七年级奥林匹克竞赛题
初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。
这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。
无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。
本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。
第一套试题:平方和试题:假设我们有两个正整数 a 和 b。
如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。
我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。
解析:我们可以用比率法解决这个题目。
首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。
然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。
现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。
第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。
初一数学奥林匹克竞赛题(含答案).

5.第 n 项为
所以
≥0,即
6.设 p=30q+r ,0≤r <30.因为 p 为质数,故 r ≠0,即 0< r <30.假设 r 为合数,由于 r < 30,所以 r 的最小质约数只可能为 2,3,5.再由 p=30q+r 知,当 r 的最小质约数为 2,3,5 时, p 不是质数,矛盾.所以, r 一定不是合 数.
初一数学奥林匹克竞赛题(含答案)
初一奥数题一 100 元,三年后负债 600 元.求每人每年收入多少 ? 是多少?
甲多开支 S 的末四位数字的和
4.一个人以 3 千米 / 小时的速度上坡, 以 6 千米 / 小时的速度下坡, 行程 12 千米 共用了 3 小时 20 分钟,试求上坡与下坡的路程. 5.求和: 6.证明:质数 p 除以 30 所得的余数一定不是合数.
y;若 3|y,同理可得, 3|x.
9.连结 AN,CN,如图 1-103 所示.因为 N是 BD的中点,所以
上述两式相加
另一方面, S△PCD=S△CND+ S△ + CNP S△ . DNP
因此只需证明 S△ = AND S△CNP+ S△ . DNP
由于 M,N 分别为 AC, BD的中点,所以 S =S -S △CNP △CPM △CMN =S△APM-S △AMN =S△ANP.
8.若两个整数 x,y 使 x2+xy+y2能被 9 整除,证明: x 和 y 能被 3 整除. 9.如图 1-95 所示.在四边形 ABCD中,对角线 AC,BD的中点为 M,N,MN的延 长线与 AB边交于 P 点.求证:△ PCD的面积等于四边形 ABCD的面积的一半. 解答:
所以
x=5000( 元) .
解之得
故
初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
七年级数学奥林匹克试卷

一、选择题(每题4分,共40分)1. 下列各数中,是整数的是()A. 2.5B. -3.14C. 0.001D. -22. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8B. 1, 3, 5, 7C. 5, 10, 15, 20D. 3, 6, 9, 123. 若方程 2x - 5 = 3(x + 1),则 x 的值为()A. 2B. 3C. 4D. 54. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 矩形5. 在直角坐标系中,点 A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(-2,-3)6. 若等比数列的首项为 2,公比为 3,则该数列的前 5 项和为()A. 31B. 48C. 58D. 667. 在梯形 ABCD 中,AD 平行于 BC,若 AB = 5,CD = 3,AD = BC = 4,则梯形ABCD 的面积是()A. 10B. 12C. 14D. 168. 若函数 f(x) = 2x + 3,则 f(2) 的值为()A. 7B. 8C. 9D. 109. 下列命题中,正确的是()A. 平行四边形一定是矩形B. 等腰三角形一定是等边三角形C. 直线与圆相切,则切点只有一个D. 对角线互相垂直的四边形一定是矩形10. 若 a, b, c 是等差数列,且 a + b + c = 12,则 b 的值为()A. 4B. 6C. 8D. 10二、填空题(每题5分,共50分)11. 若 m + n = 5,mn = 6,则m² + n² 的值为 _______。
12. 在直角坐标系中,点 P(-3,2)到原点的距离是 _______。
13. 下列数中,是平方数的是 _______。
14. 若等比数列的首项为 1,公比为 -2,则该数列的第 6 项是 _______。
15. 在梯形 ABCD 中,AD 平行于 BC,若 AB = 6,CD = 4,AD = BC = 5,则梯形ABCD 的面积是 _______。
初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是()A.有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有()A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是()A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1.______.2.198919902-198919892=______.3.=________.4.关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案及解析一、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。
初一奥林匹克竞赛题

初一奥林匹克竞赛题
1.在一个圆形花坛中,有三个直径相等的圆形花区,每个花区的面积分别为4平方米,6平方米和8平方米。
把花坛等分成4个区域,每个区域都包含一个完整的花区,那么每个区域的面积是多少平方米?
2. 小明和小红比赛数学,小明做25道题用了45分钟,小红做30道题用了60分钟。
如果两人的得分一样,那么每道题要多少分钟?
3. 小王有一些相同的木棍,他把它们分成两堆,每堆都用完所
有的木棍。
如果每堆的长度比例为3:4,那么他至少有多少根木棍?
4. 一辆汽车以每小时60公里的速度匀速行驶,另一辆汽车以每小时90公里的速度匀速行驶,它们相向而行,相距100公里的时候
开始同向行驶。
两辆车相遇需要多长时间?
5. 在一个4x4的正方形网格中,选择其中7个格子并用黑色填充,其他格子用白色填充。
请问,这样的方案有多少种?
