电动汽车电机选择与设计

合集下载

双电机电动汽车电机选型计算

双电机电动汽车电机选型计算

双电机电动汽车电机选型计算1. 引言在设计双电机电动汽车时,正确的电机选型是非常重要的。

电机选型的准确性直接影响到车辆性能、操控性和驱动系统的效率。

本文将介绍双电机电动汽车电机选型的基本计算方法,并给出具体的步骤和示例。

2. 电机选型参数在进行电机选型计算之前,需要明确以下几个重要的参数:•汽车的总质量(m):包括车辆本身的重量和所有乘客和货物的重量。

•所需的最大加速度(a):车辆在起步和加速阶段所需的最大加速度。

•轮胎滑移系数(μ):表示轮胎与地面之间的摩擦系数,影响车辆的牵引力。

•电机的额定功率(P):表示电机在额定工况下的输出功率。

•电机的转速范围(n_min 和 n_max):电机能够工作的最低和最高转速。

3. 电机选型计算步骤进行双电机电动汽车的电机选型计算,可以按照以下步骤进行:步骤 1:计算车辆的牵引力需求根据车辆的总质量和最大加速度,可以计算出车辆在起步和加速阶段所需的总牵引力。

牵引力的计算公式如下:F_total = m * a步骤 2:计算每个电机所需的最大输出扭矩根据车辆的牵引力需求和轮胎滑移系数,可以计算出每个电机所需的最大输出扭矩。

每个电机所需的最大输出扭矩的计算公式如下:T_max = F_total / (2 * μ * r)其中,r表示轮胎半径。

步骤 3:确定每个电机的转速范围根据车辆的最高速度和轮胎半径,可以计算出每个电机的转速范围。

每个电机的转速范围的计算公式如下:n_min = 0n_max = v_max / (π * d)其中,v_max表示车辆的最高速度,d表示轮胎直径。

步骤 4:选择合适的电机根据每个电机所需的最大输出扭矩和转速范围,可以选择合适的电机型号。

在市场上有各种不同功率和转速的电机可供选择,根据具体需求进行选择。

4. 示例假设一辆双电机电动汽车,总质量为1000kg,最大加速度为3 m/s²,轮胎滑移系数为0.7,轮胎直径为0.6m,最高速度为100 km/h。

电动汽车的电力系统设计与控制

电动汽车的电力系统设计与控制

电动汽车的电力系统设计与控制近年来,随着人们对环境保护并行动的呼声不断增加,电动汽车作为一种环保、低碳的交通工具,越来越受到人们的青睐。

然而,电动汽车的电力系统设计与控制是电动汽车的关键技术之一,因此本文将重点探讨电动汽车的电力系统设计与控制。

一、电动汽车的电力系统概述电动汽车的电力系统主要包括电动机、电池和电子控制器。

其中,电动机是电动汽车的“心脏”,是实现电能转化为动力的关键部件。

而电池则是电动汽车的“动力支持”,对电动汽车的里程及性能影响较大。

此外,电子控制器是电动汽车电力系统中的“大脑”,可以控制电动机、电池和其他电子设备的正常运转。

二、电动汽车电池的设计与控制电动汽车的电池系统是电动汽车的重要组成部分,掌握其设计与控制技术是电动汽车制造商的必修课程。

电动汽车电池系统主要涉及电池组设计、电池管理系统的设计以及BMS的设计等方面。

1、电池组设计电池组的设计是电动汽车电池系统中的重要组成部分。

电池组一般由多个电池单体组成,其设计需要考虑到电池单体的电压、容量等指标,以及连接方式、结构图案、重量等一系列因素。

对于电动汽车电池组设计的主要注意点可以概括为“轻、薄、小、大”,即要重视发动机系统的轻量化设计,而且要考虑到空间的利用率和尺寸的限制。

2、电池管理系统设计电池管理系统是指控制电池单体电压、容量、温度、充放电过程、失效管理等一系列操作的系统。

其主要目的是为了延长电池组的寿命、提高电池的性能、防范电池失效风险,提供电池的状态信息等。

电池管理系统需要掌握能源管理技术、传感技术、通信技术等一些核心技术,因此制造商需要不断提升技术水平,满足市场需求。

3、BMS设计BMS是电动汽车电池管理系统的核心技术之一,其作用是监测电池的电压、电流、温度等参数,实现对电池的控制。

BMS的设计需要考虑电池型号、工作条件、安全要求等因素,同时需要实现精确、快速、稳定的管理、监测和控制功能。

三、电动汽车电机的设计与控制电动汽车的电机系统主要包括电机、控制器和传动装置等三个部分。

电机的选择

电机的选择

电机的选择电动客车对电机的性能要求电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。

电动客车的驱动电机通常要求能够频繁启动/停车、加速/减速,低速和爬坡时要求高转矩,高速行驶时要求低转矩,并要求变速范围大。

其主要参数包括:电动机类型、额定电压、机械特性、效率、尺寸参数、可靠性和成本等。

另外为电动机所配置的电子控制系统和驱动系统也会影响驱动电动机的性能。

工业电机通常优化在额定的工作点,电动汽车驱动电机比较独特,单独归为一类。

电动汽车电机与工业电机相比有很大的不同:1、电动汽车驱动电机需要有4-5倍的过载以满足短时加速或爬坡的要求;而工业电机只要求有2倍的过载就可以了。

2、电动汽车的最高转速要求达到在公路上巡航时基本速度的4-5倍,而工业电机只需要达到恒功率是基本速度的2倍即可。

3、电动汽车驱动电机需要根据车型和驾驶员的驾驶习惯设计,而工业电机只需根据典型的工作模式设计。

4、电动汽车驱动电机要求有高度功率密度(一般要求达到1kg/kw以内)和好的效率图(在较宽的转速范围和转矩范围内都有较高的效率),从而能够降低车重,延长续驶里程;而工业电机通常对功率密度、效率和成本进行综合考虑,在额定工作点附近对效率进行优化。

