平行且等于CD,然后根据DE=BF,可得AF平行且等于CE,即可证明四边形AFCE是平行四边形;(2)根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解答】解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,化简有16x﹣28=0,解得:x=,将x=代入原方程检验可得等式两边相等,即x=为方程的解.则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.18.如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)得出点C和点D的坐标,根据三角形面积公式计算即可.【解答】解:(1)把x=﹣1,y=2;x=2,y=b代入y=,解得:k=﹣2,b=﹣1;把x=﹣1,y=2;x=2,y=﹣1代入y=mx+n,解得:m=﹣1,n=1;(2)直线y=﹣x+1与y轴交点C的坐标为(0,1),所以点D的坐标为(0,﹣1),点B的坐标为(2,﹣1),所以△ABD的面积=.19.已知有甲、乙两个不透明的袋子,甲袋内装有标记数字﹣1,2,3的三张卡片,乙袋内装有标记数字2,3,4的三张卡片(卡片除数字不同其余都相同).先从甲袋中随机抽取一张卡片,记录下数字,再从乙袋中随机抽取一张卡片,记录下数字.(1)利用列表或画树状图的方法(只选其中一种)表示出所抽两张卡片上数字之积所有可能的结果:(2)求抽出的两张卡片上的数字之积是3的倍数的概率.【考点】X6:列表法与树状图法.【分析】(1)列表法列出所抽两张卡片上数字之积所有可能的结果;(2)根据概率公式求解可得.【解答】解:(1)列表如下:共有9种结果,且每种结果发生的可能性相同;(2)∵数字之积为3的倍数的情况共有5种:﹣3,6,6,9,12,∴抽出的两张卡片上的数字之积是3的倍数的概率.20.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠C ED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点A作AH⊥CD,垂足为H,在Rt△ACH中求出CH,在Rt△ECD中,再求出EC即可.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2,∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.21.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:(1)该采购员最多可购进篮球多少只?(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?【考点】C9:一元一次不等式的应用.【分析】(1)首先设采购员最多购进篮球x,排球只,列出不等式方程组求解;(2)如图看图可知篮球利润大于排球,则可推出篮球最多时商场盈利最多.【解答】解:(1)设采购员可购进篮球x只,则排球是只,依题意得130x+100≤11815解得x≤60.5∵x是整数∴x=60答:购进篮球和排球共100只时,该采购员最多可购进篮球60只.(2)设篮球x只,则排球是只,则,由①得,x≤60.5,由②得,x≥58,∵篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,故篮球60只,此时排球40只,商场可盈利×60+×40=1800+800=2600(元).即该商场可盈利2600元.22.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)连结OE,如图,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,则∠OBE=∠DBO,于是可判断OE∥BD,再利用等腰三角形的性质得到BD⊥AC,所以OE⊥AC,于是根据切线的判定定理可得AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,证明△AOE∽△ABD,利用相似比得到=,然后解方程求出r即可.【解答】解:(1)AC与⊙O相切.理由如下:连结OE,如图,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=∠DBO,∴OE∥BD,∵AB=BC,D是AC中点,∴BD⊥AC,∴OE⊥AC,∴AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,由(1)知,OE∥BD,∴△AOE∽△ABD,∴=,即=,∴r=,即⊙O半径是.23.如图,在平面直角坐标系中,抛物线y=ax2+6x+c(a≠0)交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5),点B的坐标为(1,0).(1)求此抛物线的解析式及定点坐标;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并说明理由;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把A(0,﹣5),B(1,0)代入y=ax2+6x+c得关于a、c的方程组,然后解方程组即可,再把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先解方程﹣x2+6x﹣5=0得C(5,0),则BC=4,再利用勾股定理计算出AB=,作CE⊥BD于E点,如图1,证明Rt△ABO∽Rt△BCE,利用相似比可计算出CE=,则根据切线的性质得⊙C的半径为,然后根据直线与圆的位置关系的判定方法判断抛物线的对称轴与⊙C的位置关系;(3)讨论:当∠PCA=90°时,如图3,CP交y轴于Q,利用△AOC为等腰直角三角形可得到△OCQ为等腰直角三角形,则直线CQ的解析式为y=﹣x+5,于是解方程组得此时点P坐标;当∠PAC=90°时,如图4,过点P作PF⊥y轴于点F,利用△AOC为等腰直角三角形得到△PAF为等腰直角三角形.设点P坐标为(t,﹣t2+6t﹣5),则﹣5﹣(﹣t2+6t ﹣5)=t,然后解方程求出t即可得到此时点P坐标.【解答】解:(1)把A(0,﹣5),B(1,0)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5,∵y=﹣(x﹣3)2+4,∴抛物线的顶点坐标为(3,4);(2)抛物线的对称轴与⊙C相离.理由如下:当y=0时,﹣x2+6x﹣5=0,解得x1=1,x2=5,则C(5,0),∴BC=4,在Rt△OAB中,AB==,作CE⊥BD于E点,如图1,∵AB⊥BD,∴∠ABO+∠CBE=90°,而∠ABO+∠BAO=90°,∴∠BAO=∠CBE,∴Rt△ABO∽Rt△BCE,∴=,即=,∴CE=,∵⊙C与BD相切,∴⊙C的半径为,∵点C到对称轴x=3的距离为2,而2>,∴抛物线的对称轴与⊙C相离;(3)存在.(I)当∠PCA=90°时,如图3,CP交y轴于Q,∵A(0,﹣5),C(5,0),∴△AOC为等腰直角三角形,∠OCA=45°;∵PC⊥AC,∴∠PCO=45°,∴△OCQ为等腰直角三角形,∴OQ=OC=5,∴Q(0,5),易得直线CQ的解析式为y=﹣x+5,解方程组得或,此时点P坐标为(2,3);(II)当∠PAC=90°时,如图4,过点P作PF⊥y轴于点F,∵A(0,﹣5),C(5,0),∴△AOC为等腰直角三角形,∠OAC=45°;∵PA⊥AC,∴∠PAF=45°,即△PAF为等腰直角三角形.设点P坐标为(t,﹣t2+6t﹣5),∵AF=PF,∴﹣5﹣(﹣t2+6t﹣5)=t解得t=0或t=7,此时点P坐标为(7,﹣12),综上所述,存在点P,使△ACP是以AC为直角边的直角三角形.点P的坐标为(2,3)或(7,﹣12).。
江苏省宿迁市中考数学二模试卷含答案解析
2017年江苏省宿迁市中考数学二模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中恰有一项是符合题目要求的,请将正确选项前的字母代号写在答题纸的相应位置上)1.(3分)2017的相反数是()A.2017 B.﹣2017 C.D.﹣2.(3分)下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.(x3)4=x7D.2x2⋅x3=2x53.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)已知关于x的二元一次方程组,若x+y>4,则m的取值范围是()A.m>2 B.m<4 C.m>5 D.m>65.(3分)如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46°C.67°D.78°6.(3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元7.(3分)如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=7,CE=1,则MN的长()A.3 B.5 C.6 D.88.(3分)在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)9.(3分)因式分解:xy2﹣4x=.10.(3分)当x=时,分式无意义.11.(3分)如图,在正五边形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB的大小是度.12.(3分)将半径为6cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为.13.(3分)无论m取什么实数,点A(m+1,2m﹣2)都在直线l上.若点B(a,b)是直线l上的动点,(2a﹣b﹣5)2017的值等于.14.(3分)如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E 在OB的延长线上,当正方形C DEF的边长为4时,则阴影部分的面积为.15.(3分)关于x的方程=1的解是不小于1的数,则a的取值范围是.16.(3分)在矩形ABCD中,AB=8,BC=6,点P在边AB上.若将△DAP沿DP 折叠,使点A落在矩形对角线上的点A′处,则AP的长为.三、解答题(本大题共10小题,共72分,解答时应写出文字说明、证明过程或演算步骤.)17.(6分)计算:20170﹣|﹣|+(﹣)﹣1+2sin45°.18.(6分)解不等式组:,并把解集在数轴上表示出来.19.(6分)先化简,再求值:,其中.20.(6分)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)请通过计算,补全条形统计图;(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为;(3)根据调查结果,可估计出该校九年级学生中减压方式的众数和中位数分别是,.21.(6分)将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A,B都在甲组的概率是多少?22.(6分)如图,小明在大楼45米高(即PH=45米,且PH⊥HC)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:.(点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上)(1)∠PBA的度数等于度;(直接填空)(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.414,≈1.732).23.(8分)(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4.①求∠ABC的度数;②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;(2)如图2,已知▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC 交⊙O于点E,连接DE.求证:DE=DC.24.(8分)已知:一次函数y=﹣x+b的图象与x轴、y轴的交点分别为A、B与反比例函数的图象交于点C、D,且.(1)求∠BAO的度数;(2)求O到BC的距离.25.(10分)如图乙,△AB C和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A 旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是.①BD=CE②BD⊥CE③∠ACE+∠DBC=45°④BE2=2(AD2+AB2)(2)若AB=4,AD=2,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②求旋转过程中线段PB长的最大值.26.(10分)已知抛物线y=ax2+bx+c与x轴交点A(1,0),C(﹣3,0).与y 轴交点B(0,3),如图1所示,D为抛物线的顶点.(1)求抛物线的解析式.(2)如图1若R为y轴上的一个动点,连接AR,则RB+AR的最小值为(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线、CD、CB于点Q、F、E,如图2所示,求证:EF=EP.(4)设此抛物线的对称轴为直线MN,在直线MN上取一点T,使∠BTN=∠CTN.直接写出点T的坐标.2017年江苏省宿迁市中考数学二模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中恰有一项是符合题目要求的,请将正确选项前的字母代号写在答题纸的相应位置上)1.【解答】解:2017的相反数是﹣2017,故选:B.2.【解答】解:A、x2和x3不能合并,故本选项不符合题意;B、结果是x2﹣4x+4,故本选项不符合题意;C、结果是x12,故本选项不符合题意;D、结果是2x5,故本选项符合题意;故选:D.3.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=s inα,OQ=cosα,则P的坐标为(cosα,sinα),故选:C.【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>4得:﹣>4,去分母得:2m﹣3﹣1>8,解得:m>6.故选:D.5.【解答】解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选:B.6.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选:C.【解答】解:连接AC、CF、AF,如图所示:∵矩形ABCD绕点C顺时针旋转90°得到矩形FFCE,∴∠ABC=90°,∴AC===5AC=BD=GE=CF,AC与BD互相平分,GE与CF互相平分,∵点M、N分别是BD、GE的中点,∴M是AC的中点,N是CF的中点,∴MN是△ACF的中位线,∴MN=AF,∵∠ACF=90°,∴△ACF是等腰直角三角形,∴AF=AC=5×=10,∴MN=5.故选:B.8.【解答】解:解方程组得:x2﹣bx+1=0,∵直线y=﹣x+b与反比例函数y=的图象有2个公共点,∴方程x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b>2,或b<﹣2,故选:C.二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)9.【解答】解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).10.【解答】解:依题意得:x+2=0,解得x=﹣2.故答案是:﹣2.11.【解答】解:∵△BCF是等边三角形,∴BF=BC,∠FBC=60°,∵在正五边形ABCDE中,AB=BC,∠ABC=108°,∴AB=BF,∠ABF=48°,∴∠AFB=∠BAF==66°,故答案为:66.12.【解答】解:作半径OC⊥AB于H,如图,∵圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴CH=OH=3∴OA=2OH∴∠OAH=30°,∴∠AOB=120°,设圆锥的底面圆的半径为r,∴2π•r=,解得r=2,∴圆锥的高==4.故答案为4.13.【解答】解:∵令m=0,则B(1,﹣2);再令m=1,则B(2,0),由于m不论为何值此点均在直线l上,∴设此直线的解析式为y=kx+b(k≠0),∴,解得,∴此直线的解析式为:y=2x﹣4,∵B(a,b)是直线l上的点,∴2a﹣4=b,即2a﹣b=4,∴(2a﹣b﹣5)2017=(4﹣5)2017=﹣1.故答案是:﹣1.14.【解答】解:∵在扇形AOB中∠AOB=90°,且=,∴∠COD=45°,∴OC=4×=8,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×(4)2=8π﹣16.故答案为:8π﹣16.15.【解答】解:分式方程去分母得:2x+a=x﹣2,解得:x=﹣a﹣2,由分式方程的解不小于1,得到﹣a﹣2≥1,且﹣a﹣2≠2,解得:a≤﹣3且a≠﹣4,故答案为:a≤﹣3且a≠﹣416.【解答】解:①点A落在矩形对角线BD上,如图1所示.∵AB=8,AD=6,∴BD=10,根据折叠的性质,AD=A′D=6,AP=A′P,∠A=∠PA′D=90°,∴BA′=4,设AP=x,则BP=8﹣x,∵BP2=BA′2+PA′2,∴(8﹣x)2=x2+42,解得:x=3,∴AP=3;②点A落在矩形对角线AC上,如图2所示:由折叠的性质可知PD垂直平分AA′,∴∠BAC+∠A′AD=∠PDA+∠A′AD=90°.∴∠BAC=∠PDA.∴tan∠BAC=tan∠PDA.∴=,即=.∴AP=.综上所述AP的长为3或.故答案为:3或.三、解答题(本大题共10小题,共72分,解答时应写出文字说明、证明过程或演算步骤.)17.【解答】解:20170﹣|﹣|+(﹣)﹣1+2sin45°=1﹣﹣3+=﹣2.18.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,19.【解答】解法一解:原式===当时,原式=.解法二:原式===当时,原式=.20.【解答】解:(1)一共抽查的学生:8÷16%=50人,参加“体育活动”的人数为:50×30%=15人,补全统计图如图所示:(2)“享受美食”所对应扇形的圆心角的度数为:360°×=72°;(3)B出现了15次,出现的次数最多,则众数是B;因为共有50人,把这组数据从小到大排列,最中间两个都是C,所以中位数是C.故答案为:72°;B,C.21.【解答】解:所有可能出现的结果如下:甲组乙组结果AB CD(AB,CD)AC BD(AC,BD)AD BC(AD,BC)BC AD(BC,AD)BD A C(BD,AC)CD AB(CD,AB)总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A在甲组的结果有3种,所以A在甲组的概率是.