这些题目旨在考察学生的逻辑推理、数学思维和解决问题的能力。
通过参加奥林匹克竞赛,学生可以锻炼自己的思维能力,提高数学水平,为未来的学习和工作打下良好的基础。
- 1 -。
初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
世界奥林匹克数学竞赛(七年级总决赛)

AF EDCB世界奥林匹克数学竞赛(中国区)总决赛七年级数学试题一、选择题(10个小题,每小题5.2分,共52分) 1、已知c a 、、b 是互不相等的有理数,那么ba ac a c c b c b b a ------,,中,正数有( )A. 0个B. 1个C. 2个D.3个 2、方程0|3||1|)1(2=+--++x x x 解的个数有( )A. 1个 B. 2个 C.3个D.无穷多个3、已知200919200817)1()1(++-+-=n n a ,当n 依次取1,2,…,2009时,a 的值为负数的个数是( )。
A .0个 B. 1个 C. 1004个 D.1005个 4、已知c a 、、b ,m 是有理数,且1b +>--=++m c b a m c a ,,则有( )A. b < 0B. c < 0C.21-<+c b D. 1>bc 5、已知200920082010200720102008200920072010200920082007⨯⨯-=⨯⨯-=⨯⨯-=c b a ,,,则有( )A .c b a<< B.c b a >> C.b a c << D. a c b >>6、已知⎩⎨⎧=+=+3||||0||y x x y x 中,0≠xy ,则有=y x( )A .1 B. -1 C. 2 D. -27、小明在三张卡片上分别写上2,3,5,每张卡片作为数轴上的一个点,卡片上的数表示这个离原点的距离,把三张卡片摆放到数轴上,不同的摆放方法最多有( ) A .12种 B. 8种 C. 6种 D. 2种 8、设三角形三边的长为c a 、、b ,且c b a>>,下面三个式子:①bc a +2;②ca b +2;③ab c +2,其中值最大的是( ) A .① B. ②C. ③D. 不确定9、已知:如图,△ABC 中,D 是BC 上的点,BD= 2DC ,E 在AD上,AE = DE ,BE 交AC 于F ,若△ABC 的面积是302cm ,那么四边形CDEF 的面积是( ) A .92cm B. 8.52cm C. 82cm D. 7.52cm10、圆周上有9个点,以这些为顶点构成三角形,那么所构成的三角形的个数共有( ) A .24个 B. 27个 C. 72个 D. 84个 二、填空题(8个小题,每小题6分,共48分)1、已知a 是质数,则方程组⎩⎨⎧=-=+ay x ay x 4的正整数解是;2、正整数1400的正因数的个数有个;3、已知有理数c b a>>,且0=++c b a ,则ac 的值的范围是;4、已知b a ,是正整数,2734=+ba ,则代数式22b ab a +-的值是;5、已知:如图,长方形ABCD 中,P 是CD 边上任一点,过点P 作AC 、BD 的垂线分别交AC 、BD 于E 、F ,若长方形的一条对角线的长为lcm ,面积为l 42cm ,则PE+PF=cm6、已知z y x 、、都是有理数,且绝对值都不大于2,那么方程3=+-z y x 的整数解个数是个;7、对于数x ,[x ]表示不超过x 的最大整数,已知关于x 的方程24||3=⎥⎦⎤⎢⎣⎡+a x 有正整数解,则a 的值的范围是;8、平面上5个圆和一条直线,最多能把平面分成部分。
初一奥林匹克数学竞赛训练试题集

、选择题(共8小题,每小题4分,满分32分) 1.(4分)若三个连续自然数的最小公倍数为 660,则这三个数分别是( )
A. 9,10,11B.10,11,12C.11,12,13D.12,13,14
2.(4 分)一个十位数字为零的三位数,它恰好等于其各位数字和的m倍,交换它的个位数
1.(4分)若三个连续自然数的最小公倍数为660,则这三个数分别是()
A. 9,10,11B.10,11,12C.11,12,13D.12,13,14
【分析】设这三个数为x,x+1,x+2,根据三个连续自然数的最小公倍数为660,可得x|660,
(x+1)|660,( x+2)|660,又由 660= 2× 2×3×5×11,即可得出答案.
,
两方程相加,得101x+101 y=( x+ y)( m+n),
解,得n= 101﹣m.
故选:B.
【点评】 本题考查了二元一次方程组的应用及解法,解题关键是弄清题意,合适的等量 关系,列出方程组.
本题涉及一个常识问题:三位数= 100×百位数字 +10×十位数字+个位数字,并且在求两 位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数 字为未知数.注意当方程组中的未知数较多时要观察运用整体消元来解未知数.
这三个数中,至少有一个数能被10整除.
19.(16分)已知:如图,四边形ABCD的对角线AC、 BD交于O,如果三角形 ABD的面
积为 5,三角形ABC面积为 6,三角形BCD面积为 10,问三角形OBC的面积是多少?
初一奥林匹克数学竞赛训练试题集(16)
参考答案与试题解析
初一奥赛数学题大全(100道)

【导语】数学奥林匹克活动的蓬勃发展,极⼤地激发了⼴⼤少年⼉童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的⼀项有益活动。
以下是为您整理的相关资料,希望对您有⽤。
1.甲、⼄、丙三⼈在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、⼄、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,⼄先在A地植树,然后转到B地植树.两块地同时开始同时结束,⼄应在开始后第⼏天从A地转到B 地?2.有三块草地,⾯积分别是5,15,24亩.草地上的草⼀样厚,⽽且长得⼀样快.第⼀块草地可供10头⽜吃30天,第⼆块草地可供28头⽜吃45天,问第三块地可供多少头⽜吃80天?3. 某⼯程,由甲、⼄两队承包,2.4天可以完成,需⽀付1800元;由⼄、丙两队承包,3+3/4天可以完成,需⽀付1500元;由甲、丙两队承包,2+6/7天可以完成,需⽀付1600元.在保证⼀星期内完成的前提下,选择哪个队单独承包费⽤最少?4. ⼀个圆柱形容器内放有⼀个长⽅形铁块.现打开⽔龙头往容器中灌⽔.3分钟时⽔⾯恰好没过长⽅体的顶⾯.再过18分钟⽔已灌满容器.已知容器的⾼为50厘⽶,长⽅体的⾼为20厘⽶,求长⽅体的底⾯⾯积和容器底⾯⾯积之⽐.5. 甲、⼄两位⽼板分别以同样的价格购进⼀种时装,⼄购进的套数⽐甲多1/5,然后甲、⼄分别按获得80%和50%的利润定价出售.两⼈都全部售完后,甲仍⽐⼄多获得⼀部分利润,这部分利润⼜恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、⼄两根⽔管,分别同时给A,B两个⼤⼩相同的⽔池注⽔,在相同的时间⾥甲、⼄两管注⽔量之⽐是7:5.经过2+1/3⼩时,A,B两池中注⼊的⽔之和恰好是⼀池.这时,甲管注⽔速度提⾼25%,⼄管的注⽔速度不变,那么,当甲管注满A池时,⼄管再经过多少⼩时注满B池?7. ⼩明早上从家步⾏去学校,⾛完⼀半路程时,爸爸发现⼩明的数学书丢在家⾥,随即骑车去给⼩明送书,追上时,⼩明还有3/10的路程未⾛完,⼩明随即上了爸爸的车,由爸爸送往学校,这样⼩明⽐独⾃步⾏提早5分钟到校.