人教版九年级上册数学 圆 几何综合中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学 圆 几何综合中考真题汇编[解析版]
一、初三数学 圆易错题压轴题(难)
1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。 (1)求这条抛物线的解析式; (2)求点E 的坐标;
(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由
【答案】(1)y=x 2
+2x-8(2)(-1,-
72)(3)(-8,40),(-15
4,-1316),(-174
,-25
16
) 【解析】
分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;
(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点
G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,
从而求出点E 的坐标;
(3)设点P (a , a 2+2a -8), 则2
28,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时
和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.
详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-
(2)由(1)可得:2
28y x x =+-,当0y =时,124,2x x =-=;
∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC =
过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,,
则11
6322
AG AB =
=⨯= ,
设
,则
, 在Rt AGE ∆中,,
在
中,
()2
22218CE EF CF a =+=+-,
∵AE CE = ,
∴()2
2918a a +=+- ,
解得:7
2a =
, ∴712E ⎛
⎫-- ⎪⎝
⎭
,
; (3)设点()2,28a a a P +-,
则2
28,2PQ a a BQ a =+-=-, a.当PBQ ∆∽CBO ∆时,
PQ CO
BQ OB =,即228822
a a a +-=-, 解得:10a =(舍去);
22a =(舍去);38a =- ,
∴()18,40P - ;
b.当PBQ ∆∽BCO ∆时,
PQ BO
BQ CO =,即228228
a a a +-=-, 解得:12a =(舍去),2154a =-;317
4
a =- , ∴21523,416P ⎛⎫-
- ⎪⎝⎭;31725416P ⎛⎫
- ⎪⎝⎭
, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--
⎪⎝⎭,31725416P ⎛⎫
- ⎪⎝⎭
, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.
2.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .
(1)分别求点E 、C 的坐标;
(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.
【答案】(1)点C 的坐标为(-3,0)(2)234
333
y x x =++3)⊙M 与⊙A 外切 【解析】
试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;
(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;
(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么
∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.
试题解析:(1)在Rt△EOB 中,cot602EO OB =⋅︒==, ∴点E 的坐标为(-2,0).
在Rt△COA 中,tan tan603OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).
(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上.
设()()13y a x x =++,用(0A 代入得
()()
0103a =++,
∴3
a =.
∴)()13y x x =
++,即
2y x =
++ (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,
∴MED B ∠=∠.
∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.
∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.
3.在△ABC 中,∠A=90°,AB=4,AC=3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN∥BC 交AC 于点N .
(1)如图1,把△AMN 沿直线MN 折叠得到△PMN,设AM=x . i .若点P 正好在边BC 上,求x 的值;
ii .在M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数关系式,并求y 的最大值.
(2)如图2,以MN 为直径作⊙O,并在⊙O 内作内接矩形AMQN .试判断直线BC 与⊙O 的位置关系,并说明理由.