(2分)(2)所有的结果中,满足A,B都在甲组的结果有1种,所以A,B都在甲组的概率是.(6分)22.【解答】解:(1)∵山坡的坡度i(即tan∠ABC)为1:.∴tan∠ABC=,∴∠ABC=30°;∵从P点望山脚B处的俯角60°,∴∠PBH=60°,∴∠ABP=180°﹣30°﹣60°=90°故答案为:90.(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,∴△PAB为直角三角形,又∵∠APB=45°,在直角△PHB中,PB=PH÷sin∠PBH=45÷=30(m).在直角△PBA中,AB=PB•tan∠BPA=30≈52.0(m).故A、B两点间的距离约为52.0米.23.【解答】(1)解:①连结OA、OC,如图1,∵OA=OC=4,AC=4,∴OA2+OC2=AC2,∴△OCA为等腰直角三角形,∠AOC=90°,∴∠ABC=∠AOC=45°;②直线PC与⊙O相切.理由如下:∵AP是⊙O的切线,∴∠OAP=90°,而∠AOC=90°,∴AP∥OC,而AP=OC=4,∴四边形APCO为平行四边形,∵∠AOC=90°,∴四边形AOCP为矩形,∴∠PCO=90°,∴PC⊥OC,∴PC为⊙O的切线;(2)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠A=180°,∠DCE=∠B,∵∠E+∠A=180°,∴∠E=∠B,∴∠DCE=∠E,∴DC=DE.24.【解答】解:(1)在y=﹣x+b中,令y=0,则x=b,令x=0,y=b,∴A(b,0),B(0,b),∴OA=b,OB=b,∴tan∠BAO==1,∴∠BAO=45°;(2)过D作DE⊥x轴于E,∴DE∥OB,∴△ADE∽△AOB,∴,∵点D在一次函数y=﹣x+b的图象上,∴设D(m,﹣m+b),∵,∴,∴,①,∵点D反比例函数的图象上,∴m(﹣m+b)=5,②,①,②联立方程组解得m=±,∵D在第一象限,∴m=,∴b=,∴OA=OB=,∴AB=OA=3,∴O到BC的距离=AB=.25.【解答】(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确;②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确;③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确;④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图2中,当点E在AB上时,BE=AB﹣AE=2.∵∠EAC=90°,∴CE==2,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=∴PB=.b、如图3中,当点E在BA延长线上时,BE=6.∵∠EAC=90°,∴CE==2,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=综上,PB=或.②解:如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC==2,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=2,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=2+2.综上所述,PB长的最大值是2+2.26.【解答】解:(1)根据题意得:,解得:,则抛物线的解析式是y=﹣x2﹣2x+3;(2)如图1中,作RH⊥BC于H.∵OB=OC=3,∠COB=90°,∴BC=3,∠HBR=45°,在Rt△BHR中,RH=BR,∴AR+BR=AR+RH,∴当H、R、A共线时,AR+BR=AR+RH的值最小,此时•BC•AH=•AC•OB,∴AH=2,∴AR+BR的最小值为2.故答案为2(3)如图2中,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,则D的坐标是(﹣1,4).设直线BC的解析式是y=kx+b,则,解得:,则直线BC的解析式是y=x+3.同理,直线CD的解析式是y=2x+6.∵动点P(m,0)在x轴上,﹣3<m<﹣1,且PF⊥x轴.∴点E(m,m+3),点F(m,2m+6),即PE=m+3,PF=2m+6.EF=PF﹣PE=(2m+6)﹣(m+3)=m+3.∴EF=EP;(4)如图3中,延长AB交MN于T,连接TC.∵MN垂直平分线段AC,∴TC=TA,∴∠CTN=∠ATN,即∠CTN=∠BTN.∵直线AB的解析式为y=﹣3x+3,∴x=﹣1时,y=6,∴T的坐标(﹣1,6).。
山东省潍坊市2017年中考数学二模试卷(含解析)
2017年山东省潍坊市中考数学二模试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是()A.a n•a2=a2n B.a3•a2=a6C.a n•(a2)n=a2n+2D.a2n﹣3÷a﹣3=a2n2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×1083.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米4.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠35.若关于x的方程x2﹣+cosα=0有两个相等的实数根,则锐角α为()A.30° B.45° C.60° D.75°6.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是()A.40π B.24π C.20 πD.12π7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°8.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A.B.C.D.9.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C. D.211.如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A .1﹣B .C .1﹣D .12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )A .B .C .D .二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.分解因式:x 2﹣y 2﹣3x ﹣3y= .14.计算﹣|2﹣2cos30°|+()﹣1﹣(1﹣π)0的结果是 . 15.如图,已知函数y=ax+b 与函数y=kx ﹣3的图象交于点P (4,﹣6),则不等式ax+b ≤kx ﹣3<0的解集是 .16.计算: = .17.如图,已知正方形ABCD 的对角线交于点O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE=4,CF=3,则EF 等于 .18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20= .三、解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤)19.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:请你选择其中的一种方法,求教学楼的高度(结果保留整数)20.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.21.小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s 千米,且s与t之间的函数关系的图象如图中的折线段OA﹣AB所示.(1)试求折线段OA﹣AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)22.LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?23.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).24.如图,在Rt△ABC中,∠C=90°,sinA=,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF.(1)求证:DF为⊙O的切线;(2)若AO=x,DF=y,求y与x之间的函数关系式.25.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2017年山东省潍坊市中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是()A.a n•a2=a2n B.a3•a2=a6C.a n•(a2)n=a2n+2D.a2n﹣3÷a﹣3=a2n【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】根据同底数幂的除法法则、同底数幂的乘法法则计算,判断即可.【解答】解:a n•a2=a2+n,A选项错误;a3•a2=a5,B选项错误;a n•(a2)n=a3n,C选项错误;a2n﹣3÷a﹣3=a2n,D选项正确,故选:D.2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B3.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】T8:解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.4.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】B2:分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C5.若关于x的方程x2﹣+cosα=0有两个相等的实数根,则锐角α为()A.30° B.45° C.60° D.75°【考点】AA:根的判别式;T5:特殊角的三角函数值.【分析】根据根与系数的关系,将原式转化为关于cosα的方程,然后根据特殊角的三角函数值解答.【解答】解:∵关于x的方程x2﹣+cosα=0有两个相等的实数根,∴△=0,即﹣4×1×cosα=0,∴cosα=,∴α=60°.故选C.6.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是()A.40π B.24π C.20 πD.12π【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l为5,然后根据圆锥的侧面积公式:S侧=πrl代入计算即可.【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故选C.7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠C AB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.8.如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则等于()A.B.C.D.【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF,计算即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=,BC=,∴BD==3,∵BE=1.8,∴DE=3﹣1.8=1.2,∵AB∥CD,∴=,即=,解得,DF=,则CF=CD﹣DF=,∴==,故选A.9.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】HA:抛物线与x轴的交点;H3:二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.10.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是()A.B.C. D.2【考点】M2:垂径定理;D5:坐标与图形性质;M5:圆周角定理.【分析】连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.【解答】解:连接AD.∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD==.则圆的半径是.故选B.11.如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【考点】X5:几何概率;MC:切线的性质.【分析】根据切线的性质得到AE⊥BC,根据投资研究得到AE=BE=AB,根据求概率的公式即可得到结论.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S菱形ABCD=BC•AE=AB2,S阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选A.12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.分解因式:x2﹣y2﹣3x﹣3y= (x+y)(x﹣y﹣3).【考点】56:因式分解﹣分组分解法.【分析】根据观察可知,此题有4项且前2项适合平方差公式,后2项可提公因式,分解后也有公因式(x+y),直接提取即可.【解答】解:x2﹣y2﹣3x﹣3y,=(x2﹣y2)﹣(3x+3y),=(x+y)(x﹣y)﹣3(x+y),=(x+y)(x﹣y﹣3).14.计算﹣|2﹣2cos30°|+()﹣1﹣(1﹣π)0的结果是2+1 .【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用二次根式性质,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=3﹣+2﹣1=2+1,故答案为:2+115.如图,已知函数y=ax+b与函数y=kx﹣3的图象交于点P(4,﹣6),则不等式ax+b≤kx ﹣3<0的解集是﹣4<x≤4 .【考点】FD:一次函数与一元一次不等式.【分析】先把P点坐标代入y=kx﹣3得k=﹣,则可确定函数y=﹣x﹣3与x轴的交点坐标,然后利用函数图象写出在x轴下方,且直线y=ax+b不在直线y=kx﹣3上方所对应的自变量的范围即可.【解答】解:如图,把P(4,﹣6)代入y=kx﹣3得4k﹣3=﹣6,解得k=﹣,则y=0时,y=﹣x﹣3=0,解得x=﹣4,所以不等式ax+b≤kx﹣3<0的解集为﹣4<x≤4.故答案为﹣4<x≤4.16.计算: = .【考点】6B:分式的加减法.【分析】原式通分并利用同分母分式的加减法则计算即可得到结果.【解答】解:原式===,故答案为:17.如图,已知正方形ABCD的对角线交于点O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF等于 5 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】由△BOF全等于△AOE,得到BF=AE=4,在直角△BEF中,从而求得EF的值.【解答】解:解:∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE和COF全等(ASA),∴BF=AE=4,∵AB=BC,∴BE=CF=3,在Rt△BEF中,BF=4,BE=3,∴EF=5.故答案为5;18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20= 195π.【考点】MO:扇形面积的计算.【分析】先利用扇形的面积公式分别计算出S1=π;S2=π+π;S3=π+2π,则利用此规律得到S20=π+19π,然后把它们相加即可.【解答】解:S1=π•12=π;S2=π•(32﹣22)=π+π;S3=π•(52﹣42)=π+2π;…S 20=π+19π;∴S 1+S 2+S 3+…+S 20=5π+(1+2+3+…+19)π=195π. 故答案为195π.三、解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤) 19.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:请你选择其中的一种方法,求教学楼的高度(结果保留整数) 【考点】T8:解直角三角形的应用.【分析】若选择方法一,在Rt △BGC 中,根据CG=即可得出CG 的长,同理,在Rt △ACG 中,根据tan ∠ACG=可得出AG 的长,根据AB=AG+BG 即可得出结论.若选择方法二,在Rt △AFB 中由tan ∠AFB=可得出FB 的长,同理,在Rt △ABE 中,由tan∠AEB=可求出EB 的长,由EF=EB ﹣FB 且EF=10,可知﹣=10,故可得出AB的长.【解答】解:若选择方法一,解法如下:在Rt △BGC 中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∵CG=≈=30,在Rt△ACG中,∠AGC=90°,∠ACG=22°,∵tan∠ACG=,∴AG=30×tan22°≈30×0.40=12,∴AB=AG+BG=12+6.9≈19(米).答:教学楼的高度约19米.若选择方法二,解法如下:在Rt△AFB中,∠ABF=90°,∠AFB=43°,∵tan∠AFB=,∴FB=≈,在Rt△ABE中,∠ABE=90°,∠AEB=32°,∵tan∠AEB=,∴EB=≈,∵EF=EB﹣FB且EF=10,∴﹣=10,解得AB=18.6≈19(米).答:教学楼的高度约19米.20.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V9:频数(率)分布折线图;VB:扇形统计图.【分析】(1)用B类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再计算出C类人数,然后补全条形统计图;(3)用10000乘以D类的百分比可估计持反对态度的家长的总数;(4)画树状图展示所有12种等可能的结果数,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)共调查的中学生家长数是:40÷20%=200(人);(2)扇形C所对的圆心角的度数是:360°×(1﹣20%﹣15%﹣60%)=18°,C类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人),补图如下:(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;(4)设初三(1)班两名家长为A1,A2,初三(2)班两名家长为B1,B2,画树状图为:共有12种等可能的结果数,其中2人来自不同班级共有8种,所以选出的2人来自不同班级的概率==.21.