⼩明从家到学校全部步⾏需要多少时间?8. 甲、⼄两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.⼄车的速度是甲车速度的80%.已知⼄车⽐甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后⼄车⽐甲车迟4分钟到C地.那么⼄车出发后⼏分钟时,甲车就超过⼄车.9. 甲、⼄两辆清洁车执⾏东、西城间的公路清扫任务.甲车单独清扫需要10⼩时,⼄车单独清扫需要15⼩时,两车同时从东、西城相向开出,相遇时甲车⽐⼄车多清扫12千⽶,问东、西两城相距多少千⽶?10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要⽤多少辆载重量为4.5吨的汽车可以⼀次全部运⾛集装箱?⼩学数学应⽤题综合训练(02)11. 师徒⼆⼈共同加⼯170个零件,师傅加⼯零件个数的1/3⽐徒弟加⼯零件个数的1/4还多10个,那么徒弟⼀共加⼯了⼏个零件?12. ⼀辆⼤轿车与⼀辆⼩轿车都从甲地驶往⼄地.⼤轿车的速度是⼩轿车速度的80%.已知⼤轿车⽐⼩轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往⼄地;⽽⼩轿车出发后中途没有停,直接驶往⼄地,最后⼩轿车⽐⼤轿车早4分钟到达⼄地.⼜知⼤轿车是上午10时从甲地出发的.那么⼩轿车是在上午什么时候追上⼤轿车的.13. ⼀部书稿,甲单独打字要14⼩时完成,,⼄单独打字要20⼩时完成.如果甲先打1⼩时,然后由⼄接替甲打1⼩时,再由甲接替⼄打1⼩时.......两⼈如此交替⼯作.那么打完这部书稿时,甲⼄两⼈共⽤多少⼩时?14. 黄⽓球2元3个,花⽓球3元2个,学校共买了32个⽓球,其中花⽓球⽐黄⽓球少4个,学校买哪种⽓球⽤的钱多?15. ⼀只帆船的速度是60⽶/分,船在⽔流速度为20⽶/分的河中,从上游的⼀个港⼝到下游的某⼀地,再返回到原地,共⽤3⼩时30分,这条船从上游港⼝到下游某地共⾛了多少⽶?16. 甲粮仓装43吨⾯粉,⼄粮仓装37吨⾯粉,如果把⼄粮仓的⾯粉装⼊甲粮仓,那么甲粮仓装满后,⼄粮仓⾥剩下的⾯粉占⼄粮仓容量的1/2;如果把甲粮仓的⾯粉装⼊⼄粮仓,那么⼄粮仓装满后,甲粮仓⾥剩下的⾯粉占甲粮仓容量的1/3,每个粮仓各可以装⾯粉多少吨?17. 甲数除以⼄数,⼄数除以丙数,商相等,余数都是2,甲、⼄两数之和是478.那么甲、⼄丙三数之和是⼏?18. ⼀辆车从甲地开往⼄地.如果把车速减少10%,那么要⽐原定时间迟1⼩时到达,如果以原速⾏驶180千⽶,再把车速提⾼20%,那么可⽐原定时间早1⼩时到达.甲、⼄两地之间的距离是多少千⽶?19. 某校参加军训队列表演⽐赛,组织⼀个⽅阵队伍.如果每班60⼈,这个⽅阵⾄少要有4个班的同学参加,如果每班70⼈,这个⽅阵⾄少要有3个班的同学参加.那么组成这个⽅阵的⼈数应为⼏⼈?20. 甲、⼄、丙三台车床加⼯⽅形和圆形的两种零件,已知甲车床每加⼯3个零件中有2个是圆形的;⼄车床每加⼯4个零件中有3个是圆形的;丙车床每加⼯5个零件中有4个是圆形的.这天三台车床共加⼯了58个圆形零件,⽽加⼯的⽅形零件个数的⽐为4:3:3,那么这天三台车床共加⼯零件⼏个?⼩学数学应⽤题综合训练(03)21. 圈⾦属线长30⽶,截取长度为A的⾦属线3根,长度为B的⾦属线5根,剩下的⾦属线如果再截取2根长度为B的⾦属线还差0.4⽶,如果再截取2根长度为A的⾦属线则还差2⽶,长度为A的等于⼏⽶?22. 某公司要往⼯地运送甲、⼄两种建筑材料.甲种建筑材料每件重700千克,共有120件,⼄种建筑材料每件重900千克,共有80件,已知⼀辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,⾄少要⼏次?23. 从王⼒家到学校的路程⽐到体育馆的路程长1/4,⼀天王⼒在体育馆看完球赛后⽤17分钟的时间⾛到家,稍稍休息后,他⼜⽤了25分钟⾛到学校,其速度⽐从体育馆回来时每分钟慢15⽶,王⼒家到学校的距离是多少⽶?24. 师徒两⼈合作完成⼀项⼯程,由于配合得好,师傅的⼯作效率⽐单独做时要提⾼1/10,徒弟的⼯作效率⽐单独做时提⾼1/5.两⼈合作6天,完成全部⼯程的2/5,接着徒弟⼜单独做6天,这时这项⼯程还有13/30未完成,如果这项⼯程由师傅⼀⼈做,⼏天完成?25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是⼀、⼆、三、四、五班.⼜知⼀班植的棵数是⼆、三班植的棵数之和,⼆班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26. 甲每⼩时跑13千⽶,⼄每⼩时跑11千⽶,⼄⽐甲多跑了20分钟,结果⼄⽐甲多跑了2千⽶.⼄总共跑了多少千⽶?27. 有⾼度相等的A,B两个圆柱形容器,内⼝半径分别为6厘⽶和8厘⽶.容器A中装满⽔,容器B是空的,把容器A中的⽔全部倒⼊容器B中,测得容器B中的⽔深⽐容器⾼的7/8还低2厘⽶.容器的⾼度是多少厘⽶?28. 有104吨的货物,⽤载重为9吨的汽车运送.已知汽车每次往返需要1⼩时,实际上汽车每次多装了1吨,那么可提前⼏⼩时完成.29. 师、徒⼆⼈第⼀天共加⼯零件225个,第⼆天采⽤了新⼯艺,师傅加⼯的零件⽐第⼀天增加了24%,徒弟增加了45%,两⼈共加⼯零件300个,第⼆天师傅加⼯了多少个零件?徒弟加⼯了⼏个零件?30. 奋⽃⼩学组织六年级同学到百花⼭进⾏野营拉练,⾏程每天增加2千⽶.去时⽤了4天,回来时⽤了3天,问学校距离百花⼭多少千⽶?⼩学数学应⽤题综合训练(04)31. 某地收取电费的标准是:每⽉⽤电量不超过50度,每度收5⾓;如果超出50度,超出部分按每度8⾓收费.每⽉甲⽤户⽐⼄⽤户多交3元3⾓电费,这个⽉甲、⼄各⽤了多少度电?32. 王师傅计划⽤2⼩时加⼯⼀批零件,当还剩160个零件时,机器出现故障,效率⽐原来降低1/5,结果⽐原计划推迟20分钟完成任务,这批零件有多少个?33. 妈妈给了红红⼀些钱去买贺年卡,有甲、⼄、丙三种贺年卡,甲种卡每张1.20元.⽤这些钱买甲种卡要⽐买⼄种卡多8张,买⼄种卡要⽐买丙种卡多买6张.妈妈给了红红多少钱?⼄种卡每张多少钱?34. ⼀位⽼⼈有五个⼉⼦和三间房⼦,临终前⽴下遗嘱,将三间房⼦分给三个⼉⼦各⼀间.作为补偿,分到房⼦的三个⼉⼦每⼈拿出1200元,平分给没分到房⼦的两个⼉⼦.⼤家都说这样的分配公平合理,那么每间房⼦的价值是多少元?35. ⼩明和⼩燕的画册都不⾜20本,如果⼩明给⼩燕A本,则⼩明的画册就是⼩燕的2倍;如果⼩燕给⼩明A本,则⼩明的画册就是⼩燕的3倍.原来⼩明和⼩燕各有多少本画册?36. 有红、黄、⽩三种球共160个.如果取出红球的1/3,黄球的1/4,⽩球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,⽩球的1/3,则剩116个,问(1)原有黄球⼏个?(2)原有红球、⽩球各⼏个?37. 爸爸、哥哥、妹妹三⼈现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三⼈的年龄各是多少岁?38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,⼄从B地出发去送另⼀封信.