数学八年级上册 全册全套试卷综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级上册 全册全套试卷综合测试卷(word 含答案)
一、八年级数学三角形填空题(难)
1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.
【答案】20202α
【解析】
【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知
21211112222
a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】
解:∵∠ABC 与∠ACD 的平分线交于点A 1,
∴11118022
A ACD AC
B AB
C ∠=︒-∠-∠-∠ 1118018022
ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122
a A =∠=, 同理可得221122a A A ∠=
∠=, …
∴2020A ∠=
20202α. 故答案为:
2020
2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.
2.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次
连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.
【答案】4
【解析】
【分析】
连接111,,AC B A C B ,根据两个三角形等底同高可得
111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<
2020……直至第四次操作4443334
772401A B C A B C S S ∆∆===>2020,即可得出结论.
【详解】
解:连接111,,AC B A C B
∵111,,A B AB B C BC C A CA ===
根据等底同高可得:
111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S S
S S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======
∴第一次操作:11177A B C ABC S S ∆∆==<2020
同理可得第二次操作2221112
7749A B C A B C S S ∆∆===<2020
第三次操作333222377343A B C A B C S S ∆∆===<2020
第四次操作4443334772401A B C A B C S S ∆∆===>2020
故要使得到的三角形的面积超过2020,最少需经过4次操作,
故答案为:4.
此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.
3.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是
__________ .
【答案】γ=2α+β.
【解析】
【分析】
根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故答案为:γ=2α+β.
【点睛】
此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
【答案】22
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .
故填22.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
5.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.
【答案】7
【解析】
【分析】
根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.
6.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,
220∠=,则B ∠=__________.
【答案】50°