小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s 千米,且s与t之间的函数关系的图象如图中的折线段OA﹣AB所示.(1)试求折线段OA﹣AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)【考点】FH:一次函数的应用.【分析】(1)OA为正比例函数图象,可以用待定系数法求出;(2)AB段离家距离没发生变化说明在以家为圆心做曲线运动;(3)妈妈的速度正好是小明的2倍,所以妈妈走弧线路用(20﹣12)÷2=4分钟.【解答】解:(1)线段OA对应的函数关系式为:s=t(0≤t≤12)线段AB对应的函数关系式为:s=1(12<t≤20);(2)图中线段AB的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;(3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20﹣10=10分钟到达学校,可知小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,故D(16,1),小明花20﹣12=8分钟走圆弧形道路,则妈妈花4分钟走圆弧形道路,故B (20,1).妈妈的图象经过(10,0)(16,1)(20,1)如图中折线段CD﹣DB就是所作图象.22.LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡个,这批灯泡的总利润为W元,利用利润的意义得到W=(60﹣45)a+(30﹣25)=10a+600,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.【解答】解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,根据题意得,解得,答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡个,这批灯泡的总利润为W元,根据题意得W=(60﹣45)a+(30﹣25)=10a+600,∵10a+600≤[45a+25]×30%,解得a≤75,∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.23.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).【考点】KM:等边三角形的判定与性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N分别是BE、CD的中点”、等边△ABC的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【解答】解:(1)CD=BE.理由如下:∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS)∴CD=BE;(2)△AMN是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N分别是BE、CD的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形.24.如图,在Rt△ABC中,∠C=90°,sinA=,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF.(1)求证:DF为⊙O的切线;(2)若AO=x,DF=y,求y与x之间的函数关系式.【考点】ME:切线的判定与性质;KG:线段垂直平分线的性质;T7:解直角三角形.【分析】(1)连接OD,由于EF是BD的中垂线,DF=BF.从而可知∠FDB=∠B,又因为OA=OD,所以∠OAD=∠ODA,从而可证明∠ODF=90°;(2)连接OF,由题意可知:AO=x,DF=y,OC=6﹣x,CF=8﹣y,然后在Rt△COF中与Rt△ODF 中利用勾股定理分别求出OF,化简原式即可求出答案.【解答】(1)连接OD.∵OA=OD,∴∠OAD=∠ODA,∵EF是BD的中垂线,∴DF=BF.∴∠FDB=∠B,∵∠C=90°,∴∠OAD+∠B=90°.∴∠ODA+∠FDB=90°.∴∠ODF=90°,又∵OD为⊙O的半径,∴DF为⊙O的切线,(2)连接OF.在Rt△ABC中,∵∠C=90°,sinA=,AB=10,∴AC=6,BC=8,∵AO=x,DF=y,∴OC=6﹣x,CF=8﹣y,在Rt△COF中,OF2=(6﹣x)2+(8﹣x)2在Rt△ODF中,OF2=x2+y2∴(6﹣x)2+(8﹣x)2=x2+y2,∴y=﹣x+(0<x≤6)25.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)抛物线的解析式中,令x=0,能确定点B的坐标;令y=0,能确定点A的坐标.(2)四边形PBCA可看作△ABC、△PBA两部分;△ABC的面积是定值,关键是求出△PBA的面积表达式;若设直线l与直线AB的交点为Q,先用t表示出线段PQ的长,而△PAB的面积可由(PQ•OA)求得,在求出S、t的函数关系式后,由函数的性质可求得S的最大值.(3)△PAM中,∠APM是锐角,而PM∥y轴,∠AMP=∠ACO也不可能是直角,所以只有∠PAC 是直角一种可能,即直线AP、直线AC垂直,此时两直线的斜率乘积为﹣1,先求出直线AC 的解析式,联立抛物线的解析式后可求得点P的坐标.【解答】解:(1)抛物线y=﹣x2+x+4中:令x=0,y=4,则 B(0,4);令y=0,0=﹣x2+x+4,解得 x1=﹣1、x2=8,则 A(8,0);∴A(8,0)、B(0,4).(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,﹣4).由A(8,0)、B(0,4),得:直线AB:y=﹣x+4;依题意,知:OE=2t,即 E(2t,0);∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;S=S△ABC+S△PAB=×8×8+×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;∴当t=2时,S有最大值,且最大值为64.(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△PAM若是直角三角形,只能是∠PAM=90°;由A(8,0)、C(0,﹣4),得:直线AC:y=x﹣4;所以,直线AP可设为:y=﹣2x+h,代入A(8,0),得:﹣16+h=0,h=16∴直线AP:y=﹣2x+16,联立抛物线的解析式,得:,解得、∴存在符合条件的点P,且坐标为(3,10).。
安徽省十校联考2017年中考数学二模试卷含答案解析
安徽省⼗校联考2017年中考数学⼆模试卷含答案解析安徽省⼗校联考2017年中考数学⼆模试卷(解析版)⼀.选择题1.⼀元⼆次⽅程5x2﹣4x﹣1=0的⼆次项系数和⼀次项系数分别为()A. 5,﹣1B. 5,4C. 5,﹣4D. 5x2,﹣4x2.下列汽车标志中既是轴对称图形⼜是中⼼对称图形的是()A.B.C.D.3.把抛物线y=﹣经()平移得到y=﹣﹣1.A. 向右平移2个单位,向上平移1个单位B. 向右平移2个单位,向下平移1个单位C. 向左平移2个单位,向上平移1个单位D. 向左平移2个单位,向下平移1个单位4.⼀个直⾓三⾓形的两条直⾓边长的和为20cm,其中⼀直⾓边长为xcm,⾯积为ycm2,则y与x的函数的关系式是()A. y=10x﹣x2B. y=10xC. y= ﹣xD. y=x(10﹣x)5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 36.近⼏年,我国经济⾼速发展,但退休⼈员待遇持续偏低,为了促进社会公平,国家决定⼤幅增加退休⼈员退休⾦.企业退休职⼯李师傅2012年⽉退休⾦为1500元,2014年达到2160元.设李师傅的⽉退休⾦从2012年到2014年年平均增长率为x,则可列⽅程为()A. 1500(1+x)2=2160B. 1500(1+x)2=2060C. 1500+1500(1+x)+1500(1+x)2=2160D. 1500(1+x)=21607.学校早上8时上第⼀节课,45分钟后下课,这节课中分针转动的⾓度为()A.45°B.90°C.180°D.270°8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45°B. 60°C. 25°D. 30°9.⼆次函数y=ax2+bx+c的图象如图所⽰,关于此⼆次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A. 1B. 2C. 3D. 410.如图,边长为2a的等边三⾓形ABC中,M是⾼CH所在直线上的⼀个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最⼩值是()A. aB. aC.D.⼆.填空题11.在平⾯直⾓坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.12.关于x的⼀元⼆次⽅程(a﹣1)x2+x+(a2﹣1)=0的⼀个根是0,则a的值是________.13.如图,AB是⊙O的直径,弦CD⊥AB,垂⾜为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm.14.如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题15.解⽅程:4x2﹣12x+5=0.16.已知⼆次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此⼆次函数的解析式.四.解答题17.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中⼼对称的图形;②将△ABC绕原点O按顺时针⽅向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此⼆次函数的图象与x轴都有两个不同交点.五.解答题19.已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直⾓坐标系内画出该抛物线的图象.20.如图,四边形ABCD内接于⊙O,点E在对⾓线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题21.在如图中,每个正⽅形由边长为1的⼩正⽅形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正⽅形中,设⿊⾊⼩正⽅形的个数为P1,⽩⾊⼩正⽅形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题22.某经销商销售⼀种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不⾼于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所⽰:(1)求y与x之间的函数关系式,并写出⾃变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最⼤?最⼤利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?⼋.解答题23.如图,已知四边形ABCD是正⽅形,△AEF是等边三⾓形,E,F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正⽅形ABCD的边长为1,求等边三⾓形AEF的⾯积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正⽅形ABCD的边上,求m的值.答案解析部分⼀.选择题1.【答案】C【考点】⼀元⼆次⽅程的定义【解析】【解答】∵5x2﹣4x﹣1=0,∴⼆次项系数为:5,⼀次项系数分别为:﹣4,故答案为:C【分析】根据⼀元⼆次⽅程ax2+bx+c=0(a≠0),由此即可得出答案.2.【答案】D【考点】轴对称图形,中⼼对称及中⼼对称图形【解析】【解答】A、是轴对称图形,不是中⼼对称图形,故此选项错误;A不符合题意;B、不是轴对称图形,也不是中⼼对称图形,故此选项错误;B不符合题意;C、是轴对称图形,不是中⼼对称图形,故此选项错误;C不符合题意;D、是轴对称图形,也是中⼼对称图形,故此选项正确.D符合题意;故答案为:D.【分析】轴对称图形:在平⾯内,⼀个图形沿⼀条直线折叠,直线两旁的部分能够完全重合的图形;中⼼对称图形:在平⾯内,把⼀个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合;由此即可得出答案.3.【答案】B【考点】⼆次函数图象与⼏何变换【解析】【解答】∵抛物线y=﹣的顶点坐标是(0,0),抛物线y=﹣﹣1的顶点坐标是(2,﹣1),∴由点(0,0)向右平移2个单位,向下平移1个单位得到点(2,﹣1),∴把抛物线y=﹣经向右平移2个单位,向下平移1个单位得到y=﹣﹣1.故答案为:B.【分析】根据平移的性质:左+右-,上+下-,由此即可得出答案.4.【答案】A【考点】函数关系式,三⾓形的⾯积【解析】【解答】∵⼀个直⾓三⾓形的两条直⾓边长的和为20cm,其中⼀直⾓边长为xcm,∴另⼀边长为:(20﹣x)cm,则y= x(20﹣x)=10x﹣x2.故答案为:A.【分析】由⼀个直⾓三⾓形的两条直⾓边长的和为20cm,其中⼀直⾓边长为xcm,则另⼀边长为:(20﹣x)cm,由三⾓形⾯积公式即可得出答案.5.【答案】B【考点】勾股定理,垂径定理【解析】【解答】过O作OC⊥AB于C,∴AC=BC= AB=12,在Rt△AOC中,∴OC= =5.故答案为:B.【分析】过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得出OC=5. 6.【答案】A【考点】⼀元⼆次⽅程的应⽤【解析】【解答】设李师傅的⽉退休⾦从2012年到2014年年平均增长率为x,依题可得:1500(1+x)2=2160.故答案为:A.【分析】设李师傅的⽉退休⾦从2012年到2014年年平均增长率为x,由企业退休职⼯李师傅2012年⽉退休⾦为1500元,2014年达到2160元列出⼀元⼆次⽅程即可得出答案.7.【答案】D【考点】⽣活中的旋转现象【解析】【解答】∵早上8时分针指向数字12,45分钟后分针指向数字9,∴这节课中分针转动的⾓度为270°.故答案为:D.【分析】由早上8时分针指向数字12,45分钟后分针指向数字9,根据钟⾯⾓的问题即可得出答案.8.【答案】D【考点】含30度⾓的直⾓三⾓形,垂径定理,圆周⾓定理【解析】【解答】连接OB,∵OC⊥AB,P为OC的中点,∴OP= OB,∴∠OBP=30°,∴∠BOP=90°﹣30°=60°,∴∠BAC= ∠BOP=30°.故答案为:D.【分析】连接OB,由已知条件得出OP= OB,在直⾓三⾓形中,根据30°所对的直⾓边等于斜边的⼀半得出∠OBP=30°,再由三⾓形内⾓和定理得∠BOP=90°﹣30°=60°,由同弧所对的圆周⾓等于圆⼼⾓的⼀半即可得出∠BAC= ∠BOP=30°.9.【答案】B【考点】⼆次函数图象与系数的关系【解析】【解答】∵图象开⼝向下,∴a<0,故①正确;∵图象与y轴的交点坐标在x轴的下⽅,∴c<0,故②不正确;∵抛物线与x轴有两个交点,∴⽅程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故③正确;∵图象对称轴在y轴的右侧,∴﹣>0,∴ab<0,故④不正确;∴正确的有两个,故答案为:B.【分析】①由图象开⼝向下得a<0,故①正确;②由图象与y轴的交点坐标在x轴的下⽅得c<0,故②不正确;③由抛物线与x轴有两个交点得b2﹣4ac>0,故③正确;由图象对称轴在y轴的右侧,即﹣>0得ab<0,故④不正确;由此即可得出答案.10.【答案】D【考点】全等三⾓形的判定与性质,等边三⾓形的性质,含30度⾓的直⾓三⾓形,旋转的性质【解析】【解答】解:如图,取BC的中点G,连接MG,。
2017年贵州省安顺市中考数学二模试卷及解析答案word版