⼄出发后10分钟,丙发现甲⼄刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和⼄,以便把信调过来.已知甲、⼄的速度相等,丙的速度是甲、⼄速度的3倍,丙从出发到把信调过来后返回B地⾄少要⽤多少时间?39. 甲、⼄两个车间共有94个⼯⼈,每天共加⼯1998⽵椅.由于设备和技术的不同,甲车间平均每个⼯⼈每天只能⽣产15把⽵椅,⽽⼄车间平均每个⼯⼈每天可以⽣产43把⽵椅.甲车间每天⽵椅产量⽐⼄车间多⼏把?40. 甲放学回家需⾛10分钟,⼄放学回家需⾛14分钟.已知⼄回家的路程⽐甲回家的路程多1/6,甲每分钟⽐⼄多⾛12⽶,那么⼄回家的路程是⼏⽶?⼩学数学应⽤题综合训练(05)41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提⾼到原来的2.5倍,照这样计算,每天的利润⽐原来增加⼏元?42. 甲、⼄两列⽕车的速度⽐是5:4.⼄车先发,从B站开往A站,当⾛到离B站72千⽶的地⽅时,甲车从A站发车往B站,两列⽕车相遇的地⽅离A,B两站距离的⽐是3:4,那么A,B两站之间的距离为多少千⽶?43. ⼤、⼩猴⼦共35只,它们⼀起去采摘⽔蜜桃.猴王不在的时候,⼀只⼤猴⼦⼀⼩时可采摘15千克,⼀只⼩猴⼦⼀⼩时可采摘11千克.猴王在场监督的时候,每只猴⼦不论⼤⼩每⼩时都可以采摘12千克.⼀天,采摘了8⼩时,其中只有第⼀⼩时和最后⼀⼩时有猴王在场监督,结果共采摘4400千克⽔蜜桃.在这个猴群中,共有⼩猴⼦⼏只?44. 某次数学竞赛设⼀、⼆等奖.已知(1)甲、⼄两校获奖的⼈数⽐为6:5.(2)甲、⼄来年感校获⼆等奖的⼈数总和占两校获奖⼈数总和的60%.(3)甲、⼄两校获⼆等奖的⼈数之⽐为5:6.问甲校获⼆等奖的⼈数占该校获奖总⼈数的百分数是⼏?45. 已知⼩明与⼩强步⾏的速度⽐是2:3,⼩强与⼩刚步⾏的速度⽐是4:5.已知⼩刚10分钟⽐⼩明多⾛420⽶,那么⼩明在20分钟⾥⽐⼩强少⾛⼏⽶?46. 加⼯⼀批零件,原计划每天加⼯15个,若⼲天可以完成.当完成加⼯任务的3/5时,采⽤新技术,效率提⾼20%.结果,完成任务的时间提前10天,这批零件共有⼏个?47. 甲、⼄⼆⼈在400⽶的圆形跑道上进⾏10000⽶⽐赛.两⼈从起点同时同向出发,开始时甲的速度为8⽶/秒,⼄的速度为6⽶/秒,当甲每次追上⼄以后,甲的速度每秒减少2⽶,⼄的速度每秒减少0.5⽶.这样下去,直到甲发现⼄第⼀次从后⾯追上⾃⼰开始,两⼈都把⾃⼰的速度每秒增加0.5⽶,直到终点.那么者到达终点时,另⼀⼈距离终点多少⽶?48. ⼩明从家去学校,如果他每⼩时⽐原来多⾛1.5千⽶,他⾛这段路只需原来时间的4/5;如果他每⼩时⽐原来少⾛1.5千⽶,那么他⾛这段路的时间就⽐原来时间多⼏分⼏之?49. 甲、⼄、丙、丁现在的年龄和是64岁.甲21岁时,⼄17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是⼏岁?50. 加⼯⼀批零件,原计划每天加⼯30个.当加⼯完1/3时,由于改进了技术,⼯作效率提⾼了10%,结果提前了4天完成任务.问这批零件共有⼏个?⼩学数学应⽤题综合训练(06)51. ⾃动扶梯以均匀的速度向上⾏驶,⼀男孩与⼀⼥孩同时从⾃动扶梯向上⾛,男孩的速度是⼥孩的2倍,已知男孩⾛了27级到达扶梯的顶部,⽽⼥孩⾛了18级到达顶部.问扶梯露在外⾯的部分有多少级?52. 两堆苹果⼀样重,第⼀堆卖出2/3,第⼆堆卖出50千克,如果第⼀堆剩下的苹果⽐第⼆堆剩下的苹果少,那么两堆剩下的苹果⾄少有多少千克?53. 甲、⼄两车同时从A地出发,不停的往返⾏驶于A、B两地之间.已知甲车的速度⽐⼄车快,并且两车出发后第⼀次和第⼆次相遇都杂途中C地,甲车的速度是⼄车的⼏倍?54. ⼀只⼩船从甲地到⼄地往返⼀次共⽤2⼩时,回来时顺⽔,⽐去时的速度每⼩时多⾏8千⽶,因此第⼆⼩时⽐第⼀⼩时多⾏6千⽶.求甲、⼄两地的距离.55. 甲、⼄两车分别从A、B两地出发,并在A,B两地间不断往返⾏驶.已知甲车的速度是15千⽶/⼩时,甲、⼄两车第三次相遇地点与第四次相遇地点相差100千⽶.求A、B两地的距离.56. 某⼈沿着向上移动的⾃动扶梯从顶部朝底下⽤了7分30秒,⽽他沿着⾃动扶梯从底朝上⾛到顶部只⽤了1分30秒.如果此⼈不⾛,那么乘着扶梯从底到顶要多少时间?如果停电,那么此⼈沿扶梯从底⾛到顶要多少时间?57. 甲、⼄两个圆柱体容器,底⾯积⽐为5:3,甲容器⽔深20厘⽶,⼄容器⽔深10厘⽶.再往两个容器中注⼊同样多的⽔,使得两个容器中的⽔深相等.这时⽔深多少厘⽶?58. A、B两地相距207千⽶,甲、⼄两车8:00同时从A地出发到B地,速度分别为60千⽶/⼩时,54千⽶/⼩时,丙车8:30从B 地出发到A地,速度为48千⽶/⼩时.丙车与甲、⼄两车距离相等时是⼏点⼏分?59. ⼀个长⽅形的周长是130厘⽶,如果它的宽增加1/5,长减少1/8,就得到⼀个相同周长的新长⽅形.求原长⽅形的⾯积.60. 有⼀长⽅形,它的长与宽的⽐是5:2,对⾓线长29厘⽶,求这个长⽅形的⾯积.⼩学数学应⽤题综合训练(07)61. 有⼀个果园,去年结果的果树⽐不结果的果树的2倍还多60棵,今年⼜有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园⾥共有多少棵果树?62. ⼩明步⾏从甲地出发到⼄地,李刚骑摩托车同时从⼄地出发到甲地.48分钟后两⼈相遇,李刚到达甲地后马上返回⼄地,在第⼀次相遇后16分钟追上⼩明.如果李刚不停地往返于甲、⼄两地,那么当⼩明到达⼄地时,李刚共追上⼩明⼏次?63. 同样⾛100⽶,⼩明要⾛180步,⽗亲要⾛120步.⽗⼦同时同⽅向从同⼀地点出发,如果每⾛⼀步所⽤的时间相同,那么⽗亲⾛出450⽶后往回⾛,还要⾛多少步才能遇到⼩明?64. ⼀艘轮船在两个港⼝间航⾏,⽔速为6千⽶/⼩时,顺⽔航⾏需要4⼩时,逆⽔航⾏需要7⼩时,求两个港⼝之间的距离.65. 有甲、⼄、丙三辆汽车,各以⼀定的速度从A地开往B地,⼄⽐丙晚出发10分钟,出发后40分钟追上丙;甲⽐⼄⼜晚出发10分钟,出发后60分钟追上丙,问甲出发后⼏分钟追上⼄?66. 甲、⼄合作完成⼀项⼯作,由于配合的好,甲的⼯作效率⽐单独做时提⾼1/10,⼄的⼯作效率⽐单独做时提⾼1/5,甲、⼄合作6⼩时完成了这项⼯作,如果甲单独做需要11⼩时,那么⼄单独做需要⼏⼩时?67. A、B、C、D、E五名学⽣站成⼀横排,他们的⼿中共拿着20⾯⼩旗.现知道,站在C右边的学⽣共拿着11⾯⼩旗,站在B 左边的学⽣共拿着10⾯⼩旗,站在D左边的学⽣共拿着8⾯⼩旗,站在E左边的学⽣共拿着16⾯⼩旗.五名学⽣从左⾄右依次是谁?各拿⼏⾯⼩旗?68. ⼩明在360⽶长的环⾏的跑道上跑了⼀圈,已知他前⼀半时间每秒跑5⽶,后⼀半时间每秒跑4⽶,问他后⼀半路程⽤了多少时间?69. ⼩英和⼩明为了测量飞驶⽽过的⽕车的长度和速度,他们拿了两块秒表,⼩英⽤⼀块表记下⽕车从他⾯前通过所花的时间是15秒,⼩明⽤另⼀块表记下了从车头过第⼀根电线杆到车尾过第⼆根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60⽶,求⽕车的全长和速度.70. ⼩明从家到学校时,前⼀半路程步⾏,后⼀半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步⾏.结果去学校的时间⽐回家的时间多20分钟,已知⼩明从家到学校的路程是多少千⽶?