5、电动汽车驱动电机要求工作可控性高、稳态精度高、动态性能好;而工业电机只有某一种特定的性能要求。

6、电动汽车驱动电机被装在机动车上,空间小,工作在高温、坏天气、及频繁振动等等恶劣环境下。

而工业电机通常在某一个固定位置工作。

电动汽车电机的基本要求包括:1) 高电压。

在允许范围内尽量采用高电压,可减小电动机的尺寸和导线等装备的尺寸,特别是可降低逆变器(将直流电转化为交流电的装置)的尺寸。

2) 高转速。

高转速电动机体积小、质量轻,有利于降低电动客车的整车整备质量。

3) 质量轻。

电动机采用铝合金外壳以降低电动机质量,各种控制器装备的质量和冷却系统的质量等也要求尽可能小。

4) 较大的起动转矩和较大范围的调速性能。

电动汽车驱动电机的设计与性能优化

电动汽车驱动电机的设计与性能优化

电动汽车驱动电机的设计与性能优化随着环保意识的提高和能源危机的日益严重,电动汽车作为一种新型的交通工具逐渐受到人们的关注和青睐。

而作为电动汽车的核心部件之一,驱动电机的设计与性能优化尤为重要。

本文将从电动汽车驱动电机的设计原理、性能参数以及性能优化等方面进行探讨,以期为电动汽车的发展做出贡献。

驱动电机的设计原理主要分为两种:直流电机和交流电机。

直流电机简单可靠,但效率较低;而交流电机具有高效率、宽速度范围和良好的调速性能。

近年来,随着电动汽车行业的快速发展,交流电机逐渐成为主流选择。

交流电机又分为感应电机和永磁同步电机,两者在结构和性能上有所不同。

感应电机结构简单,制造成本相对较低;而永磁同步电机由于其高效率、高动力密度等优点,成为电动汽车的首选。

电动汽车驱动电机的性能参数对其性能起着决定性的作用。

首先是额定功率,即电机能够持续运行的最大功率。

车辆的加速性能和爬坡能力等都与电机的额定功率密切相关。

其次是峰值功率,即电机能够短时间达到的最大功率。

在紧急加速、超车等特殊场景下,电机需要具备峰值功率较高的特性。

再次是峰值扭矩,即电机能够短时间输出的最大扭矩。

峰值扭矩的大小决定了车辆的起步动力和爬坡能力。

此外,还有电机的效率和响应时间等性能参数需要在设计过程中综合考虑。

为了优化电动汽车驱动电机的性能,可以采取以下几种方法。

首先是通过优化电机的结构设计。

结构优化可以包括磁路设计、线圈设计和散热设计等方面。

合理布置磁场线,设计合适的线圈结构,以及良好的散热系统,能够提高电机的效率和功率密度,降低热损耗,延长电机的寿命。

其次是通过改进控制算法和驱动系统。

控制算法的改进可以提高电机的响应速度和动态性能,实现更精确的控制。

驱动系统的优化可以提高电机的效率和稳定性,减少功耗。

最后是利用新材料和新技术来提高电机的性能。

例如,采用高性能的永磁材料、改变电机的结构形式、引入新的传感器和控制器等,均可以进一步提高电机的性能。

新能源汽车新型电机的设计及弱磁控制

新能源汽车新型电机的设计及弱磁控制

新能源汽车新型电机的设计及弱磁控制1. 新能源汽车新型电机的设计是指针对传统燃油汽车所使用的内燃机而言,新能源汽车采用的是电动机作为动力源。

新能源汽车电机的设计主要考虑到其高效能、高可靠性以及对环境友好等特点。

新能源汽车电机的设计首先需要考虑其功率输出,根据不同车型和使用需求,确定电机的额定功率。

同时,还需要考虑电机的体积、重量以及散热性能等方面的因素,以满足车辆整体设计的要求。

2. 新能源汽车电机的设计还需要考虑其转矩特性,即电机在不同转速下的输出转矩。

转矩特性对于车辆的加速性能和爬坡能力等方面至关重要。

因此,设计者需要通过合理选择电机的磁路结构、绕组设计以及控制算法等方式来实现所需的转矩特性。

3. 弱磁控制是指在新能源汽车电机工作过程中,根据车辆的实际需求,对电机的磁场进行控制,以达到提高效率和降低能耗的目的。

弱磁控制能够在一定范围内调整电机的磁场强度,以适应不同工况下的工作要求。

弱磁控制需要考虑的关键因素包括电机的电磁特性、控制器的设计和算法以及动力系统的整体优化。

通过对电机的电流和电压进行精确控制,可以实现优化动力输出和提高能量转换效率的目标。

4. 在弱磁控制中,一种常用的方法是通过调整电机的电流控制来实现磁场强度的调节。

电机的磁场强度与电流之间存在一定的关系,通过控制电流的大小和方向,可以实现对磁场的精确调节。

5. 弱磁控制还需要考虑到电机的动态响应特性。

在不同工况下,电机的输出要求可能会发生变化,因此需要设计合适的控制算法来实现电机动态响应的调节。

这些算法通常基于电机的模型和控制理论,以实现优化的磁场调节效果。

总结起来,新能源汽车新型电机的设计需要考虑功率输出、转矩特性等方面的因素,并通过弱磁控制来实现磁场强度的调节。

弱磁控制需要综合考虑电机的电磁特性、控制器设计和算法,以实现优化的动力输出和能量转换效率。

电动汽车电机选择与设计--毕业论文

电动汽车电机选择与设计--毕业论文

电动汽车电机选择与设计--毕业论文在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。

这些损耗都会使电动机效率和功率因数降低。

同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。

如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。

同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。

谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。

对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。

二、变频电机设计特点对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。

设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。

与传统异步电机相比,一般变频电机设计有如下一些特点:1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。