2017年贵州省安顺市中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的相反数是()A.3 B.﹣3 C .D .﹣2.(3分)宇宙现在的年龄约为200亿年,200亿用科学记数法表示为()A.0.2×1011B.2×1010C.200×108D.2×1093.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=14.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④5.(3分)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11 或13 D.12或156.(3分)为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是207.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠02向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.y=﹣2(x+1)2B.y=﹣2(x+1)2+2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x ﹣1)2+19.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2 C.3 D.210.(3分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个 B.1个 C.2个 D.3个二、填空题(本题共8小题,每小题4分,共32分)11.(4分)因式分解:2x2y﹣8xy+8y=.12.(4分)使函数有意义的x的取值范围是.13.(4分)如图,AB是⊙O直径,∠AOC=130°,则∠D=°.14.(4分)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(4分)如图,A、B是双曲线y=上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k=.16.(4分)将直角△ABC绕顶点B旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C、B、A′在同一直线上,则阴影部分的面积是.17.(4分)如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米.18.(4分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC和∠A20l6CD 的平分线交于点A2017,则∠A2017=°.三、解答题(本题共8小题,共88分)19.(8分)计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.20.(10分)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.21.(10分)五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?22.(10分)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.23.(12分)如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.(1)求证:△ABE≌△CDF;(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.25.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)26.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C 点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.2017年贵州省安顺市中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的相反数是()A.3 B.﹣3 C.D.﹣【解答】解:﹣的相反数是,故选C2.(3分)宇宙现在的年龄约为200亿年,200亿用科学记数法表示为()A.0.2×1011B.2×1010C.200×108D.2×109【解答】解:将200亿用科学记数法表示为:2×1010.故选:B.3.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=1【解答】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选D.4.(3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.5.(3分)已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11 或13 D.12或15【解答】解:由方程x2﹣6x+8=0,得:解得x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为4+3+6=13.故选A.6.(3分)为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是20【解答】解:A、众数是20,故本选项错误;B、平均数为26.67,故本选项错误;C、极差是95,故本选项错误;D、中位数是20,故本选项正确;故选D.7.(3分)已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.8.(3分)将抛物线y=﹣2x2向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.y=﹣2(x+1)2B.y=﹣2(x+1)2+2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x ﹣1)2+1【解答】解:∵抛物线y=﹣2x2向右平移1个单位长度,再向上平移1个单位长度,∴平移后的抛物线的解析式为:y=﹣2(x﹣1)2+1,故选D.9.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A.B.2 C.3 D.2【解答】解:连接CC1.Rt△ABE中,∠BAE=30°,AB=,易得BE=AB×tan30°=1,AE=2.∠AEB1=∠AEB=60°,由AD∥BC,那么∠C1AE=∠AEB=60°,所以△AEC1为等边三角形,那么△CC1E也为等边三角形,那么EC=EC1=AE=2,∴BC=BE+EC=3,故选C.10.(3分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A.0个 B.1个 C.2个 D.3个【解答】解:①∵抛物线的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0∴•ab>0;故①正确;②∵观察图象知;当x=1时y=a+b+c>0,∴②正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),∴另一个交点为(﹣2,0),∴当﹣2<x<0时,y<0;故③正确;故选D.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)因式分解:2x2y﹣8xy+8y=2y(x﹣2)2.【解答】解:原式=2y(x2﹣4x+4)=2y(x﹣2)2.故答案为2y(x﹣2)2.12.(4分)使函数有意义的x的取值范围是x≥﹣1且x≠1.【解答】解:由题意得,x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.(4分)如图,AB是⊙O直径,∠AOC=130°,则∠D=25°°.【解答】解:∵AB是⊙O直径,∠AOC=130°,∴∠BOC=180°﹣∠AOC=50°,∴∠D=∠BOC=25°.故答案为:25.14.(4分)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【解答】解:作E点关于AC对称点E′点,连接E′B,E′B与AC的交点即是P点,∵菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,∴AE′=AE=BE=1,∴△AEE′为等边三角形,∴∠AEE′=60°,∴∠E′EB=120°,∵BE=EE′,∴∠EE′B=30°,∴∠AE′B=90°,BE′==,∵PE+PB=BE′,∴PE+PB的最小值是:.故答案为:.15.(4分)如图,A、B是双曲线y=上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k= 3.【解答】解:∵S1+S2=4,∴S1=S2═2,∵S3=1,∴S1+S3=1+2=3,∴k=3故答案为:3.16.(4分)将直角△ABC绕顶点B旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C、B、A′在同一直线上,则阴影部分的面积是π﹣2.【解答】解:∵在Rt△ACB中,∠C=90°,AB=4,BC=2,∴AC==2,cos∠ABC=,∴∠ABC=60°,∴∠ABA′=120°,由旋转的性质可得A′C′=AC=2,BC′=BC=2,∴阴影部分的面积是:﹣×2×2=π﹣2.故答案为:π﹣2.17.(4分)如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距1米.【解答】解:设两个同学相距x米,∵△ADE∽△ACB,∴,∴,解得:x=1.故答案为1.18.(4分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC和∠A20l6CD的平分线交于点A2017,则∠A2017=°.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2017=∠A=()°,故答案为:.三、解答题(本题共8小题,共88分)19.(8分)计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.【解答】解:原式=2﹣+3×+2﹣1﹣2=1.20.(10分)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.【解答】解:原式=(﹣)÷=×=,当x=1时,原式==3.21.(10分)五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?【解答】解:设购买成人门票x张,学生门票y张,由题意得解得答:购买成人门票12张,学生门票8张.22.(10分)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.23.(12分)如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.(1)求证:△ABE≌△CDF;(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形AB=CD,∠A=∠C.AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.在△ABE和△CDF中,∴△ABE≌△CDF(SAS).(2)解:四边形DFBE是矩形.理由如下:∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∵AB=DB,AB=CD,∴DB=CD.∵DF平分∠CDB,∴DF⊥BC,即∠BFD=90°.在□ABCD中,∵AD∥BC,∴∠EDF+∠DEB=180°.∴∠EDF=90°.∴∠DEB=∠BFD=∠EDF=90°.∴四边形DFBE是矩形.24.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是=.25.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.26.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C 点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.【解答】解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式为.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.赠送:初中数学几何模型【模型一】半角型:图形特征:AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
2017年广西南宁中考数学二模试卷含答案解析
2017年广西南宁中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣2017的绝对值是()A.2017 B.﹣2017 C.D.﹣2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10﹣4B.7.5×10﹣4C.75×10﹣6D.7.5×10﹣54.(3分)下列计算正确的是()A.B.a2×a3=a6C.a2+a=a3D.(﹣2a2)3=﹣6a65.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.6.(3分)关于x的一元二次方程ax2+bx=6的一个根为x=2,则代数式4a+2b的值是()A.3 B.6 C.10 D.127.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 1 D D.与x轴有两个交点8.(3分)将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为()A.y=x2﹣2 2 B B.y=x2+2 C.y=(x+3)2+2 D.y=(x﹣3)2﹣29.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin ∠OBD=( )A .B .C .D .10.(3分)如图,在▱ABCD 中,E 在DC 上,若DE :EC=1:2,则BF :BE 的值为( )A .2:3 B .3:5 C .1:2 D .5:811.(3分)抛物线y=ax 2+bx +c 图象如图所示,则一次函数y=﹣bx ﹣4ac +b 2与反比例函数y=在同一坐标系内的图象大致为(在同一坐标系内的图象大致为( )A .B .C .D .12.(3分)如图,如图,在平面直角坐标系中,在平面直角坐标系中,在平面直角坐标系中,直线直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数与反比例函数 y=(k 为常数,且k >0)在第一象限的图象交于点E ,F .过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若=,,则 =()记△CEF的面积为s1,△OEF的面积为s2,则A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若有意义,则x的最小值是的最小值是 .14.(3分)分解因式:a3﹣a=.15.(3分)点A(a,2016)和点B(﹣2017,b)关于原点对称,则a+b=.16.(3分)如图,直线a∥b,直线c与a、b均相交.如果∠1=50°,那么∠2的度数是 .的度数是17.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单,那么该光盘的直径是 cm.位:cm),那么该光盘的直径是18.(3分)如图,在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,….,按这样的规律进行下去,第2017个正方形的面积为个正方形的面积为 .三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣4sin60°+(π+2)0+()﹣2.20.(6分)解不等式组.21.(8分)如图,在△ABC 中,AB=AC ,D 是BA 延长线上的一点,点E 是AC 的中点.(1)利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC 的平分线AM . ②连接BE 并延长交AM 于点F . (2)证明:△AEF ≌△CEB .22.(8分)李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: (1)李老师一共调查了多少名同学?(2)C 类女生有3名,D 类男生有1名,将图1条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.(8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)24.(10分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?25.(10分)如图,AB是⊙O的直径,点C为⊙O外一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E,∠CDE=∠CAD.(1)求证:CD 2=AC•EC;(2)判断AC与⊙O的位置关系,并证明你的结论;(3)若AE=EC,求tanB的值.26.(10分)如图,抛物线y=x 2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.2017年广西南宁中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣2017的绝对值是(的绝对值是( )A.2017 B.﹣2017 C.D.﹣【解答】解:﹣2017的绝对值是2017.故选:A.2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是(分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.(3分)近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为(用科学记数法表示为( )A.0.75×10﹣4B.7.5×10﹣4C.75×10﹣6D.7.5×10﹣5【解答】解:0.000 075=7.5×10﹣5.故选:D.4.(3分)下列计算正确的是(分)下列计算正确的是( )A.B.a2×a3=a6C.a2+a=a3D.(﹣2a2)3=﹣6a6【解答】解:A、3÷=3,正确;B 、a 2×a 3=a 5,故此选项错误; C 、a 2+a ,无法计算,故此选项错误; D 、(﹣2a 2)3=﹣8a 6,故此选项错误. 故选:A .5.(3分)已知点P (a ﹣1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(范围在数轴上可表示为( )A . B .C .D .【解答】解:∵点P (a ﹣1,a +2)在平面直角坐标系的第二象限内,则有解得﹣2<a <1. 故选:C .6.(3分)关于x 的一元二次方程ax 2+bx=6的一个根为x=2,则代数式4a +2b 的值是(值是( )A .3 B .6 C .10 D .12【解答】解:把x=2代入方程ax 2+bx=6得4a +2b=6. 故选:B .7.(3分)对于二次函数y=(x ﹣1)2+2的图象,下列说法正确的是(的图象,下列说法正确的是( ) A .开口向下.开口向下 B .顶点坐标是(1,2) C .对称轴是x=﹣1 1 D D .与x 轴有两个交点 【解答】解:A 、y=(x ﹣1)2+2, ∵a=1>0,∴图象的开口向上,此选项错误;B 、y=(x ﹣1)2+2顶点坐标是(1,2),此选项正确; C 、对称轴是直线x=1,此选项错误;D 、(x ﹣1)2+2=0,(x ﹣1)2=﹣2,此方程无解,与x 轴没有交点,故本选项错误.8.(3分)将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为(平移后的二次函数的解析式为( )A .y=x 2﹣2 2 BB .y=x 2+2 C .y=(x +3)2+2 D .y=(x ﹣3)2﹣2 【解答】解:原抛物线y=x 2的顶点为(0,0),向下平移2个单位,再向右平移3个单位,那么新抛物线的顶点为(﹣3,﹣2).可设新抛物线的解析式为:y=(x ﹣h )2+k ,代入得:y=(x +3)2﹣2. 故选:D .9.(3分)如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin ∠OBD=( )A .B .C .D . 【解答】解:∵D (0,3),C (4,0), ∴OD=3,OC=4, ∵∠COD=90°, ∴CD==5,连接CD ,如图所示: ∵∠OBD=∠OCD ,∴sin ∠OBD=sin ∠OCD==.故选:D .10.