⼩学数学应⽤题综合训练(08)71. 数学练习共举⾏了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?72. ⼀个整数除以2余1,⽤所得的商除以5余4,再⽤所得的商除以6余1.⽤这个整数除以60,余数是多少?73. 少先队员在校园⾥栽的苹果树苗是梨树苗的2倍.如果每⼈栽3棵梨树苗,则余2棵;如果每⼈栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?74. 某⼈开汽车从A城到B城要⾏200千⽶,开始时他以56千⽶/⼩时的速度⾏驶,但途中因汽车故障停车修理⽤去半⼩时,为了按时到达,他必须把速度增加14千⽶/⼩时,跑完以后的路程,他修车的地⽅距离A 城多少千⽶?75. 甲、⼄两⼈分别从A、B两地同时出发,相向⽽⾏,⼄的速度是甲的2/3,两⼈相遇后继续前进,甲到达B地,⼄到达A地⽴即返回,已知两⼈第⼆次相遇的地点距离第⼀次相遇的地点是3000⽶,求A、B两地的距离.76. ⼀条船往返于甲、⼄两港之间,已知船在静⽔中的速度为9千⽶/⼩时,平时逆⾏与顺⾏所⽤时间的⽐为2:1.⼀天因下⾬,⽔流速度为原来的2倍,这条船往返共⽤10⼩时,问甲、⼄两港相距多少千⽶?77. 某学校⼊学考试,确定了录取分数线,报考的学⽣中,只有1/3被录取,录取者平均分⽐录取分数线⾼6分,没有被录取的同学其平均分⽐录取分数线低15分,所有考⽣的平均分是80分,问录取分数线是多少分?78. ⼀群学⽣搬砖,如果有12⼈每⼈各搬7块,其余的每⼈搬5块,那么最后余下148块;如果有30⼈每⼈各搬8块,其余的每⼈搬7块,那么最后余下20块.问学⽣共有多少⼈?砖有多少块?79. 甲、⼄两车分别从A、B两地同时相向⽽⾏,已知甲车速度与⼄车速度之⽐为4:3,C地在A、B之间,甲、⼄两车到达C地的时间分别是上午8点和下午3点,问甲、⼄两车相遇是什么时间?80. ⼀次棋赛,记分⽅法是,胜者得2分,负者得0分,和棋两⼈各得1分,每位选⼿都与其他选⼿各对局⼀次,现知道选⼿中男⽣是⼥⽣的10倍,但其总得分只为⼥⽣得分的4.5倍,问共有⼏名⼥⽣参赛?⼥⽣共得⼏分?⼩学数学应⽤题综合训练(09)81. 有若⼲个⾃然数,它们的算术平均数是10,如果从这些数中去掉的⼀个,则余下的算术平均数为9;如果去掉最⼩的⼀个,则余下的算术平均数为11,这些数最多有多少个?这些数中的数值是⼏?82. 某班有少先队员35⼈,这个班有男⽣23⼈,这个班⼥⽣少先队员⽐男⽣⾮少先队员多⼏⼈?83. ⼩东计划到周⼝店参观猿⼈遗址.如果他坐汽车以40千⽶/⼩时的速度⾏驶,那么⽐骑车去早到3⼩时,如果他以8千⽶/⼩时的速度步⾏去,那么⽐骑车晚到5⼩时,⼩东的出发点到周⼝店有多少千⽶?84. 甲、⼄两船在相距90千⽶的河上航⾏,如果相向⽽⾏,3⼩时相遇,如果同向⽽⾏则15⼩时甲船追上⼄船.求在静⽔中甲、⼄两船的速度.85. ⼆年级两个班共有学⽣90⼈,其中少先队员有71⼈,⼀班少先队员占本班⼈数的75%,⼆班少先队员占本班⼈数的5/6.⼀班少先队员⼈数⽐⼆班少先队员⼈数多⼏⼈?86. ⼀个容器中已注满⽔,有⼤、中、⼩三个球.第⼀次把⼩球沉⼊⽔中,第⼆次把⼩球取出,把中球沉⼊⽔中,第三次把中球取出,把⼩球和⼤球⼀起沉⼊⽔中,现知道每次从容器中溢出⽔量的情况是:第⼀次是第⼆次的1/2,第三次是第⼆次的1.5倍.求三个球的体积之⽐.87. 某⼈翻越⼀座⼭⽤了2⼩时,返回⽤了2.5⼩时,他上⼭的速度是3000⽶/⼩时,下⼭的速度是4500⽶/⼩时.问翻越这座⼭要⾛多少⽶?88. 钢筋原材料每根长7.3⽶,每套钢筋架⼦⽤长2.4⽶、2.1⽶和1.5⽶的钢筋各⼀段.现需要绑好钢筋架⼦100套,⾄少要⽤去原材料多少根?89. 有⼀块铜锌合⾦,其中铜和锌的⽐2:3.现知道再加⼊6克锌,熔化后共得新合⾦36克,新合⾦中铜和锌的⽐是多少?90. ⼩明通常总是步⾏上学,有⼀天他想锻炼⾝体,前1/3路程快跑,速度是步⾏速度的4倍,后⼀段的路程慢跑,速度是步⾏速度的2倍.这样⼩明⽐平时早35分到校,⼩明步⾏上学需要多少分钟?⼩学数学应⽤题综合训练(10)91. 甲、⼄、丙三⼈,甲的年龄⽐⼄的年龄的2倍还⼤3岁,⼄的年龄⽐丙的年龄的2倍⼩2岁,三个⼈的年龄之和是109岁,分别求出甲、⼄、丙的年龄.92. 快车以60千⽶/⼩时的速度从甲站向⼄站开出,1.5⼩时后,慢车以40千⽶/⼩时的速度从⼄站⾏甲站开出,.两车相遇时,相遇点离两站的中点70千⽶.甲、⼄两站相距多少千⽶?93. 甲、⼄两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是⼄车与学校距离的3倍,8:39分甲车与学校的距离是⼄车与学校距离的2倍,求甲车离开学校的时间.94. 有⼀个⼯作⼩组,当每个⼯⼈在各⾃的⼯作岗位上⼯作时,7⼩时可⽣产⼀批零件,如果交换⼯⼈甲、⼄的岗位,其他⼈不变,那么可提前1⼩时,完成这批零件,如果交换⼯⼈丙、丁的岗位,其他⼈不变,也可提前1⼩时,问如果同时交换甲与⼄、丙与丁的岗位,其他⼈不变,那么完成这批零件需多长的时间.95. ⽤10块长7厘⽶、宽5厘⽶、⾼3厘⽶的长⽅体积⽊,拼成⼀个长⽅体,这个长⽅体的表⾯积最⼩是多少?96. 公圆只售两种门票:个⼈票每张5元,10⼈⼀张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45⼈逛公园,按以上规定买票,最少应付多少钱?(2)⼄单位208⼈逛公园,按以上的规定买票,最少应付多少钱?97. 甲、⼄、丙三⼈,参加⼀次考试,共得260分,已知甲得分的1/3,⼄得分的1/4与丙得分的⼀半减去22分都相等,那么丙得分多少?98. ⼀项⼯程,甲、、⼄两⼈合作4天后,再由⼄单独做5天完成,已知甲⽐⼄每天多完成这项⼯程的1/30.甲、⼄单独做这项⼯程各需要⼏天?99. 有长短两⽀蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘⽶,将它们同时点燃⼀段时间后,长蜡烛同短蜡烛点燃前⼀样长,这时短蜡烛的长度⼜恰好是长蜡烛的2/3.点燃前长蜡烛有多长?100. ⼀批苹果平均分装在20个筐中,如果每筐多装1/9,可省下⼏只筐?。
初中奥林匹克数学竞赛训练题7套

初中奥林匹克数学竞赛训练题7套训练题第一套:代数基础1. 已知a, b为正数,且a+b=10,求ab的最大值。
2. 解方程:3(x2) 2(2x+1) = 7。
3. 已知等差数列的前三项分别是2,5,8,求第10项的值。
4. 如果一个数的平方根加上它的倒数等于3,求这个数。
训练题第二套:几何图形1. 在直角坐标系中,点A(2,3)到原点O的距离是多少?2. 一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。
3. 在圆中,一条弦长为8cm,且这条弦距离圆心的距离为6cm,求圆的半径。
4. 证明:对任意等腰三角形,其底边上的中线垂直平分底边。
训练题第三套:数论与组合1. 求证:任意两个正整数a和b,如果它们的最大公约数为1,那么a和a+b也是互质的。
2. 在1到100的自然数中,有多少个数既不是3的倍数也不是5的倍数?3. 有8个男生和7个女生站成一排,要求男生必须站在一起,有多少种不同的站法?4. 一个班级有5对双胞胎,如果从中选出4对学生,要求每对学生中至少有一个是双胞胎,有多少种选法?训练题第四套:概率与统计1. 从一副52张的扑克牌中随机抽取4张牌,计算抽到至少一张红桃的概率。
2. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机取出3个球,求取出的球颜色相同的概率。
3. 如果一组数据的平均数是50,标准差是5,那么这组数据中有多少个数据至少为60?训练题第五套:逻辑推理与问题解决1. 甲、乙、丙三人中,一人是教师,一人是医生,一人是工人。
甲说:“我不是医生。
”乙说:“我不是工人。
”丙说:“我不是教师。
”请问他们各自是什么职业?2. 有4个数字密码锁,每个锁有4个按钮,分别是1、2、3、4。
如果密码是一个四位数,且每个数字都不相同,那么一共有多少种可能的密码组合?3. 一个数字序列的规律是:每个数字都是前两个数字之和。
如果序列的前两个数字分别是1和2,那么第10个数字是多少?4. 一个房间里有4个开关,对应着另一个房间里的4盏灯。
初一数学奥林匹克竞赛题(含答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP +S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
世界青少年奥林匹克数学竞赛中国区选拔赛七年级数学试题含答案

2017春季省级初赛考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A卷)一、填空(每题3分,共30分)1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.2、在等腰△ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.6、若关于x 、y 的方程组 无解,则a 的值是________.7、正整数._______,698的最大值是则满足、m mn n m n m +=+8、已知关于x 的不等式组 无解,则a 的取值范围是________.9、 都是正数,那么N M 、的大小关系是________.10、若n 为不等式 的解,则n 的最小正整数的值是________.二、选择题(每题5分,共25分)11、三元方程 的非负整数解的个数有( ). A.20001999个 B.19992000个C.2001000个D.2001999个12、如图已知 分别⎩⎨⎧-==11y x ⎩⎨⎧=-=+1293y x y ax ⎩⎨⎧-≥--1250x a x >,如果))((),)((,,,200332200421200432200321200421a a a a a a N a a a a a a M a a a ++++++=++++++= 3002006>n 1999=++z y x CD BD ACB CP ACB A ABC 、,平分,中,∠∠=∠∆为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥; ②A D ∠-︒=∠2190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.A.200B.300C.384D.42014、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则d c a 、、的值是:A.不能确定B.1,1,3===d c aC.d c 、不能确定,3=aD.2,2,3-===d c a15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.A.4380B.4200C. 4750D.3750三、计算题(16~20题每题5分,21~22题每题10分,共45分)16、已知,9,27,81614131===c b a 则c b a 、、的大小关系是多少?17、计算:20002000200020001998357153)37(++⨯18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c),试确定c b a 、、的值。
初一奥林匹克数学竞赛训练试题集

初一奥林匹克数学竞赛训练试题集一、选择题(共8小题,每小题4分,满分32分)1.设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q ≥a >bB .q ≥a >b ≥pC .q ≥p ≥a >bD .p ≥a >b ≥q2.下列四个等式:=0,ab=0,a 2=0,a 2+b 2=0中,可以断定a 必等于0的式子共有()A .3个B .2个C .1个D .0个3.a 为有理数,下列说法中,正确的是()A .(a+)2是正数B .a 2+是正数C .﹣(a ﹣)2是负数D .﹣a 2+的值不小于4.a ,b ,c 均为有理数.在下列:甲:若a >b ,则ac 2>bc 2.乙:若ac 2>bc 2,则a >b .两个结论中()A .甲、乙都真B .甲真,乙不真C .甲不真,乙真D .甲、乙都不真5.若a+b=3,ab=﹣1,则a 3+b 3的值是()A .24B .36C .27D .306.a 、b 、c 、m 都是有理数,且a+2b+3c=m ,a+b+2c=m ,那么b 与c 的关系是()A .互为相反数B .互为倒数C .相等D .无法确定7.两个10次多项式的和是()A .20次多项式B .10次多项式C .100次多项式D .不高于10次的多项式8.在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A .奇数B .偶数C .负整数D .非负整数二、填空题(共8小题,每小题5分,满分40分)9.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是_________岁.10.1.23452+0.76552+2.469×0.7655=_________.11.已知方程组,哥哥正确地解得,弟弟粗心地把c 看错,解得,则abc=_________.12.若,则=_________.13.已知多项式2x 4﹣3x 3+ax 2+7x+b 能被x 2+x ﹣2整除,则的值是_________.14.满足的值中,绝对值不超过11的哪些整数之和等于_________.15.若三个连续偶数的和等于1992.则这三个偶数中最大的一个与最小的一个的平方差等于_________.16.三个互不相等的有理数,既可表示为1,a+b ,a 的形式,又可表示为0,,b ,的形式,则a 1992+b 1993=_________.三、解答题(共3小题,满分48分)17.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.18.如果6x 2﹣5xy ﹣4y 2﹣11x+22y+m 可分解为两个一次因式的积,求m 的值,并分解因式.19.设a 、b 、c 、d 都是自然数,且a 2+b 2=c 2+d 2,证明:a+b+c+d 定是合数.初一奥林匹克数学竞赛训练试题集参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q ≥a >bB .q ≥a >b ≥pC .q ≥p ≥a >bD .p ≥a >b ≥q考点:最大公约数与最小公倍数。
初一奥林匹克竞赛题

初一奥林匹克竞赛题