如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。

2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化随着环保意识的不断提高,越来越多的人开始关注电动汽车。

而电动汽车的核心部件就是电动机,其中永磁同步电机因其高效率、高性能和高可靠性而备受青睐。

本文将从理论层面对永磁同步电机的设计及优化进行探讨。

我们需要了解永磁同步电机的基本原理。

永磁同步电机是一种采用永磁体作为转子磁场源的同步电机。

它通过控制定子绕组中的电流,使转子产生旋转磁场,从而实现电能向机械能的转换。

与传统的异步电机相比,永磁同步电机具有更高的效率、更低的转速波动和更好的启动性能。

要设计出一款优秀的永磁同步电机并非易事。

在实际应用中,我们需要考虑多种因素,如电机的功率密度、温升、噪音等。

为了满足这些要求,我们需要对永磁同步电机进行优化设计。

具体来说,我们可以从以下几个方面入手:一、选择合适的永磁材料永磁材料的性能直接影响到电机的性能。

目前市场上主要有两种类型的永磁材料:NdFeB和SmCo。

其中,NdFeB具有较高的能积和较高的工作温度,适用于大功率、高转速的应用;而SmCo则具有较低的能积和较低的工作温度,适用于小功率、低转速的应用。

因此,在设计永磁同步电机时,需要根据具体的应用需求选择合适的永磁材料。

二、优化定子结构定子是永磁同步电机的重要组成部分,其结构对电机的性能有着重要影响。

一般来说,定子结构包括定子绕组、定子铁芯和定子端盖等部分。

为了提高电机的效率和降低温升,我们可以采用以下几种方法优化定子结构:1. 采用高效绕组材料和工艺:例如采用铜材代替铝材以减少电阻损耗;采用真空浸渍法或热压法形成绝缘层以提高绕组的绝缘强度;采用多层绕组结构以增加导体截面积以降低电阻损耗。

2. 优化定子铁芯结构:例如采用空心式定子铁芯以减少重量;采用特殊的几何形状以提高磁场分布均匀性;采用特殊的冷却方式以降低温升。

3. 优化定子端盖结构:例如采用高强度材料以增加刚度;采用特殊的密封结构以防止进水和灰尘;采用特殊的散热结构以降低温升。

新能源汽车中电机驱动系统的优化设计

新能源汽车中电机驱动系统的优化设计

新能源汽车中电机驱动系统的优化设计新能源汽车作为绿色出行的未来趋势,正在逐渐受到社会的关注和重视。

而作为新能源汽车的核心部件之一,电机驱动系统的设计和优化显得尤为重要。

本文将深入探讨。

首先,电机驱动系统的关键部件之一是电机。

传统的内燃机所驱动的车辆经常会产生噪音和尾气污染,而电机驱动的车辆则具有零排放和低噪音的特点。

因此,在新能源汽车中,选用合适的电机对于整个系统的优化设计至关重要。

电机的类型多种多样,包括永磁同步电机、感应电机、开关磁阻电机等。

不同类型的电机适用于不同的场景和需求,因此在设计电机驱动系统时需要综合考虑车辆的使用环境和性能需求,选择最适合的电机类型。

除了电机类型的选择,电机的参数设计也是电机驱动系统优化设计的重要环节。

电机的参数包括电机功率、扭矩、转速等,这些参数直接影响到电机的性能和效率。

例如,在电机功率方面,需要根据车辆的重量和行驶需求来确定电机的功率大小,以确保车辆具有足够的动力性能;在电机扭矩方面,需要根据车辆的起步和爬坡需求来确定电机的最大扭矩值,以确保车辆具有良好的动力输出特性。