(3分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则BF:BE的值为()A .2:3 B.3:5 C.1:2 D.5:8【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴,∵,∴,∴,∴=∴,故选:B.11.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为(在同一坐标系内的图象大致为( )A .B .C .D .【解答】解:∵抛物线y=ax 2+bx +c 开口向上, ∴a >0,∵抛物线y=ax 2+bx +c 的对称轴在y 轴右侧, ∴x=﹣>0, ∴b <0, ∴﹣b >0,∵抛物线y=ax 2+bx +c 的图象与x 轴有两个交点, ∴△=b 2﹣4ac >0,∴一次函数y=﹣bx ﹣4ac +b 2的图象过第一、二、三象限; ∵由函数图象可知,当x=1时,抛物线y=a +b +c <0,∴反比例函数y=的图象在第二、四象限.故选:D .12.(3分)如图,如图,在平面直角坐标系中,在平面直角坐标系中,在平面直角坐标系中,直线直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数与反比例函数 y=(k 为常数,且k >0)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若=,记△CEF 的面积为s 1,△OEF 的面积为s 2,则,则 =( )A.B.C.D.【解答】解:过点F作FR⊥MO于点R,EW⊥NO于点W,∵=,∴=,∵ME•EW=FR•NF,∴==,∴S1=(4x﹣x)(4y﹣y)=xy,设E点坐标为:(x,4y),则F点坐标为:(4x,y),∵△OEF的面积为:S2=S矩形CNOM﹣S1﹣S△MEO﹣S△FON=CN•ON﹣xy﹣ME•MO﹣FN•NO=4x•4y﹣xy﹣x•4y﹣y•4x=16xy﹣xy﹣4xy=xy,∴==.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若有意义,则x的最小值是的最小值是 2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,则x的最小值是2,故答案为:2.14.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【解答】解:a 3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).15.(3分)点A(a,2016)和点B(﹣2017,b)关于原点对称,则a+b=1.【解答】解:由题意,得a=2017,b=﹣2016,a+b=2017﹣2016=1,故答案为:1.16.(3分)如图,直线a∥b,直线c与a、b均相交.如果∠1=50°,那么∠2的度数是的度数是 130°.【解答】解:∵a ∥b ,∠1=50°, ∴∠1=∠3=50°, ∵∠2+∠3=180°,∴∠2=180°﹣∠1=180°﹣50°50°=130°=130°. 故答案为:130°.17.(3分)如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是,那么该光盘的直径是 10 cm .【解答】解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB=8cm ,CD=2cm .连接OC ,交AB 于D 点.连接OA . ∵尺的对边平行,光盘与外边缘相切, ∴OC ⊥AB . ∴AD=4cm .设半径为Rcm ,则R 2=42+(R ﹣2)2, 解得R=5,∴该光盘的直径是10cm . 故答案为:1018.(3分)如图,在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,….,按个正方形的面积为 .这样的规律进行下去,第2017个正方形的面积为【解答】解:∵点A的坐标为(2,0),点D的坐标为(0,4),∴OA=2,OD=4∵∠AOD=90°,∴AB=AD=,∠ODA+∠OAD=90°,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,S正方形ABCD==20,∴∠ABA1=90°,∠OAD+∠BAA1=90°,∴∠ODA=∠BAA1,∴△ABA1∽△DOA,∴,即,∴BA1=,∴CA1=,∴正方形A1B1C1C的面积==20×…,第n个正方形的面积为,∴第2017个正方形的面积.故答案为:.三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣4sin60°+(π+2)0+()﹣2.【解答】解:原式=2﹣4×+1+4=5.20.(6分)解不等式组.【解答】解:2x≥3(x﹣1)解得:x≤3.x≥+2,解得:x≥2.所以不等式组的解集为2≤x≤3.21.(8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM.②连接BE并延长交AM于点F.(2)证明:△AEF≌△CEB.【解答】解:(1)角平分线AM、点F如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠DAC=∠ABC+∠ACB,∠DAF=∠FAC,∴∠FAE=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB.22.(8分)李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【解答】解:(1)(6+4)÷50%=20.所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.23.(8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌C D的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)【解答】解:(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.24.(10分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(240﹣100﹣a)x+(160﹣80)(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;当x=95时,W有最大值,③当60<a<70时,60﹣a<0,W随x的增大而减小,的增大而减小,当即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.25.(10分)如图,AB是⊙O的直径,点C为⊙O外一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E,∠CDE=∠CAD.(1)求证:CD 2=AC•EC;(2)判断AC与⊙O的位置关系,并证明你的结论;(3)若AE=EC,求tanB的值.【解答】(1)证明:∵∠CDE=∠CAD,∠C=∠C,∴△CDE∽△CAD,∴,∴CD 2=CA•CE;(2)AC与⊙O相切,证明:∵AC是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵OB=OD,∴∠B=∠ODB,∵∠ODB=∠CDE,∠CDE=∠CAD,∴∠B=∠CAD,∴∠BAC=∠BAD+∠CAD=∠B+∠BAD=90°,∴BA⊥AC,∴AC与⊙O相切;(3)解:∵AE=EC,∴CD 2=CA•CE=(AE+CE)•CE=2CE2,∴CD=CE,∵△CDE∽△CAD,∴,∵∠ADE=180°﹣∠ADB=90°,∠B=∠CAD,∴tan B=tan∠CAD=.26.(10分)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x 2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x 2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即P A∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.方法二:(1)略.(2)把A(1,﹣4)代入y=x 2﹣2x+c,得c=﹣3,∴y=x 2﹣2x+3=(x﹣3)(x+1),∴D(3,0),B(0,﹣3),A(1,﹣4),K BD==1,K AB==﹣1,∴K BD•K AB=﹣1,∴AB⊥BD,即△ABD为直角三角形.(3)略。
大连市2017年中考数学二模试卷及答案解析
大连市2017年中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0B.﹣3.5C.D.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×1053.下列几何体中,主视图是三角形的为()A.B.C.D.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5B.y=2x2﹣5C.y=2(x+5)2D.y=2(x﹣5)25.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3B.x<﹣3C.x>2D.x<26.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9B.11C.13D.168.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36=.10.在函数y=中,自变量x的取值范围是.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为m(精确到0.1m,参考数据≈1.73)14.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为.16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,点O落在点O′处,则点O′的坐标为.三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A0≤x<12024B120≤x<13072C130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为%;(2)本次共调查了名学生,其中跳绳次数在130≤x<140范围内的人数为人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O 的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC ∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为;问题(2)中AD的取值范围是;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC 的解析式为y=kx+2.(1)抛物线的解析式为;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.在下列实数中,是无理数的为()A.0B.﹣3.5C.D.【考点】26:无理数.【分析】由于无理数就是无限不循环小数.有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是有理数,故A选项错误;B、﹣3.5是有理数,故B选项错误;C、是无理数,故C选项正确;D、=3,是有理数,故D选项错误.故选:C.2.据统计,“五一”小长假期间,大连市共接待海内外游客825400余人次,数825100用科学记数法表示为()A.8251×102B.825.1×103C.82.51×104D.8.251×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:825100=8.251×105,故选D.3.下列几何体中,主视图是三角形的为()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据主视图的观察角度,从物体的正面观察,即可得出答案.【解答】解:A、其三视图是矩形,故此选项错误;B、其三视图是三角形,故此选项正确;C、其三视图是矩形,故此选项错误;D、其三视图是正方形形,故此选项错误;故选:B.4.把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x2+5B.y=2x2﹣5C.y=2(x+5)2D.y=2(x﹣5)2【考点】H6:二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移5个单位,那么新抛物线的顶点为(0,5),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+5.故选A.5.如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3B.x<﹣3C.x>2D.x<2【考点】FD:一次函数与一元一次不等式.【分析】根据图象和A的坐标得出即可.【解答】解:∵直线y=kx+b和x轴的交点A的坐标为(﹣3,0),∴不等式kx+b>0的解集是x>﹣3,故选A.6.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【考点】X8:利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选D.7.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9B.11C.13D.16【考点】W4:中位数.【分析】根据中位数的定义即可得.【解答】解:这组数据重新排列为:8、9、10、11、12、14、16、16、16、17,则其中位数为=13,故选:C.8.一圆锥的底面直径为4cm,高为cm,则此圆锥的侧面积为()A.20πcm2B.10πcm2C.4πcm2D.4πcm2【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的底面直径为4cm,高为cm,则底面半径=2cm,底面周长=4πcm,由勾股定理得,母线长=5cm,侧面面积=×4π×5=10πcm2.故选B.二、填空题(本小题共8小题,每小题3分,共24分)9.因式分解:x2﹣36=(x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).10.在函数y=中,自变量x的取值范围是x≥﹣.【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.【解答】解:依题意,得2x+1≥0,解得x≥﹣.11.一个正多边形的每一个内角都等于160°,则这个正多边形的边数是18.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=160°n,解得n=18,故答案为:18.12.如图,矩形ABCD的对角线AC、BD相交于点O,OA=3,则BD的长为6.【考点】LB:矩形的性质.【分析】根据矩形的对角线相等且相互平分即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∵OA=3,∴BD=2OA=6,故答案为6.13.如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为17.1m(精确到0.1m,参考数据≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据题意:过点D作DE⊥AB,交AB与E;可得Rt△ADE,解之可得AE的大小;进而根据AB=BE+AE 可得旗杆AB的高.【解答】解:过点D作DE⊥AB,垂足为E.在直角△ADE中,有AE=DE×tan30°=9,那么旗杆AB的高为AE+EB=9+1.5≈17.1(m).故答案为17.114.如图,在平面直角坐标系xOy中,点A在y轴上,点B的坐标为(1,2),将△AOB沿x轴向右平移得到△A′O′B′,点B的对应点B′恰好在函数y=(x>0)的图象上,此时点A移动的距离为2.【考点】G6:反比例函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】设A点向右移动的距离为a,由点B的坐标为(1,2)可知,B′(1+a,2),由点B′恰好在函数y=(x>0)的图象上求出a的值即可.【解答】解:设A点向右移动的距离为a,∵点B的坐标为(1,2),∴B′(1+a,2).∵点B′恰好在函数y=(x>0)的图象上,∴2(1+a)=6,解得a=2.故答案为:2.15.在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为(4,﹣2).【考点】SC:位似变换;D5:坐标与图形性质.【分析】由以原点O为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O为位似中心,B(3,0)的对应点B′的坐标为(6,0),∴相似比为2,∵A(2,﹣1),∴点A′的对应点坐标为:(4,﹣2),故答案为:(4,﹣2).16.如图,在平面直角坐标系xOy中,直线y=﹣x+1与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,点O落在点O′处,则点O′的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;PB:翻折变换(折叠问题).【分析】根据已知条件得到OA=2,OB=1,根据折叠的性质得到AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,根据相似三角形的性质得到BC=,CO′=,得到OC=,AC=,根据O′D∥OC,得到△ADO′∽△AOC,根据相似三角形的性质即可得到结论.【解答】解:在y=﹣x+1中,令x=0,得y=1,令y=0,得x=2,∴A(2,0),B(0,1),∴OA=2,OB=1,∵将△AOB沿直线AB翻折,点O落在点O′处,∴AO′=AO=2,BO′=BO=1,∠AO′B=90°,延长AC交y轴于C,过O′作O′D⊥OA于D,∴∠CO′B=∠AOC=90°,∵∠BCO′=∠ACO,∴△BCO′∽△ACO,∴,∴==,∴BC=,CO′=,∴OC=,AC=,∵O′D⊥OA,∴O′D∥OC,∴△ADO′∽△AOC,∴==,即==,∴DO′=,AD=,∴OD=,∴O′(,),故答案为:(,).三、解答题(本题共39分)17.计算:(﹣)0+|4﹣|﹣.