小明想要买一台电视机,他看中了一款原价为5000元的电视,但是商家现在正在进行促销活动,打八折。
请问小明现在需要支付多少钱?
2. 物理题:
小王在家里制作了一个简易的电磁铁,他使用了铁芯、绕线和电池,当他连接电池并通过绕线通电时,铁芯就会变成一个电磁铁。
请问为什么会这样?
3. 化学题:
小张在进行实验时需要制备氢气,他通过加入氢氧化钠溶液和金属铝粉来制备氢气。
请问制备氢气的化学反应式是什么?
4. 生物题:
小李在学习动物遗传学时,发现有一种基因是显性的,而另一种基因是隐性的。
请问这两种基因的遗传方式有什么不同?
5. 历史题:
小刘在学习中国古代历史时,发现唐朝是一段非常辉煌的历史时期。
请问唐朝的开国皇帝是谁?他的治理政策有哪些特点?
- 1 -。
初一数学奥林匹克竞赛试卷3

初一数学奥林匹克竞赛试卷3姓名 成绩一、选择题(每小题5 分,共30 分)1. 下列四个判断:(1)互为相反数的两个数绝对值相等;(2)如果一个数的绝对值等于其本身,则此数为正数;(3)点M 在数轴上距原点2 个单位,且位于原点右侧,若将M点向左移动5个单位长度,则此时点M 对应的值为-3;(4)两个数相加,和一定大于其中一个数。
其中正确的判断个数是( )A. 1B. 2C. 3D. 42. 小明带a 元钱去买文具,买铅笔用去了所带钱的31,买橡皮用去了余下钱的41,然后他又用剩下钱的21买了尺子,这时小明还剩下 ( ) A. a 21 B. a 31 C. a 41 D. a 52 3. 下列计算正确的中( )A. 632x x x =⨯B. ))((22y x y x y x -+=+B. ))((2233b ab a b a b a +++=+ D. 3223333)(b a b b a a b a -+-=-4. 关于多项式42-)y1-1-(52174243++y x y y x 有以下叙述: (1)该多项式是六次四项式;(2)该多项式是七次五项式;(3)该多项式是七次六项式;(4)该多项式最高次项的系数是-2;(5)该多项式常数项是4其中正确的是( )A. (1)(4)B. (3)(5)C. (2)(4)D.(2)(5)5. 在1,2, ,99,100这100个自然数中,不是2 的倍数,不是3 的倍数,也不是5 的倍数的数共有k 个,则( )A. 25B. 26C. 27D. 286. 将25个棱长为1的正方体积木摆成一堆,则形成的几何体的表面积最小是( )A. 25B. 50C. 54D. 70二、填空题(每小题4 分,共36分)7. 若2021202020191-1)1(532)()(+-+-=++x x x ,则=x 8. 已知b a ,为整数且 121=++-b a ,则=+-42)2()1(b a9. 已知为有理数y x n m ,,,,若8222=+=+n m y x ,则mn xy +的最大值为 10. 若19=ba ,则=-++2222b a b ab a11. 若关于y x ,的方程组⎩⎨⎧=+=+10823by ax y x 与⎩⎨⎧=+=+141024ay bx y x 同解,则=+b a12. 若3-5的小数部分a ,35+的小数部分为b ,则)1)(2(+-b a 的值是13. 如图,在AB C ∆中,AB=AC ,D 、E 分别在AC 、AB 上,且BC=BD=DE=AE ,则A ∠的度数是14. 如图,在锐角AB C ∆中,高线CD 、BE 相交于点F ,若055A =∠,则B FC ∠的度数是15. 若654321,,,,,a a a a a a 是1到6的六个自然数的一个排列,则166554433221a a a a a a a a a a a a -+-+-+-+-+-的最大值是三、解答题(共34分)16. (本题14分)(1)解方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=+=+311116111xz yzz y yx(2)当b k ,为何值时,⎩⎨⎧-=-+=xk y b kx y )1(32有唯一解?没有解?有无穷多解?17.(本题10 分)设][x 表示不大于x 的最大整数。
初中数学奥林匹克竞赛题和答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
数学奥林匹克竞赛试卷初中

一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。
12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。
13. 一个数的平方根是±2,那么这个数是______。
14. 下列各数中,是质数的是______。
15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。
16. 若一个等边三角形的边长为a,那么它的周长是______。
奥林匹克赛七年级数学竞赛试题

奥林匹克赛七年级数学竞赛试题(时间:120分钟分值:120分)一、选择题:1、已知数轴上三点A、B、C分别表示有理数、1、-1,那么表示()(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和2、王老伯在集市上先买回5只羊,平均每只 a元,稍后又买回3只羊,平均每只b 元,后来他以每只 (a+b)/2的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是()(A)(B)(C)(D)与、的大小无关3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是()(A)273 (B)819 (C)1199 (D)19114、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金()(A)188元(B)192元(C)232元(D)240元5、已知三角形的周长是,其中一边是另一边2倍,则三角形的最小边的范围是()(A)与之间(B)与之间(C)与之间(D)与之间6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为 :1,另一个瓶子中酒精与水的容积之比是 :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是( )(A)(B)(C)(D)二、填空题:7、已知,,,且>>,则=;8、设多项式,已知当=0时,;当时,,则当时,=;9、将正偶数按下表排列成5列:第1列第2列第3列第4列第5列第一行 2 4 6 8第二行 16 14 12 10第三行 18 20 22 24第四行 32 30 28 26…… … … … …根据表中的规律,偶数2004应排在第行,第列;10、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是__________米;11、有人问李老师:“你班里有多少学生?”,李老师说:“我班现在有一半学生在参加数学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学奥林匹克
1. 已知
a=2001x+2002,b=2001x+2003,c=2001x+2004,则多项式
ca bc ab c b a ---++222的值为_________.