此外,电机的转速范围也需要根据车辆的行驶速度范围来确定,以确保电机在不同速度下都能提供足够的动力输出。

此外,电机驱动系统的优化设计还需要考虑电机控制系统。

电机控制系统主要包括电机控制器和电机控制算法。

电机控制器是控制电机启停、加速减速、动力分配等功能的关键设备,其性能直接影响到整个电机驱动系统的效率和稳定性。

电机控制算法则是控制电机运行状态的关键算法,包括闭环控制、矢量控制、阶跃响应等。

通过优化电机控制系统,可以提高电机的运行效率和响应速度,提升车辆的动力性能和驾驶体验。

除了以上方面,新能源汽车中电机驱动系统的优化设计还需要考虑电机布局和传动系统。

电机的布局对于整个车辆的结构和空间利用具有重要影响。

传统的布局方式包括前置后驱、中置后驱等,而随着新能源汽车技术的发展,一些车辆开始采用电机集成于车轮的方式,以减少传动系统的传动损耗,提高车辆的能量利用率。

新能源汽车永磁电机的设计概述

新能源汽车永磁电机的设计概述

新能源汽车永磁电机的设计概述新能源汽车永磁电机是目前新能源汽车动力系统中应用广泛的一种电机类型。

它具有高效率、高功率密度、体积小、重量轻等优点,被广泛应用于电动汽车、混合动力汽车和纯电动汽车等领域。

下面将对新能源汽车永磁电机的设计进行概述。

首先,新能源汽车永磁电机的设计需要考虑到汽车的功率需求和动力特性。

根据车辆的功率需求、行驶工况等因素,确定电机的额定功率和工作点。

同时,还需要考虑电机的输出转矩和转速等特性,以满足车辆的加速、爬坡等性能要求。

其次,新能源汽车永磁电机的设计需要选择合适的永磁材料。

永磁材料是永磁电机中的关键部分,直接影响到电机的功率密度和效率。

常用的永磁材料有钕铁硼和钴磁体等,需要根据电机的工作温度、磁场要求等因素进行选择。

第三,新能源汽车永磁电机的设计需要考虑电机的结构和散热设计。

根据电机的安装空间和重量要求,选择合适的结构类型,如内外转子结构、开口式结构等。

同时,为了提高电机的散热效果,通常需要在电机的转子和定子上设置散热片或散热鳍片,以提高电机的散热能力。

第四,新能源汽车永磁电机的设计还需要考虑电机的控制系统。

控制系统包括电机的启停控制、转矩控制和速度控制等功能,可以通过变频器、控制器等设备实现。

控制系统的设计需要考虑电机的响应速度、稳定性和可靠性等因素,以满足车辆的动力要求和驾驶性能。

最后,新能源汽车永磁电机的设计还需要进行系统级的优化。

在考虑了电机的基本参数和特性之后,需要对整个动力系统进行综合设计,包括电机的匹配与融合、电池组的设计与排布、电池管理系统的设计等。

这些综合设计可以进一步提高整车的续航里程、驾驶性能和经济性。

总之,新能源汽车永磁电机的设计是一个复杂而关键的过程。

它涉及到多个方面的技术和工程知识,需要综合考虑各个因素的影响,以实现高效、可靠、节能的电机设计。

随着新能源汽车技术的不断发展,相信新能源汽车永磁电机的设计将会不断优化和创新,为新能源汽车的发展做出更大的贡献。

电动汽车驱动电机的设计与选型

电动汽车驱动电机的设计与选型

电动汽车驱动电机的设计与选型全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置。

早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。

该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。

相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。

容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。

底盘结构大为简化,使整车总布置和车身造型设计的自由度增加。

若能将底盘承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。

若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。

(说起来很轻松,但是如果真正实现起来,上面那段话恐怕十年之内都没办法产业化,比如机电复合制动,比如制动能量回馈,原理不难,难的是在技术、成本、产业、供应商等等条件都成熟起来之后......)1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:1.2 动力性指标如下:最大车速X;在车速=60km/h时爬坡度5%(3度);在车速=40km/h时爬坡度12% (6.8度);原地起步至100km/h的加速时间;最大爬坡度(16度);0到75km/h加速时间;具备2~3倍过载能力。

2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。

(完整版)AGV设计电机选择计算

(完整版)AGV设计电机选择计算

驱动系统部件的选择与校核AGV的驱动系统主要由驱动电源、电机和减速装置组成。

电机的性能参数及减速装置的规格型号的确定直接决定整车的动力性,即车辆的运动速度和驱动力直接决定整车的动力特性。

因此电机必须通过详细计算进行选择,现在很多电机直接与减速装置组合在一起构成减速电机,为我们的设计带来了很大的方便,并且能使AGV的驱动系统简单化,结构小型化,此外性价比也比较高,因此此次设计直接选择减速电机作为驱动源。

1电机种类的选择与AGV相关参数自动引导车是电动车的一种,而电机是电动车的驱动源,提供给整车提供动力。

目前最常用的电动车辆驱动系统有以下三种:第一种是直流电机驱动系统,20世纪90年代前的电动汽车几乎全是直流电机驱动的。

直流电机木身效率低,体积和质量大,换向器和电刷限制了它转速的提高,一般其最高转速为6000-8000r/min。

但出于其缺点目前除了小型车外,电动车很少采用直流电机驱动系统。

第二种是感应电机交流驱动系统。

该系统是20世纪90年代发展起来的新技术,目前尚处于发展完善阶段。

电机一般采用转子鼠笼结构的三相交流感应电动机。

电机控制器采用矢量控制的变频调速方式。

其具有效率高、体积小、质量小、结构简单,免维护、易于冷却和寿命长等优点,该系统调速范围宽,而且能实现低速恒转矩,高速恒功率运转,但交流电机控制器成本较高。

目前,世界上众多著名的电动汽车中,多数采用感应电机交流驱动系统。

第三种是永磁同步电机交流驱动系统,其中永磁同步电机包括无刷直流电机和三相永磁同步电机,而永磁同步电机和无刷直流电机相比,永磁同步电机交流驱动系统的效率较高,体积最小,质量最小,也无直流电机的换向器和电刷等缺点。

但该类驱动系统永磁材料成本较高,只在小功率的电动汽车中得到一定的应用。

但永磁同步电机是最有希望的高性能电机,是电动汽车电机的发展方向。

出于直流电机本身具有控制系统简单,调速方便,不需逆变装置等优点,并且本次毕业设计的AGV运行速度低,功率也不高,因此,采用直流电机(包含减速装置)作为驱动系统的动力源足够满足此次AGV设计,并且性价比优越。

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化大家好,今天我们来聊聊关于电动汽车的一个小秘密——永磁同步电机。

别看它小小的一个家伙,可是在电动汽车里可是扮演着非常重要的角色哦!那么,永磁同步电机到底是个什么东东呢?它又有什么设计和优化的地方呢?接下来,就让我来给大家一一道来吧!
我们来说说永磁同步电机的基本概念。