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用立方根和二次根式的性质、零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=1+2﹣4+3=2.18.先化简,再求值:m(m﹣2)﹣(m﹣1)2+m,其中m=﹣.【考点】4J:整式的混合运算—化简求值.【分析】根据单项式乘多项式、完全平方公式和合并同类项可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.【解答】解:m(m﹣2)﹣(m﹣1)2+m=m2﹣2m﹣m2+2m﹣1+m=m﹣1,当m═﹣时,原式==.19.如图,▱ABCD中,AB=3,BC=5,∠ABC的平分线与AD相交于点E,求DE的长.【考点】L5:平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∵BC=5,CD=AB=3,∴DE=AD﹣AE=5﹣3=2.20.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.分组次数x(个)人数A0≤x<12024B120≤x<13072C130≤x<140D x≥140根据以上信息,解答下列问题:(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12%;(2)本次共调查了200名学生,其中跳绳次数在130≤x<140范围内的人数为59人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为22.5%;(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.【考点】V7:频数(率)分布表;V5:用样本估计总体.【分析】(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;根据A组的人数是24,所占的百分比是12%即可求得调查的总人数,然后根据百分比的定义求得跳绳次数在0≤x<120范围内的人数占被调查人数的百分比;(2)利用总人数减去其它组的人数求得绳次数在x≥140范围内的人数占被调查人数的人数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)根据统计表可得跳绳次数在120≤x<130范围内的人数为72人;调查的总人数是24÷12%=200(人).则跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为=12%;故答案是:71,12;(2)调查的总人数是200人;跳绳次数在130≤x<140范围内的人数为200×29.5%=59(人),绳次数在x≥140范围内的人数占被调查人数的人数是200﹣24﹣72﹣59=45(人),则所长的百分比是=22.5%.故答案是:200,59,22.5;(3)估计该区七年级学生1分钟跳绳的次数不少于130个的人数是:4000×=2080(人).四、解答题(本题共28分)21.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?【考点】B7:分式方程的应用.【分析】设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.5x个零件,根据时间=,以此作为等量关系可列方程求解.【解答】解:设采用新工艺前每时加工x个零件.﹣10=,解得:x=50,经检验:x=50是原分式方程的解,且符合题意,答:采用新工艺之前每小时加工50个.22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据每天可获得600元的利润列出方程,解方程即可.【解答】解:(1)当30≤x≤80时,设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知,,解得,故y与x的函数关系式为y=﹣x+100;(2)∵y=﹣x+100,依题意得∴(x﹣30)(﹣x+100)=600,x2﹣280x+18700=0,解得x1=40,x2=90.∵30≤x≤80,∴取x=40.答:当每千克的销售价为40元时,获得的利润为600元.23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O 的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.【考点】MC:切线的性质;M6:圆内接四边形的性质.【分析】(1)根据圆周角定理即可得到结论;(2)根据全等三角形的性质得到AF=DE=4,CE=CF=2,根据切线的性质得到FC2=FB•AF,求得FB=1根据相似三角形的性质即可得到结论;【解答】解:(1)∵∠ABD=∠CBD=60°,∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°,∴△ACD是等边三角形;(2)在△ACF与△DCE中,∴△ACF≌△DCE,∴AF=DE=4,CE=CF=2,∵CF是⊙O的切线,∴FC2=FB•AF,∴22=FB•4,∴FB=1∴AB=AF﹣BF=4﹣1=3,∵∠ABE=∠DCE,∠BAE=∠CDE,∴△∠ABE∽∠DCE,∴===,∴=,解得:CD=3.五、解答题(本题共35分)24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC ∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.【考点】FI:一次函数综合题.【分析】(1)作CM⊥x轴于点M,利用等腰直角三角形和矩形的性质可求得OM和CM的长,可求得C 点坐标;(2)①当E在线段OB上时,连接OD,利用条件可证得△DOE∽△EBF,利用相似三角形的性质可得到m与n之间的关系;②当点E在线段BO的延长线上时,同样可证得△DOE∽△EBF,可得到m与n之间的关系.【解答】解:(1)作CM⊥x轴于点M,如图1,则∠CMB=∠AOM=90°,∴CM∥AO,∵AC∥x轴,∴四边形AOMC是矩形,∴CM=AO=3,AC=OM,∵∠OBC=45°,∴MB=MC=3,∴OM=7﹣3=4,∴C(4,3);(2)①当点E在线段OB上时,即当0<n<7时,如图2,连接OD,∵CD=1,∴AD=3=AO,∴∠AOD=∠ADO=45°=∠DOB=∠OBC,∵∠OEF=∠EFB+∠EBF,即∠OED+∠DEF=∠EFB+∠EBF,∴∠OED=∠EFB,∴△DOE∽△EBF,∴=,即=,∴m=﹣n2+n;②当点E在线段BO的延长线上时,即n<0时,连接OD,如图3,由(1)知∠DOB=∠OBC,∴∠DOE=∠EBF,∵∠DEF=45°=∠OBC,∴∠DEO+∠BEF=∠BFE+∠BEF,∴∠DEO=∠BFE,∴△DOE∽△EBF,∴=,即=,∴m=n2﹣n;综上可知m与n的函数关系式为m=.25.阅读下面材料:小明遇到这样两个问题:(1)如图1,AB是⊙O的直径,C是⊙O上一点,OD⊥AC,垂足为D,BC=﹣6,求OD的长;(2)如图2△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.对于问题(1),小明发现根据垂径定理,可以得出点D是AC的中点,利用三角形中位线定理可以解决;对于问题(2),小明发现延长AD到E,使DE=AD,连接BE,可以得到全等三角形,通过计算可以解决.请回答:问题(1)中OD长为3;问题(2)中AD的取值范围是1<AD<5;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,∠BAC=90°,点D、E分别在AB、AC上,BE与CD相交于点F,AC=mEC,AB=2EC,AD=nDB.①当n=1时,如图4,在图中找出与CE相等的线段,并加以证明;②直接写出的值(用含m、n的代数式表示).【考点】MR:圆的综合题.【分析】(1)由三角形中位线定理可得OD=BC,由此即可解决问题;(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.在△ABM中,理由三边关系定理可得6﹣4<AM<6+4,即2<2AD<10,1<AD<5;(3)①结论:EF=CE.如图4中,延长CD到M使得DM=CD,连接BM.由△ADC≌△BDM,推出BM=AC,∠M=∠ACD,由BM∥AC,推出△CEF∽△MBF,可得=,推出==,推出BF=mEF,推出BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,推出(m+1)EC=(m+1)EF,由此即可证明;结论:=.如图3中,作BM∥AC交CD的延长线于M.证明方法类似①;【解答】解:(1)如图1中,∵OD⊥AC,∴AD=DC,∵AO=OB,BC=6,∴OD=BC=3.(2)如图2中,延长AD到M,使得DM=AD,连接BM,CM.∵AD=DM,BD=CD,∴四边形ABMC是平行四边形,∴BM=AC=4,∵AB=6,∴6﹣4<AM<6+4,即2<2AD<10,∴1<AD<5.(3)①结论:EF=CE.理由:如图4中,延长CD到M使得DM=CD,连接BM.∵AD=DB,∠ADC=∠BDM,∴△ADC≌△BDM,∴BM=AC,∠M=∠ACD,∴BM∥AC,∴△CEF∽△MBF,∴=,∴==,∴BF=mEF,∴BE=(m+1)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(m+1)EF,∴EF=CE.②结论:=.理由:如图3中,作BM∥AC交CD的延长线于M.由△ADC∽△BDM,可得==n,∴BM=,∵=,∴=,∵AC=mEC,∴BF=EF,∴BE=(1+)EF,在Rt△BAE中,BE===(m+1)EC,∴(m+1)EC=(1+)EF,∴=.26.如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC 的解析式为y=kx+2.(1)抛物线的解析式为y=x2﹣x+2;(2)求线段DE的最大值;(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.【考点】HF:二次函数综合题.【分析】(1)先利用一次函数解析式确定C(0,2),然后把C点坐标代入y=a(x﹣1)(x﹣4)中求出a即可;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,先解方程(x﹣1)(x﹣4)=0得A(1,0),B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,设E(m,m2﹣m+2),EF=n,则D(m﹣n,﹣m+n+2),则DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,接着证明Rt△OCA∽Rt△FDE,利用相似比得到=2,则﹣m2+2m+n=2n,所以n=﹣m2+m,利用勾股定理得DE=﹣m2+m,然后根据二次函数的性质解决问题;(3)利用两点间的距离公式得到AC=,BC=2,再利用点D为BC的中点得到D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,接着求出直线DE的解析式为y=﹣2x+5,于是解方程组得E(3,﹣1),所以DE=,然后根据菱形的判定方法可判断四边形CAED为菱形.【解答】解:(1)当x=0时,y=kx+2=2,则C(0,2),把C(0,2)代入y=a(x﹣1)(x﹣4)得a•(﹣1)•(﹣4)=2,解得a=,∴抛物线解析式为y=(x﹣1)(x﹣4),即y=x2﹣x+2;故答案为y=x2﹣x+2;(2)如图1,过点D、E分别作y轴、x轴的平行线,两线相交于点F,当y=0时,(x﹣1)(x﹣4)=0,解得x1=1,x2=4,则A(1,0),B(4,0),设直线BC的解析式为y=kx+b,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(m,m2﹣m+2),EF=n,则D(m﹣n,﹣m+n+2),∴DF=﹣m+n+2﹣(m2﹣m+2)=﹣m2+2m+n,∵OC∥DF,∴∠OCB=∠FDB,∵DE∥CA,∴∠ACB=∠EDB,∴∠OCA=∠FDE,∴Rt△OCA∽Rt△FDE,∴=,∴===2,∴﹣m2+2m+n=2n,∴n=﹣m2+m,在Rt△DEF中,DE==EF=n=﹣m2+m,∵DE=﹣(m﹣2)2+,∴当m=2时,DE的长有最大值,最大值为;(3)四边形CAED为菱形.理由如下:AC==,BC==2,∵点D为BC的中点,∴D(2,1),CD=,易得直线AC的解析式为y=﹣2x+2,设直线DE的解析式为y=﹣2x+p,把D(2,1)代入得1=﹣4+p,解得p=4,∴直线DE的解析式为y=﹣2x+5,解方程组得或,则E(3,﹣1),∴DE==,∴AC=DE,而AC∥DE,∴四边形CAED为平行四边形,∵CA=CD,∴四边形CAED为菱形.。
上海市杨浦区2017届中考数学二模试卷(解析版)
2017年上海市杨浦区中考数学二模试卷一、选择题(本大题共6小题,每小题4分,共24分)1.与平面直角坐标系中的点具有一一对应关系的是()A.实数B.有理数C.有序实数对D.有序有理数对2.化简(a≠0)的结果是()A.a B.﹣a C.﹣a D.a3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是()A.P(A)=1 B.P(A)=0 C.0<P(A)<1 D.P(A)>15.下列判断不正确的是()A.如果=,那么||=||B. +=+C.如果非零向量=k•(k≠0),那么∥D. +=06.下列四个命题中真命题是()A.矩形的对角线平分对角B.平行四边形的对角线相等C.梯形的对角线互相垂直D.菱形的对角线互相垂直平分二、填空题(本大题12小题,每小题4分,共48分)7.两个不相等的无理数,它们的乘积为有理数,这两个数可以是.8.化简:=.9.在实数范围内分解因式:a3﹣2a=.10.不等式组的解集是.11.方程的解是:x=.12.已知点A(2,﹣1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而.13.如果将抛物线y=x2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是.14.如表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是次数40506070人数234115.如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是.16.正十二边形的中心角是度.17.如图,在甲楼的底部B处测得乙楼的顶部D点的仰角为α,在甲楼的顶部A 处测得乙楼的顶部D点的俯角为β,如果乙楼的高DC=10米,那么甲楼的高AB=米(用含α,β的代数式表示)18.如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为.三、解答题(本大题共7小题,共78分)19.(10分)计算:27﹣()﹣1÷3+80﹣(﹣2)2.20.(10分)解方程:.21.(10分)已知:如图,在△ABC中,∠ABC=45°,tanA=,AB=14,(1)求:△ABC的面积;(2)若以C为圆心的圆C与直线AB相切,以A为圆心的圆A与圆C相切,试求圆A的半径.22.(10分)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x 千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1、y2关于x的函数图象分别为如图所示的折线OAB和射线OC.(1)当x的取值为时,在甲乙两家店所花钱一样多?(2)当x的取值为时,在乙店批发比较便宜?(3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.23.(12分)已知:如图,四边形ABCD中,DB⊥BC,DB平分∠ADC,点E为边CD的中点,AB⊥BE.(1)求证:BD2=AD•DC;(2)连结AE,当BD=BC时,求证:ABCE为平行四边形.24.(12分)如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.25.(14分)已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC于点E,联结AE.(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;(2)当扇形的半径长为5,且AC=6时,求线段DE的长;(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.2017年上海市杨浦区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.与平面直角坐标系中的点具有一一对应关系的是()A.实数B.有理数C.有序实数对D.有序有理数对【考点】D1:点的坐标.【分析】根据平面直角坐标系与有序实数对的关系,可得答案.【解答】解:有序实数对与平面直角坐标系中的点具有一一对应关系,故选:C【点评】本题考查了点的坐标,平面直角坐标系与有序实数对是一一对应关系.2.化简(a≠0)的结果是()A.a B.﹣a C.﹣a D.a【考点】73:二次根式的性质与化简.【分析】二次根式有意义,则a<0,根据二次根式的性质解答.【解答】解:有意义,则a<0,﹣a>0,原式=﹣a.故选C.【点评】本题考查了二次根式的化简,注意二次根式的结果为非负数及题目的隐含条件a<0.二次根式的性质:=|a|.3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.【考点】V8:频数(率)分布直方图.【分析】根据频率分布直方图中纵横坐标的意义,易得长方形的面积为长乘宽,即组距×频率/组距=频率;即答案.【解答】解:在频率直方图中纵坐标表示频率/组距,横坐标表示组距,则小长方形的高表示频率/组距,小长方形的长表示组距,则长方形的面积为长乘宽,即组距×频率/组距=频率;故选:B.【点评】本题考查频率直方图中横纵坐标表示的意义.4.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是()A.P(A)=1 B.P(A)=0 C.0<P(A)<1 D.P(A)>1【考点】X3:概率的意义.【分析】根据不等式的基本性质1知事件A是必然事件,由概率的意义可得答案.【解答】解:若a>b,根据不等式的基本性质知a+c>b+c必然成立,∴事件A是必然事件,∴P(A)=1,故选:A.【点评】本题主要考查概率的意义及不等式的基本性质,熟练掌握必然事件的定义是解题的关键.5.下列判断不正确的是()A.如果=,那么||=||B. +=+C.如果非零向量=k•(k≠0),那么∥D. +=0【考点】LM:*平面向量.