2. 设a 、b 、c 为有理数,,3
22π
+
-=b a x 6
22π
+
-=c b y ,
2
22π
+
-=a c z 则x 、y 、z 中至少有一个值( )
A 大于0,
B 等于0,
C 不大于0,
D 小于0.
3.
某超市推出如下优惠方案:⑴购物款不超过200元不享受优惠;⑵购物款超过200元但不超过600元一律享受九折优惠;⑶购物款超过600元一律享受八折优惠。
小明的妈妈两次购物分别付款168元、423元。
如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款( )元。
A 、522.80
B 、560.40
C 、510.40
D 、472.80
4. 若a 、b 是正数,且满足12345=(111+a)(111-b)你能确定a 与b 的大小关系吗?若能,写出推理过程,若不能,说明理由
5.
一种密码箱上的密码是一组三位数号码,每位上的数字可在0到9这10个数字中选取,某人在开箱时随意按下一个三位数号码,正好打开箱子的概率只有_____。
若此人未记准密码的最后一位数字,那么他在拨对密码前两位数字的基础上而随意按下密码最后一位数字,正好按对密码的概率是_______。
6.
掷骰子两次连续掷出能被3整除的概率( ) A 、
21B 、31C 、61D 、9
1 7. 从0到9这10个数字中选取两个,这两个数字的和等于8的概率是_____。
8. 一个口袋内装有7个白球和3个黑球,这些球除了颜色以外完全相
同,从中摸出两个球,求摸出的两个球都是黑球的概率。
两个硬币投掷于地上,出现一正一反的概率是_____;三个硬币投掷于地上,出现一正两反的概率是_____;四个硬币投掷于地上,出现二正二反的概率是_____。
9. 客运列车在哈尔滨与A 站之间运行,沿途要停靠5个车站,那么
哈尔滨与A 站之间需要安排( )种不同的车票。
A 、6 B 、7 C 、21 D 、42
10. 小明和小彬做摸球游戏:在一个口袋内装放7个白球和3个黑球,
这些球除了颜色以外完全相同,每人共摸三个球,摸出的三个球中白球多的获胜,在摸球前先选择方案:⑴每一次从中摸出一个球,记下其颜色后放回去搅匀后再从中摸下一个球,同样再摸出第三
个球,⑵连续摸三次,每次摸出的球都不放回去。
你认为两种方案获胜的概率一样吗?你选择哪个方案?
11. 一个袋中装有1个红球,1个黄球和两个小立方体,两个球除了颜
色外都相同,两个立方体中一个每一面都涂红,另一个每个面都涂黄,除此以外它们都相同,从袋中摸出一个球和一个立方体,下面说法中错误的是( )
A.所在可能出现的结果有四种
B.摸出2个都是红的概率为1/4
C.摸出2个都是黄的概率为1/4。
D.摸出一红一黄的概率也是1/4。
12. 从两双不同颜色的袜子中任意取出两只,恰好是同一双的概率是
_______。
13. 某地的体育彩票有一种玩法是25选5,请你计算一下,若投一注,
理论上的中奖概率是多少?
E A
D
C
14. 当x= -7时代数式23
7-++cx bx ax 的值为7,其中a 、b 、c 为常数,
你能求出当x=7时,这个代数式的值吗?
15. 如图所示,在△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 的
一条直线,且B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E 。
⑴求证:BD=DE+CE
⑵若直线AE 绕A 点旋转到图⑵的位置时,(BD<CE),其余条件不变,问BD 与DE 、CE 的关系如何,请予以证明。
⑶若直线AE 绕A 点旋转到图⑶位置时,(BD>CE),其余条件不变,问BD 与DE 、CE 的关系怎样?直接写结果,不证明。
E
D
C
B
A E
D C
B
A
E
D C
B
A
16. 已知:∠A 、∠B 的两条边分别平行,且∠A 的度数是∠B 的度数的
2倍少30°,则∠B 的度数为_________。
17. 若x 、y 、z 为整数,且.1)()
(20042004
=-+-x z y x 那么
z y y x x z -+-+-的值为___。
A 、0
B 、1
C 、2
D 、4
18. △ABC 中有一边是另一边的2倍,又有一个内角等于30°,则△
ABC 是( )
A 、锐角三角形或直角三角形
B 、直角三角形或钝角三角形
C 、锐角三角形或钝角三角形
D 、直角三角形或钝角三角形或锐角三角形
19. 在寒假期间,为了丰富广大师生的业余文化生活,某市剧场举行了
专场音乐会,售票处有团体票和零售票两种,其中10人以上(含10人)为团体票,每人20元;若买零售票,教师每人30元,学生每人10元,某校有六名教师若干名学生听音乐会,如何购票最省钱? 20. 规定:a ※b=
a
b
b a +,那么2※5=______。
21. a=9,b=-8,则20042003
b a
+末位数字为______。
22. ABC 中,AB=5,AC=9,则中线AD 的取值范围是_______。
23. 如图,AB=AC ,∠BAD=α,且AE=AD ,则∠EDC 的度数等于( )
A 、α21
B 、α31
C 、α41
D 、α2
3.
24. ABC 中,AB=AC ,AB 的中垂线交AC 所在直线所成锐角为50°,则底角∠B=____。
25. 如图已知A 、B 两点在直线MN 的同侧,在MN 上求一点P ,使:⑴PB PA -最小,⑵PB PA -最大,⑶PA+PB 最小。
N
M
N
M
N
M。