永磁同步电机是一种新型的电机,它的特点是具有高效率、高功率密度、高转矩密度和快速响应等优点。

它的主要工作原理是通过磁场的作用,使转子产生旋转力矩,从而带动汽车行驶。

而永磁同步电机的核心部件就是永磁体,它可以产生强磁场,使得电机具有更高的性能。

那么,永磁同步电机有哪些设计和优化的地方呢?这可是个大问题,不过别担心,我会一一给大家讲解的。

我们来说说永磁同步电机的设计。

在设计永磁同步电机时,需要考虑到很多因素,比如说转子的形状、尺寸、材料等等。

这些因素都会影响到电机的性能。

所以,设计师们需要根据实际情况进行合理的设计,以达到最佳的性能。

接下来,我们来说说永磁同步电机的优化。

在实际应用中,为了提高永磁同步电机的性能,我们需要对其进行优化。

优化的方法有很多种,比如说改变永磁体的形状、尺寸和材料;改变定子的结构和参数;改变转子的形状和材料等等。

这些方法都可以有效地提高永磁同步电机的性能,使其更加适应各种工况的需求。

好了,今天的话题就先聊到这里啦!希望大家对永磁同步电机有了更深入的了解。

这只是一个简单的介绍,实际上还有很多细节和复杂的问题需要我们去研究和探讨。

不过没关系啦,只要我们继续努力,相信总有一天会取得突破性的进展的!谢谢大家!。

新能源汽车电机系统的设计与制造

新能源汽车电机系统的设计与制造

新能源汽车电机系统的设计与制造新能源汽车的兴起标志着汽车行业的一次重要变革,其中电动汽车作为一种环保且可持续发展的交通方式,不断受到消费者的关注。

而作为电动汽车的核心部件之一,电机系统的设计与制造对于其性能和效能具有关键作用。

本文将介绍新能源汽车电机系统的设计与制造过程,帮助读者更好地了解这一领域的技术与发展。

1.电机系统的基本架构新能源汽车电机系统由电机、控制器和电池组成。

电机是将电能转化为机械能的核心部件,控制器负责控制电机的运行,而电池则为电机提供能量。

在设计电机系统时,需要考虑电机类型、功率输出以及系统的整体匹配性等因素。

1.1电机类型目前市场上常见的电机类型有直流电机(DCmotor)和异步电机(Inductionmotor)两种。

直流电机结构简单,控制方便,但效率相对较低;异步电机则具有高效率和较大的功率输出能力,适用于大型电动汽车。

1.2控制器控制器是电机系统的智能部件,负责接收和处理来自车辆电子系统和驱动器的指令,控制电机的转速和扭矩输出。

控制器的设计需要考虑响应速度、电机保护功能以及对电池能量的管理等因素。

1.3电池电池是电动汽车的能源来源,其类型包括锂离子电池、镍氢电池等。

设计电池需要考虑能量密度、功率密度、循环寿命以及充电时间等因素。

2.电机系统的制造过程电机系统的制造过程包括设计、零部件制造和系统集成三个阶段。

2.1设计电机系统的设计需要进行电气设计和机械设计两方面的工作。

电气设计包括电机参数计算、电机控制系统设计等;机械设计则包括电机的外形结构设计和散热系统设计等。

设计阶段需要充分考虑性能、成本和可靠性等因素,确保电机系统能够满足汽车的需求。

2.2零部件制造零部件制造是电机系统制造的关键环节,包括电机定子、电机转子、控制器电路板等部件的加工和组装。

在制造过程中,需要确保零部件的质量和尺寸精度,以及零部件之间的配合精度,确保整个电机系统的可靠性和稳定性。

2.3系统集成系统集成是将设计好的电机、控制器和电池进行组装和调试的过程。

新能源汽车电机设计的关键技术

新能源汽车电机设计的关键技术

新能源汽车电机设计的关键技术新能源汽车的崛起,促使了电动汽车电机设计领域的迅速发展。

电机是电动汽车的心脏,设计得当将直接影响汽车性能、续航里程和驾驶体验。

在新能源汽车电机设计中,有一些关键技术至关重要,下面我们来看看这些技术都有哪些要点。

高效率电机结构设计高效率电机是电动汽车实现长续航里程的关键。

在设计中,需要考虑转子、绕组结构、永磁材料等因素。

采用先进的磁路设计和优化的绝缘结构可以降低电机的能量损耗,提高整体效率。

控制系统优化电机控制系统在电动汽车性能和驾驶体验中起着至关重要的作用。

控制系统需要能够精准控制电机转速、扭矩输出等参数,实现动力输出的平稳性和高效性。

智能控制算法的应用可以提高系统的响应速度和运行稳定性。

电机散热设计电机的工作效率和寿命与其散热效果密切相关。

在设计过程中,需要合理设计散热结构,提高散热效率,保证电机长时间高负荷工作时的稳定性。

采用高导热材料和辅助散热装置可以有效降低电机温度,延长使用寿命。

轻量化设计新能源汽车对于整车质量的控制要求较高,电机作为一个重要部件也需要进行轻量化设计。

采用高强度轻质材料、结构优化等措施可以实现电机重量的减轻,同时提高整车的能效比和动力性能。

磁场分析与仿真在电机设计过程中,磁场分析与仿真是不可或缺的环节。

通过仿真软件对电机进行电磁场分析,可以精确预测电机的性能参数,指导优化设计。

磁场仿真也能帮助工程师发现潜在的电磁干扰问题,提前解决设计缺陷。

新能源汽车电机设计的关键技术包括高效率电机结构设计、控制系统优化、电机散热设计、轻量化设计以及磁场分析与仿真。

这些技术将直接影响电动汽车的性能表现和使用体验,对于推动新能源汽车产业的发展具有重要意义。

在未来,随着科技的不断进步和创新,电机设计领域也将迎来更多突破和发展,为新能源汽车行业带来更多惊喜。

新能源汽车电机设计的关键技术是多方面综合的,需要在结构设计、控制系统、散热设计、轻量化和仿真分析等方面不断优化和创新,以满足日益增长的电动汽车市场需求,推动整个产业向更加可持续和智能的方向发展。