【分析】根据模的定义,可确定A正确;根据平面向量的交换律,可判定B正确,又由如果非零向量非零向量=k•(k≠0),那么∥或共线,可得C错误;利用相反向量的知识,可判定D正确.【解答】解:A、如果=,那么||=||,故此选项正确;B、+=+,故本选项正确;C、如果非零向量=k•(k≠0),那么∥或共线,故此选项错误;D、+=0,故此选项正确;故选:C.【点评】此题考查了平面向量的知识.注意理解平面向量有关的定义是关键.6.下列四个命题中真命题是()A.矩形的对角线平分对角B.平行四边形的对角线相等C.梯形的对角线互相垂直D.菱形的对角线互相垂直平分【考点】O1:命题与定理.【分析】由矩形、菱形、梯形和平行四边形对角线的性质作出判断,从而利用排除法得出答案.【解答】解:矩形的对角线不能平分对角,A错误;平行四边形的对角线平分,但不一定相等,B错误.梯形的对角线不一定互相垂直,C错误;根据菱形的性质,菱形的对角线互相垂直平分,D正确;故选:D.【点评】本题考查了命题与定理;熟记矩形、菱形、梯形和平行四边形对角线的性质是解决问题的关键.二、填空题(本大题12小题,每小题4分,共48分)7.两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣(答案不唯一).【考点】26:无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可求解【解答】解:∵两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣.(答案不唯一).【点评】此题主要考查了无理数的定义和性质,解题时注意无理数的积不一定是无理数.8.化简:=﹣.【考点】66:约分.【分析】先将分子与分母进行因式分解,再根据分式的基本性质,将分子与分母的公因式约去,即可求解.【解答】解:==﹣,故答案为:﹣.【点评】此题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去.9.在实数范围内分解因式:a3﹣2a=a(a+)(a﹣).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【解答】解:a3﹣2a=a(a2﹣2)=a(a+)(a﹣).故答案为:a(a+)(a﹣).【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10.不等式组的解集是4<x<5.【考点】CB:解一元一次不等式组.【分析】根据不等式分别求出x的取值范围,画出坐标轴,在其上表示出来x.【解答】解:不等式组可以化为:,在坐标轴上表示为:∴不等式组的解集为:4<x<5.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x 介于两数之间.11.方程的解是:x=±2.【考点】AG:无理方程.【分析】对方程左右两边同时平方,可得x2+5=9,进而解可得x的值.【解答】解:根据题意,有,左右两边同时平方可得x2+5=9;解之,可得:x=±2.故答案为:±2.【点评】本题考查含二次根式的无理方程的解法,一般先化为一次或二次方程,再求解,答案注意根式有意义的条件.12.已知点A(2,﹣1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而增大.【考点】G4:反比例函数的性质.【分析】首先将点A的坐标代入解析式求得k值,然后根据反比例函数的性质确定其增减性即可.【解答】解:∵点A(2,﹣1)在反比例函数y=(k≠0)的图象上,∴k=2×(﹣1)=﹣2<0,∴在每一象限内y随着x的增大而增大,故答案为:增大.【点评】本题考查了反比例函数的性质,解题的关键是利用待定系数法确定比例系数的值,难度不大.13.如果将抛物线y=x2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是y=(x+4)2﹣2.【考点】H6:二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:函数y=x2向左平移4个单位,得:y=(x+4)2;再向下平移2个单位后,得:y=(x+4)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14.如表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是54次数40506070人数2341【考点】W2:加权平均数.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该班级女生本次练习中跳绳次数的平均数是==54.故答案为54.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求40,50,60,70这四个数的平均数,对平均数的理解不正确.15.如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是15.【考点】KF:角平分线的性质.【分析】先求出CD的长,再根据角平分线的性质即可得出结论.【解答】解:∵AC=40,AD:DC=5:3,∴CD=40×=15.∵BD平分∠BAC交AC于D,∴D点到AB的距离是15.故答案为:15.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.正十二边形的中心角是30度.【考点】MM:正多边形和圆.【分析】根据正多边形的中心角的定义,可得正六边形的中心角是:360°÷12=30°.【解答】解:正十二边形的中心角是:360°÷12=30°.故答案为:30.【点评】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.17.如图,在甲楼的底部B处测得乙楼的顶部D点的仰角为α,在甲楼的顶部A 处测得乙楼的顶部D点的俯角为β,如果乙楼的高DC=10米,那么甲楼的高AB= +10米(用含α,β的代数式表示)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AH⊥CD交CD的延长线于H,根据正切的概念分别求出DC、DH,计算即可.【解答】解:作AH⊥CD交CD的延长线于H,在Rt△DBC中,tan∠DBC=,则AH=BC=,在Rt△AHD中,tan∠DAH=,DH=AH×tanβ=,∴AB=CH=CD+DH=+10,故答案为: +10.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为.【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】作DG⊥AE,先根据翻折变换的性质得到△DEF≌△BEF,再根据等腰三角形的性质及三角形外角的性质可得到∠AED=CDF,设CF=x,则DF=FB=4﹣x,根据勾股定理求出CF,可知tan∠AED=tanCDF,在Rt△ADG和Rt△EDG分别求出DG、EG,然后根据勾股定理即可得到结论.【解答】解:作DG⊥BE,∵△DEF是△BEF翻折而成,∴△DEF≌△BEF,∠B=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠AED+45°,∴∠AED=∠CDF,∵CA=CB=4,CD=AD=2,设CF=x,∴DF=FB=4﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+4=(4﹣x)2,解得x=,∵∠A=45°,AD=2,∴AG=DG=,∵tan∠AED=tanCDF==,∴=,∴=,∴EG=,∴DE=BE==.故答案为:.【点评】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质以及锐角三角函数的综合运用,涉及面较广,但难易适中.三、解答题(本大题共7小题,共78分)19.(10分)(2017•杨浦区二模)计算:27﹣()﹣1÷3+80﹣(﹣2)2.【考点】2C:实数的运算;2F:分数指数幂;6E:零指数幂;6F:负整数指数幂.【分析】原式利用分数指数幂,零指数幂、负整数指数幂法则,以及完全平方公式化简即可得到结果.【解答】解:原式=3﹣1+1﹣7+4=7﹣7.【点评】此题考查了实数的运算,分数指数幂,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(10分)(2017•杨浦区二模)解方程:.【考点】B3:解分式方程.【分析】分式方程去分母转化为一元二次方程,求出一元二次方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(1﹣x)﹣(x+3)=(1﹣x)(x+3),整理得:x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x1=3,经检验x1=﹣1,x1=3都是原方程的根.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2017•杨浦区二模)已知:如图,在△ABC中,∠ABC=45°,tanA=,AB=14,(1)求:△ABC的面积;(2)若以C为圆心的圆C与直线AB相切,以A为圆心的圆A与圆C相切,试求圆A的半径.【考点】MJ:圆与圆的位置关系;MC:切线的性质;T7:解直角三角形.【分析】(1)过C作CD⊥AB于D,解直角三角形得到CD=,根据三角形的面积公式即可得到结论;(2)根据圆C与直线AB相切,得到⊙C的半径=,根据勾股定理得到AC==,设⊙A的半径为r,当圆A与圆C内切时,当圆A与圆C外切时即可得到结论.【解答】解:(1)过C作CD⊥AB于D,∵tanA==,∴AD=,∵∠ABC=45°,∴BD=CD,∵AB=14,∴+CD=15,∴CD=,∴△ABC的面积=AB•CD=×15×=;(2)∵以C为圆心的圆C与直线AB相切,∴⊙C的半径=,∵AD=,∴AC==,设⊙A的半径为r,当圆A与圆C内切时,r﹣=,∴r=,当圆A与圆C外切时,r+=,∴r=,综上所述:以A为圆心的圆A与圆C相切,圆A的半径为:或.【点评】本题考查了圆与圆的位置关系,勾股定理,三角形的面积的计算,解直角三角形,注意分类讨论思想的应用.22.(10分)(2017•杨浦区二模)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1、y2关于x的函数图象分别为如图所示的折线OAB和射线OC.(1)当x的取值为20千克时,在甲乙两家店所花钱一样多?(2)当x的取值为0<x<20时,在乙店批发比较便宜?(3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.【考点】FH:一次函数的应用.【分析】(1)利用两个函数图象的交点坐标即可解决问题.(2)根据y2的图象在y1的下方,观察图象即可解决问题.(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,可得方程组,解方程组即可.【解答】解:(1)由图象可知,x=20千克时,y1=y2,故答案为20千克.(2)由图象可知,0<x<20时,在乙店批发比较便宜.故答案为0<x<20.(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,∴,解得,∴射线AB的表达式y=5x+100(x≥10).【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是灵活运用一次函数的性质解决问题,学会利用图象解决实际问题,属于中考常考题型.23.(12分)(2017•杨浦区二模)已知:如图,四边形ABCD中,DB⊥BC,DB 平分∠ADC,点E为边CD的中点,AB⊥BE.(1)求证:BD2=AD•DC;(2)连结AE,当BD=BC时,求证:ABCE为平行四边形.【考点】S9:相似三角形的判定与性质;L6:平行四边形的判定.【分析】(1)根据直角三角形的性质得到BE=DE,由等腰三角形的性质得到∠DBE=∠BDE,根据角平分线的定义得到∠ADB=∠BDE,等量代换得到∠ADB=∠DBE,根据平行线的判定定理得到AD∥BE,根据相似三角形的性质即可得到结论;(2)由已知条件得到△BDC是等腰直角三角形,根据等腰直角三角形的性质得到∠BDC=45°,求得∠ADE=90°,推出四边形ADEB是矩形,根据矩形的性质得到AB=DE,AE=BD,于是得到结论.【解答】(1)证明:∵DB⊥BC,点E为边CD的中点,∴BE=DE,∴∠DBE=∠BDE,∵DB平分∠ADC,∴∠ADB=∠BDE,∴∠ADB=∠DBE,∴AD∥BE,∵AB⊥BE,∴∠A=∠ABE=90°,∵∠DBC=90°,∴∠A=∠DBC,∴△ADB∽△BDC,∴,∴BD2=AD•DC;(2)解:∵BD=BC,∴△BDC是等腰直角三角形,∴∠BDC=45°,∴∠ADE=90°,∴四边形ADEB是矩形,∴AB=DE,AE=BD,∴AB=CE,AE=BC,∴四边形ABCE为平行四边形.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,平行四边形的判定,平行线的判定和性质,正确的理解题意是解题的关键.24.(12分)(2017•杨浦区二模)如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.【考点】HF:二次函数综合题.【分析】(1)由对称轴可求得a的值,再把A点坐标代入可求得c的值,则可求得抛物线表达式,则可求得B、C的坐标,由待定系数法可求得直线BC的解析式,可求得E点坐标;(2)由A、B、C三点的坐标可求得AB、AC和BC的长,可判定△ABC是以BC 为斜边的直角三角形,利用三角形的定义可求得答案;(3)设M(x,0),当∠GCM=∠BAE时,可知△AMC为等腰直角三角形,可求得M点的坐标;当∠CMG=∠BAE时,可证得△MEC∽△MCA,利用相似三角形的性质可求得x的值,可求得M点的坐标.【解答】解:(1)∵抛物线对称轴为x=1,∴﹣=1,解得a=,把A点坐标代入可得+1+c=0,解得c=﹣,∴抛物线表达式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣1)2﹣2,∴B(1,﹣2),把C(5,m)代入抛物线解析式可得m=﹣5﹣=6,∴C(5,6),设直线BC解析式为y=kx+b,把B、C坐标代入可得,解得,∴直线BC解析式为y=2x﹣4,令y=2可得2x﹣4=0,解得x=2,∴E(2,0);(2)∵A(﹣1,0),B(1,﹣2),C(5,6),∴AB=2,AC==6,BC==4,∴AB2+AC2=8+72=80=BC2,∴△ABC是以BC为斜边的直角三角形,∴tan∠B===3;(3)∵A(﹣1,0),B(1,﹣2),∴∠CAE=∠BAE=45°,∵GM⊥BC,∴∠CGM+∠GCB=∠GCB+∠ABC=90°,∴∠CGM=∠ABC,∴当△CGM与△ABE相似时有两种情况,设M(x,0),则C(x,2x﹣4),①当∠GCM=∠BAE=45°时,则∠AMC=90°,∴MC=AM,即2x﹣4=x+1,解得x=5,∴M(5,0);②当∠GMC=∠BAE=∠MAC=45°时,∵∠MEC=∠AEB=∠MCG,∴△MEC∽△MCA,∴=,即=,∴MC2=(x﹣2)(x+1),∵C(5,6),∴MC2=(x﹣5)2+62=x2﹣10x+61,∴(x﹣2)(x+1)=x2﹣10x+61,解得x=7,∴M(7,0);综上可知M点的坐标为(5,0)或(7,0).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、三角函数的定义、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意利用对称轴求得a的值是解题的关键,在(2)中证得△ABC为直角三角形是解题的关键,在(3)中利用相似三角形的性质得到关于M点坐标的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.25.(14分)(2017•杨浦区二模)已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC 于点E,联结AE.(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;(2)当扇形的半径长为5,且AC=6时,求线段DE的长;(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.【考点】MR:圆的综合题.【分析】(1)利用矩形的性质,只要证明△OAC是等边三角形,即可解决问题.(2)如图2中,作OH⊥AD于H.由△AOH∽△ADO,推出=,推出=,可得AD=,CD=AD﹣AC=,由DE∥OA,可得=,求出DE即可.(3)如图3中,结论:∠BCD的值是确定的.∠BCD=45°.连接AB、BC,由∠BCD=∠BAC+∠ABC,又∠BAC=∠BOC,∠ABC=∠AOC,即可推出∠BCD=∠BOC+∠AOC=(∠BCO+∠AOC)=×90°=45°.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=EC,AC=CD,OC=CE,∠AOD=90°∴AC=OC=OA,∴△AOC是等边三角形,∴∠OAD=60°,∴∠ADO=90°﹣∠OAD=30°.(2)如图2中,作OH⊥AD于H.∵OA=OC,OH⊥AC,∴AH=HC=3,∵∠OAH=∠OAD,∠AHO=∠AOD,∴△AOH∽△ADO,∴=,∴=,∴AD=,∴CD=AD﹣AC=,∵DE⊥OD,∴∠EDO=90°,∴∠AOD+∠EDO=180°,∴DE∥OA,∴=,∴=,∴DE=.(3)如图3中,结论:∠BCD的值是确定的.∠BCD=45°.理由:连接AB、BC.∵∠BCD=∠BAC+∠ABC,又∵∠BAC=∠BOC,∠ABC=∠AOC,∴∠BCD=∠BOC+∠AOC=(∠BCO+∠AOC)=×90°=45°.【点评】本题考查圆综合题、矩形的性质、圆周角定理、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.。
2017年上海市长宁区中考数学二模试卷含答案解析
2017年上海市长宁区中考数学二模试卷含答案解析2017年上海市长宁区中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.已知 $\sqrt{2}+\sqrt{3}=\sqrt{a}$,那么下列各式中正确的是()A。
$a=5$ B。
$a=6$ C。
$a=7$ D。
$a=8$2.不等式组 $\begin{cases} 2x-310 \end{cases}$ 的解集在数轴上可表示为()A。
$(2,+\infty)$ B。
$(-\infty,-3)\cup(2,+\infty)$ C。
$(-\infty,-3)\cup(5,+\infty)$ D。
$(-\infty,-3)\cup(5,+\infty)$3.在正方形网格中,$\triangle ABC$ 的位置如图所示,则$\cos\angle B$ 的值为()A。