电动汽车驱动电机匹配设计

电动汽车驱动电机匹配设计

电动汽车驱动电机匹配设计在电动汽车驱动电机匹配设计中,首先需要确定驱动电机的功率和扭矩要求。

这可以通过电动汽车的使用需求、车辆重量和行驶条件来确定。

一般来说,驱动电机的额定功率应该能够满足车辆的最高速度和最大爬坡能力的需求,而额定扭矩应该能够满足车辆的起步、加速和超车等功耗较大的情况。

接下来,需要确定驱动电机的类型。

目前常见的驱动电机类型有直流电机、交流电机和永磁电机等。

直流电机由于其结构简单、控制方便和成本较低,一度是电动汽车的首选。

然而,随着电动汽车市场的发展,交流电机和永磁电机由于其高效率、高功率密度和低温升等优势,逐渐成为电动汽车驱动电机的主流选择。

根据驱动电机的类型和特性,还需要进一步选择电机的细节设计。

例如,对于直流电机,需要确定电枢绕组和永磁体的匹配方案;对于交流电机,需要确定电机的转子结构和绕组形式;对于永磁电机,则需要确定永磁体的材料和形状。

这些细节设计将直接影响驱动电机的性能和效率。

此外,还需要考虑电动汽车系统的整体匹配设计。

例如,电机驱动系统通常需要配备相应的电控系统,用于控制电机的启停、加速和制动等功能。

因此,在电机匹配设计中,还需要考虑电机和电控系统之间的匹配和协同工作。

最后,电动汽车驱动电机匹配设计还需要考虑驱动电机的制造和可靠性。

驱动电机通常由绕组、电磁铁、轴承和外壳等组成,这些部件的制造质量和可靠性将直接影响电机的工作寿命和故障率。

因此,在电机匹配设计中,还需要考虑材料的选用、加工工艺和质量控制等方面。

总之,电动汽车驱动电机匹配设计是电动汽车系统中至关重要的环节。

一个合理的电机匹配设计可以提高电动汽车的性能和效率,降低能耗并保证安全可靠。

通过合理选择驱动电机的功率和扭矩要求、确定电机类型和细节设计、考虑整体匹配和制造可靠性等方面,可以实现一个优秀的电动汽车驱动电机匹配设计。

电动汽车的四种驱动电机比较

电动汽车的四种驱动电机比较

电动汽车的四种驱动电机比较
新能源汽车具有环保、节约、简单三大优势。

在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。

相对于自动变速箱,电机结构简单、技术成熟、运行可靠,甚至被视为中国在新能源汽车行业实现汽车工业“弯道超车”的希望领域之一。

新能源电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。

因此,对于驱动电机的选择就尤为重要。

 电动汽车的驱动电机要求有以下几个特点:
 l 宽广的恒功率范围,满足汽车的变速性能
 l 启动扭矩大,调速能力强
 l 效率高,高效区广
 l 瞬时功率大,过载能力强
 l 功率密度大,体积小,重量轻
 l 环境适应性高,适应恶劣环境
 l 能量回馈效率高
 根据驱动原理,电动汽车的驱动电机可分为以下4种:
 1、直流电动机
 在电动汽车发展的早期,很多电动汽车都是采用直流电动机方案。

主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。

但由于直流电动机本身的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结构会产生损耗,提高了维护成本。

此外,电动机运。

电动汽车用永磁同步电机设计流程

电动汽车用永磁同步电机设计流程

电动汽车用永磁同步电机设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!电动汽车用永磁同步电机的设计流程解析随着环保理念的普及和科技的进步,电动汽车已成为全球汽车行业的焦点,其中永磁同步电机(PMSM)因其高效、高功率密度等优点,成为电动汽车动力系统的核心部件。

电动汽车电机控制器方案设计说明书 - 综合文库

电动汽车电机控制器方案设计说明书 - 综合文库

电动汽车电机控制器方案设计说明书综合文库早晨的阳光透过窗户洒在键盘上,我闭上眼睛,让思绪随着键盘的敲击跳跃。

电动汽车电机控制器,这个命题在我的脑海中盘旋,渐渐勾勒出一幅清晰的画面。

一、设计背景与意义电动汽车作为新能源汽车的重要组成部分,正逐渐改变着我们的出行方式。

电机控制器作为电动汽车的核心部件之一,其性能直接影响着电动汽车的动力性能、能耗和可靠性。

在这个大背景下,设计一款高效、可靠的电机控制器方案,显得尤为重要。

二、方案设计目标1.提高电机控制效率,降低能耗。

2.确保电机控制器在各种工况下的稳定运行。

3.降低成本,提高产品竞争力。

4.满足未来电动汽车的发展需求。

三、方案设计内容1.电机控制器硬件设计(1)主控制器硬件设计主控制器硬件设计主要包括微处理器、电源模块、驱动模块、通信接口等。

微处理器作为核心部件,负责接收外部信号、处理信号、输出控制信号。

电源模块负责为各个部件提供稳定电源,驱动模块负责驱动电机运行,通信接口负责与外部设备进行数据交换。

(2)辅助控制器硬件设计辅助控制器主要包括电池管理系统、电机转速传感器、电流传感器等。

电池管理系统负责监控电池状态,保证电动汽车在行驶过程中电池的安全;电机转速传感器和电流传感器负责实时监测电机运行状态,为微处理器提供数据支持。

2.电机控制器软件设计(1)主控制器软件设计主控制器软件主要包括电机控制算法、故障诊断与处理、通信协议等。

电机控制算法负责根据外部信号和内部参数,实时调整电机运行状态;故障诊断与处理负责在发现故障时,及时进行处理,确保电动汽车安全行驶;通信协议负责与其他设备进行数据交换。

(2)辅助控制器软件设计辅助控制器软件主要包括电池管理算法、电机转速监测、电流监测等。

电池管理算法负责实时监控电池状态,为电动汽车提供稳定的电源;电机转速监测和电流监测负责实时监测电机运行状态,为微处理器提供数据支持。

四、方案实施与验证1.实施步骤(1)根据设计目标,制定详细的硬件设计方案,包括主控制器和辅助控制器的硬件设计。

纯电动汽车动力总成参数的选择1

纯电动汽车动力总成参数的选择1

纯电动汽车动力总成参数的选择1 基于昌河爱迪尔CH7101BE开发的纯电动汽车的电机和蓄电池等相关参数的确定计算书 1 说明本纯电动汽车拟在昌河爱迪尔CH7101BE原有底盘和车身的基础上进行开发,拟设计最高车速为120km/h,一次充电的续驶里程为160km(60km/h均速行驶), 2 纯电动汽车采用的电驱动结构形式采用由单驱动电机、单级固定速比的主减速器及差速器三者组成该车的前置电力驱动系统,如图1所示。

车速/转矩的控制直接由电机控制器来实现。

图1 纯电动汽车的电驱动结构布置形式M-为驱动电机,FG-单级固定速比的主减速器,D-差速器3 电动机功率的确定纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、加速能力以及最大爬坡度的要求。

3.1满足最高车速电机所需提供的功率当汽车以最高车速Vmax匀速行驶时,电动机所提供功率(kw)至少为:式中:η—整车动力传动系统效率(包括主减速器和驱动电机及控制器的工作效率),主减速器的取0.9,驱动电机及控制器取0.88,则η=0.9*0.88=0.792;m—汽车的总质量,取1360(原车总质量)+250(6个12V的蓄电池的质量)=1610kg;2g—重力加速度,取9.8m/s;f—滚动阻力系数,取0.015;C—空气阻力系数,取0.35; d2A—电动汽车的迎风面积,取1.6*1.67=2.672m(原车宽*车身高);Vmax—最高车速,取120km/h。

代入对应的数据后,求得电动机至少所需提供的功率(kw),即3.2 满足加速性能电机所需提供的功率根据即将颁布的国家标准《纯电动乘用车技术条件》的规定加速性能以计算电机所需提供的功率,即按照GB/T规定的试验方法测量车辆0~50km/h和50km/h~80km/h的加速性能,其加速时间不应超过10s和15s。

在水平良好沥青或水泥路面上,车辆由车速V(km/h)加速到车速V(km/h)的加12速时间T(s)计算式为:式中:F—车辆行驶驱动力(N); tF—车辆行驶空气阻力(N); wF—车辆行驶滚动阻力(N); fδ—旋动质量换算系数,取1.1,对纯电动汽车其计算式为:式中:2I—车轮的总转动惯量(kg.m); w2I—与电机输出轴相连接的所有转动部件的转动惯量之和(kg.m); m i—变速器速比; gi—主减速器速比; 0m—汽车的总质量(kg);r—车轮的滚动半径(m); rη—传动系的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动汽车电动汽车电动汽车电机选择与设计学院:机械与车辆学院指导教师:专业:时间:2011.5.23-27中国·珠海电动汽车电机选择与设计摘要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。

关键词:电动汽车;驱动系统;轮毂电机概述全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。

在对于电动汽车普及方面上,这是一个很大的障碍。

但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。

早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。

该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。

相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:(1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。

(2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。

(3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。

若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。

(4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。

1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:参数数值 参数 数值最大总质量(kg )1400 轮胎半径(m ) 0.33 迎风面积(㎡)2.50 传动效率 0.90 风阻系数0.33 最高车速(km/h ) 1001.2 动力性指标如下:(1)最大车速max 100a u km ≥;(2)在车速a u =60km/h 时爬坡度i ≥5%(3度);(3)在车速a u =40km/h 时爬坡度i ≥12% (6.8度);(4)原地起步至100km/h 的加速时间35t s ≤;(5)最大爬坡度i ≥12%(16度);(5)0到75km/h 加速时间25t s ≤;(6)具备2~3倍过载能力[7]。

2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。

2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率N P 应满足:2max max 360021.15a D a N T u C A u P m g f η⎛⎫⋅⋅=⋅⋅⋅+ ⎪⎝⎭ (1)20(1/19400)a f f u =+ (2)式中:N P ——电机输出功率,kw ;T η——传动系效率,取0.9;m ——最大车重,取1400kg;0f ——滚动摩擦系数,取0.014;D C ——风阻系数,取0.33;A ——迎风面积,取2.50㎡;max a u ——最高车速,取100km/h 。