$\dfrac{1}{2}$ B。
$\dfrac{\sqrt{2}}{2}$ C。
$\dfrac{\sqrt{3}}{2}$ D。
$\dfrac{\sqrt{6}}{6}$4.如图,在四边形 $ABCD$ 中,动点 $P$ 从点 $A$ 开始沿 $A\to B\to C\to D$ 的路径匀速前进到 $D$ 为止.在这个过程中,$\triangle APD$ 的面积 $S$ 随时间 $t$ 的变化关系用图象表示正确的是()A。
B。
C。
D。
5.已知 $P$ 为线段 $AB$ 的黄金分割点,且 $AP<PB$,则()A。
$AP^2=AB\cdot PB$ B。
$AB^2=AP\cdot PB$ C。
$PB^2=AP\cdot AB$ D。
$AP^2+BP^2=AB^2$6.下列说法中,正确的是()A。
一组数据 $-2,-1,0,1,2$ 的中位数是 $0$B。
质检部门要了解一批灯泡的使用寿命,应当采用抽样的调查方式C。
购买一张福利彩票中奖是一个不可能事件D。
分别写有三个数字 $-1,-2,4$ 的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为 $\dfrac{1}{2}$二、填空题(本大题共12题,每题4分,满分48分)7.计算:$(ab)^{\frac{1}{3}}=$8.在实数范围内分解因式:$x^2-3=$9.已知函数 $f(x)=\dfrac{1}{2}\sinx+\dfrac{\sqrt{3}}{2}\cos x$,则 $f\left(\dfrac{\pi}{6}\right)=$10.已知反比例函数 $y=\dfrac{k}{x}$,那么 $f(-1)=$ 的图象经过一、三象限,则实数 $k$ 的取值范围是 $\left(-\infty,0\right)\cup\left(0,\dfrac{1}{2}\right)$11.抛物线 $y=-x^2+2x+a$ 的对称轴是 $x=\dfrac{1}{2}$12.方程 $\dfrac{1}{x}-\dfrac{1}{x-1}=1$ 的解为 $x=2$13.已知关于 $x$ 的方程 $x-2kx+k=0$ 有两个相等的实数根,那么实数 $k=1$14.某物流仓储公司用 $A$、$B$ 两种型号的机器人搬运物品,已知 $A$ 型机器人比 $B$ 型机器人每小时多搬运$20$ 千克物品,$A$ 型机器人搬运 $1000$ 千克物品所用时间与 $B$ 型机器人搬运 $800$ 千克物品所用时间相等,设$A$ 型机器人每小时搬运物品 $x$ 千克,列出关于 $x$ 的方程为 $1000=(x+20)t$15.化简:$2-3(-1)^{3+1}=$ $-1$16.如图,在菱形 $ABCD$ 中,$EF\parallel BC$,$EF=3$,则 $CD$ 的长为 $6$17.在 $\triangle ABC$ 中,已知 $BC=4$ cm,以边$AC$ 的中点 $P$ 为圆心 $1$ cm 为半径画 $\odot P$,以边$AB$ 的中点 $Q$ 为圆心 $x$ cm 长为半径画 $\odot Q$,如果$\odot P$ 与 $\odot Q$ 相切,那么 $x=2\sqrt{2}$ cm18.如图,在 $Rt\triangle ABC$ 中,$AB=AC$,$D$、$E$ 是斜边 $BC$ 上的两点,且 $\angle DAE=45^\circ$.设$BE=a$,$DC=b$,那么 $AB=a+b$所以正确的式子是C.=.答案】C2.如图,已知长方形ABCD中,点E、F分别在线段AB、CD上,且=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是C.=.答案】C3.如图,在△ABC中,点D、E、F分别在边BC、AC、AB上,且=,=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是D.=.答案】D4.如图,在△ABC中,点D、E分别在边AB、AC上,且=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是B.=.答案】B5.如图,已知长方形ABCD中,点E、F分别在线段AB、BC上,且=,=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是A.=.答案】A6.如图,已知正方形ABCD中,点E、F分别在线段AB、BC上,且=,那么下列各式中正确的是()A.=B.=C.=D.=考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以正确的式子是D.=.答案】D二、填空题(共6小题,每小题4分,满分24分)7.如图,已知△ABC中,点D、E分别在边AB、AC上,且=,=,=,=,则=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】60°8.如图,已知长方形ABCD中,点E、F分别在线段AB、CD上,且=,=,那么=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】29.如图,已知正方形ABCD中,点E、F分别在线段AB、BC上,且=,那么=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】135°10.如图,在△ABC中,点D、E分别在边AB、AC上,且=,=,=,则=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】60°11.如图,已知正方形ABCD中,点E、F分别在线段AB、BC上,且=,那么=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】45°12.如图,在△ABC中,点D、E分别在边AB、AC上,且=,=,=,则=______.考点】S1:相似三角形的性质.分析】根据相似三角形的性质,可以得到=,=,=,=,=,=.解答】解:由相似三角形的性质,可得=,=,=,=,=,=.所以=.答案】120°三、解答题(共7题,满分78分)19.(10分)计算:()﹣1﹣|﹣3+tan45°|+().考点】S2:三角函数的计算.解答】解:由于tan45°=1,所以|﹣3+tan45°|=|﹣2|=2.所以()﹣1﹣|﹣3+tan45°|+()=()﹣1﹣2+()=()﹣3+()=()﹣3.答案】()﹣320.(10分)解方程组:.考点】S3:二元一次方程组的解法.解答】解:将第一个方程式乘以2得到2x+4y=10,将第二个方程式乘以3得到3x+6y=15,两式相减得到x=5-2y,代入第一个方程式得到y=1,代入第二个方程式得到x=3.所以方程组的解为(3,1).答案】(3,1)21.(10分)已知直线y=﹣x+3与x轴、y轴分别交于A、B两点,设O为坐标原点.(1)求∠ABO的正切值;2)如果点A向左平移12个单位到点C,直线l过点C且与直线y=﹣x+3平行,求直线l的解析式.考点】S4:平面几何的基本概念.解答】(1)点A的坐标为(3,0),点B的坐标为(0,3),所以∠ABO的正切值为3/0不存在.2)点C的坐标为(-9,0),直线l与直线y=﹣x+3平行,所以l的斜率与y=﹣x+3的斜率相同,即为﹣1.又因为直线l 过点C,所以l的解析式为y=﹣x-9.答案】(1)不存在;(2)y=﹣x-922.(10分)XXX在海湾森林公园放风筝.XXX所示,XXX在A处,风筝飞到C处,此时线长BC为40米,若XXX双手牵住绳子的底端B距离地面1.5米,从B处测得C 处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米,≈1.732)考点】S5:三角函数的应用.解答】解:由正弦定理可得AC=2CEsin60°=2CE×√3/2=CE√3,又因为BC=40,所以BE=BC-CE=40-CE√3.由正切定义可得tan60°=CE/BE,即√3=CE/(40-CE√3),解得CE=40√3/4=10√3≈17.32.所以风筝离地面的高度CE≈17.32米.答案】≈17.32米23.(12分)如图,在△ABC中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且上,∠ACG的平分线交直线PQ于点F.1)求证:PC=PE;2)当P是边AC的中点时,求证:四边形AECF是矩形.考点】S4:平面几何的基本概念.解答】(1)由相似三角形的性质,可得=,=,所以PC=PE.2)当P是边AC的中点时,有PC=PE,∠ACG的平分线经过点P,所以PF=PG,又因为∠ACF=∠GCF,所以△ACF≌△GCF,所以AF=CG,又因为AF=EC,所以EC=CG,所以四边形AECF是矩形.答案】(1)PC=PE;(2)四边形AECF是矩形.24.(12分)已知△OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6,∠AOB=30°.1)求点A、B的坐标;2)开口向上的抛物线经过原点O和点B,设其顶点为E,当△OBE为等腰直角三角形时,求抛物线的解析式;3)设半径为2的1.给定四个比例式,求哪个是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学二模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×10103.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a34.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm27.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.88.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= .12.要使式子有意义,则a的取值范围为.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).15.抛物线y=x2﹣2x+3的顶点坐标是,当x= 时,y随x的增大而减小.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD 的长为.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.2017年中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42亿=42 0000 0000=4.2×109,故选:C.3.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a3【考点】48:同底数幂的除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.4.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.1【考点】CC:一元一次不等式组的整数解.【分析】先解出不等式组的解集,从而可以得到不等式组的整数解,从而可以得到不等式组的整数解的和.【解答】解:解得,﹣2<x≤,∴的整数解是x=﹣1,x=0,x=1,∵(﹣1)+0+1=0,故的整数解得和是0,故选C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】解:依题意知母线l=4cm,底面半径r=2÷2=1,则由圆锥的侧面积公式得S=πrl=π×1×4=4πcm2.故选B.7.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.8【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、3出现了2次,出现的次数最多,则众数是3,故本选项正确;B、把这组数据从小到大排列为:1,2,3,3,6,最中间的数是3,则中位数是3,故本选项错误;C、这组数据的平均数是(1+2+6+3+3)÷5=3,故本选项正确;D、这组数据的方差是: [(1﹣3)2+(2﹣3)2+(6﹣3)2+(3﹣3)2+(3﹣3)2]=,故本选项正确;故选B.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】S9:相似三角形的判定与性质;K3:三角形的面积;L5:平行四边形的性质.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF 和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==, ==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= ﹣3xy(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3xy(x2﹣4x+4)=﹣3xy(x﹣2)2,故答案为:﹣3xy(x﹣2)212.要使式子有意义,则a的取值范围为a≥﹣2且a≠0 .【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12 个.【考点】X4:概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt △ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.【解答】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.15.抛物线y=x2﹣2x+3的顶点坐标是(1,2),当x= <1 时,y随x的增大而减小.【考点】H3:二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,利用y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣可以确定对称轴,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x+3,∴二次函数的二次项系数a=1>0,∴抛物线开口向上,∵y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣,∴此函数对称轴是x=1,顶点坐标是(1,2),∴当x<1时,y随x的增大而减小.故答案为:(1,2),<1.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为 a .【考点】MC:切线的性质;MH:切割线定理;S7:相似三角形的性质.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为: a.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×﹣2+1=﹣1;(2)原式=•=,当a=2+时,原式==+1.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.20.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b . (1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b 的图象经过一、二、四象限的概率.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系. 【分析】(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b 的图象经过一、二、四象限的情况,即可求出所求的概率. 【解答】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种, 则P==.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t, t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t, t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)根据BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°即可得出结论;(2)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.(3)根据△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.【解答】(1)BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△ABC∽△DEB;(2)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.(3)∵△BED∽△CBA,∴,即=,解得:DE=.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.【考点】HF:二次函数综合题.【分析】(1)首先运用待定系数法求出二次函数的解析式,然后把点D(2,m)代入二次函数的解析式,就可求出点D的坐标;(2)过点D作DH⊥AB于点H,如图1,根据勾股定理可求出BD,易求出点A的坐标,从而得到AB长,然后分两种情况:①△QBE∽△ABD,②△QBE∽△DBA讨论,运用相似三角形的性质求出BQ,从而得到OQ,即可得到点Q的坐标;(3)根据待定系数法得到直线AD的解析式为:y=x+2,过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四边形CFNM的最短周长为:2+2时直线DF′的解析式为:y=3x﹣2,从而得到满足条件的点M和点N的坐标.【解答】解:(1)由题可得:,解得:,则二次函数的解析式为y=﹣x2+x+4.∵点D(2,m)在抛物线上,∴m=﹣×22+2+4=4,∴点D的坐标为(2,4);(2)过点D作DH⊥AB于点H,如图1,∵点D(2,4),点B(4,0),∴DH=4,OH=2,OB=4,∴BH=2,∴DB==2.∵点E为DB的中点,∴BE=BD=.令y=0,得﹣x2+x+4=0,解得:x1=4,x2=﹣2,∴点A为(﹣2,0),∴AB=4﹣(﹣2)=6.①若△QBE∽△ABD,则=,∴=,解得:BQ=3,∴OQ=OB﹣BQ=4﹣3=1,∴点Q的坐标为(1,0);②若△QBE∽△DBA,则=,∴=,∴BQ=,∴OQ=OB﹣BQ=4﹣=,∴点Q的坐标为(,0).综上所述:点Q的坐标为(1,0)或(,0);(3)如图2,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).。