根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。

2.2 根据要求车速的爬坡度计算()sin 3600a f w N T u F F G P αη⋅++=(3)根据公式(4),其中在车速a u =60km/h 时爬坡度i ≥5%可得:()20.014160/1940014009.8cos 3227.4f F =⨯+⨯⨯⨯=o (N )20.33 2.560140.421.15w F ⨯⨯==(N )()140.4277.414009.80.0526020.9536000.9N P ++⨯⨯⨯==⨯(kw )根据公式(4),其中在车速a u =40km/h 时爬坡度i ≥12%可得:()20.014140/1940014009.8cos 12203.38f F =⨯+⨯⨯⨯=o (N ) 20.33 2.54062.4121.15w F ⨯⨯==(N )()62.41203.3814009.80.1184023.30736000.9N P ++⨯⨯⨯==⨯(kw )根据(4)式,可以计算出满足车速为60km/h 时,爬坡度为5%,电机输出额定功率为20.95kw ,满足车速为40km/h 时,爬坡度为12%,电机输出额定功率为23.307kw[3][5]。

2.3 根据最大爬坡度确定电机的额定功率根据公式(4),其中在车速a u =20km/h 时爬坡度i ≥28%(16度)可得:()20.014120/1940014009.8cos 16188.395f F =⨯+⨯⨯⨯=o (N ) 20.33 2.52015.60221.15w F ⨯⨯==(N )()188.39515.60214009.80.2762024.63436000.9N P ++⨯⨯⨯==⨯(kw )根据(4)式,可以计算出满足车速为20km/h 时,爬坡度为28%,电机输出额定功率为24.634kw ,在这里假定额定功率为25kw 。

2.4 根据额定功率来确定电机的最大功率电机的最大功率可以由下式计算得出:max N P P λ=⨯ (4)式中:max P ——电机最大功率,kw ; λ——电机过载系数,一般取2~3。

根据式(3),可计算得max P =50~75kw ,所以初步假设电机的峰值功率为75kw 。

由于选用的是轮毂电机,所以每个电机设定为:峰值功率20kw ,额定功率为10kw[5]。

2.5 电机额定转速和转速的选择对电机本身而言,额定功率相同的电机额定转速越高,体积越小,质量越轻,造价越低;而且电机功率恒定时,随着电机额定转速和最高转速的增加,电机的最大转矩会减小,从而避免造成转矩过太的不利影响。

因此.选择高速电机是比较有利的。

但当电机转速超过一定程度后,其转矩降低幅度明显减小.因此,电机最高转速过高时,将导致电机及减速装置的制造成本增加。

电机转速的选择既要考虑负载的要求.又要考虑电机与传动机构的经济性等固素。

综合上述各种因素,由于选用轮毂电机,根据车用驱动电机的特点井参考其他电动车辆上采用的电机,选定电机的额定转速为2000r/min ,最高转速为3000r/min 。

max max max 1955095509550N N N N N N T n T n P T n P P λ⨯⨯⨯==⨯=⨯(5)式中:max T ——电机的最大转矩,N ·m ;NT ——电机的额定转矩,N ·m ; N n ——电机的额定转速,r/min 。

通过式(5),可算出电机的最大转矩为:max T =143.25N ·m ,额定转矩为:N T =47.75N ·m[1]。

3.传动系最大传动比的设计(1)0i 的选择首先应满足车辆最高行驶速度要求, 由最高车速max a u 与电机最高转速max n 确定传动比的上限。

根据公式:max 0max 0.377a n ri u ≤ (6)得:0i ≤3.732(2)由电机的最高转速对应的最大输出转矩max T 和最高车速对应的行驶阻力max F 确定速比的下限值:max 0max T F r i T η⋅≥⋅ (7)由前面的计算可得:max f w F F F =+=681.16(N )最大输出转矩max T =143.25(N ·m )max 0max 1.743T F r i T η⋅≥=⋅(3)由电机最大输出转矩和最大爬坡度对应行驶阻力确定0i 。

根据公式:max 0max T F ri T αη⋅≥⋅ (8)max (sin )F G fcos ααα=+=203.997(N )最大输出转矩max T =143.25(N ·m )max 0max 0.522T F r i T αη⋅≥=⋅由以上的计算我们选定一个合适的减速比0i =3.4[1]。

4.电机的种类与性能分析4.1 直流电动机有刷直流电动机的主要优点是控制简单、技术成熟。

具有交流电机不可比拟的优良控制特性。

在早期开发的电动汽车上多采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。

但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。

另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。

鉴于直流电动机存在以上缺陷,在新研制的电动汽车上已基本不采用直流电动机4.2交流三相感应电动机交流三相感应电动机的基本性能交流三相感应电动机是应用得最广泛的电动机。

其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件。

结构简单,运行可靠,经久耐用。

交流感应电动机的功率覆盖面很宽广,转速达到12000~15000r/min 。

可采用空气冷却或液体冷却方式,冷却自由度高。

对环境的适应性好,并能够实现再生反馈制动。

与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。

4.3 永磁无刷直流电动机永磁无刷直流电动机的基本性能永磁无刷直流电动机是一种高性能的电动机。

它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。

加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。

此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。

永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景。

永磁无刷直流电动机的不足永磁无刷直流电动机受到永磁材料工艺的影响和限制,使得永磁无刷直流电动机的功率范围较小,最大功率仅几十千瓦。

永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降或发生退磁现象,将降低永磁电动机的性能,严重时还会损坏电动机,在使用中必须严格控制,使其不发生过载。

永磁无刷直流电动机在恒功率模式下,操纵复杂,需要一套复杂的控制系统,从而使得永磁无刷直流电动机的驱动系统造价很高4.4 开关磁阻电动机开关磁阻电动机的基本性能开关磁阻电动机是一种新型电动机,该系统具有很多明显的特点:它的结构比其它任何一种电动机都要简单,在电动机的转子上没有滑环、绕组和永磁体等,只是在定子上有简单的集中绕组,绕组的端部较短,没有相间跨接线,维护修理容易。

相关文档
最新文档