电动汽车电机选择与及设计

合集下载

电动汽车驱动电机匹配设计研究方案

电动汽车驱动电机匹配设计研究方案

电动汽车驱动电机匹配设计研究方案一、研究背景和意义随着环境污染和能源危机的加剧,电动汽车作为一种清洁、高效的交通工具,成为未来可持续发展的趋势。

其中,驱动电机作为电动汽车的核心动力部件,对于电动汽车的性能和效率有着至关重要的影响。

驱动电机的匹配设计是指在特定的车辆质量、行驶性能、能量管理等要求下,合理选择和设计驱动电机的类型、参数和控制策略,以实现电动汽车的最佳性能和最高效率。

因此,研究电动汽车驱动电机的匹配设计,有助于推动电动汽车技术的发展,提升电动汽车的性能和竞争力。

二、研究内容和方法1.研究内容(1)分析电动汽车的性能需求:根据电动汽车的用途和服务对象,分析电动汽车的综合性能需求,包括加速性能、最高车速、续航里程、爬坡能力等。

(2)选型电动汽车驱动电机:根据电动汽车的性能需求和电池组参数,选择合适的电动汽车驱动电机的类型和功率,并确定电机的最适工作点。

(3)设计电动汽车驱动系统:根据电机选型结果,设计电动汽车的驱动系统,包括电机控制器、电池管理系统、变速器等。

(4)研究电动汽车驱动电机的控制策略:根据电动汽车的特点和性能需求,研究电动汽车驱动电机的控制策略,包括电机启动控制、驱动电机转矩控制、能量回收等。

2.研究方法(1)理论研究:通过文献调研和综述分析,对电动汽车驱动电机的匹配设计方法和技术进行梳理和总结。

(2) 实验研究:运用动力学模拟软件(如Matlab/Simulink)进行仿真分析,验证驱动电机在不同工况下的性能指标,如输出功率、效率、扭矩、速度等,并与设计要求进行比对。

(3)数据采集和分析:通过实车测试,采集电动汽车的动态数据,包括功率曲线、扭矩曲线、速度曲线等,并进行数据分析,以求得真实可靠的研究结果。

三、预期成果及应用价值1.预期成果通过研究电动汽车驱动电机的匹配设计,预计可以得到以下成果:(1)电动汽车驱动电机匹配设计的理论方法和技术指南,为电动汽车制造商和研发人员提供参考。

电动汽车论文永磁同步电机设计论文

电动汽车论文永磁同步电机设计论文

电动汽车论文永磁同步电机设计论文摘要:文章首先介绍电动汽车不同运行状况对电机的要求,根据要求来确定永磁同步电机的性能参数,以满足电动汽车的要求。

根据目标参数综合分析比较后确定转子结构为内置切向式的永磁同步电机为本论文研究对象。

通过计算初步确定永磁同步电机的基本尺寸、绕组类型、定子槽型等。

最后通过解析计算得出永磁同步电机各参数初选数值。

1 电动汽车对驱动电机性能的要求电动汽车运行工况多变复杂,因此对驱动电机的性能、尺寸都有相应的要求:①在电池电量一定的情况下行驶里程是电动汽车性能的关键因素,为了提高汽车的续航里程,要求电动机能耗低、效率高。

②汽车在行驶中会走烂路低速行驶,也会走高速路高速行驶,会运行于多种不同工况之中,要求电机调速范围宽泛。

③汽车在运行中会频繁起步、加速、制动减速、爬坡等,要求电机具有较大的启动转矩,在设计中可选取较大的过载系数。

④为了增大汽车车内空间、便于电机布置同时减轻汽车重量,要求电机比功率较大、体积小、尽量采用较高的额定电压。

2 永磁同步电机总体设计电动汽车用永磁同步电机总体设计首先需要确定电机的磁路结构,选用合理的计算方法确定电机各部件的尺寸参数,基本确定出电机的原型。

2.1 转子磁路结构选择转子磁路结构对永磁同步电机的驱动性能产生很大影响,是电机设计阶段首先要考虑的问题。

隔磁桥能有效控制磁漏系数的大小,因此合理设计隔磁桥很重要[1]。

磁漏系数小电机的抗去磁能力减弱,磁漏系数大所需永磁体量就多。

因此需要对电机的磁路结构进行合理设计以满足电动汽车对驱动电机的要求。

不同的磁路结构对电机的电感参数影响很大,主要根据永磁体布置与转子位置不同分为表面置式与内置式,如图1所示。

由于永磁体内置式切向式永磁同步电机转矩输出能力比其他电机强、调速范围宽、结构紧凑、运行可靠。

因此选用该种结构形式为本课题研究对象。

2.2 永磁体材料与尺寸选择目前,永磁同步电机永磁体材料采用稀土材料钕铁硼[2],它具有很高的矫顽力和磁能积,磁能积是普通铁氧永磁体的6倍以上。

双电机电动汽车电机选型计算

双电机电动汽车电机选型计算

双电机电动汽车电机选型计算1. 引言在设计双电机电动汽车时,正确的电机选型是非常重要的。

电机选型的准确性直接影响到车辆性能、操控性和驱动系统的效率。

本文将介绍双电机电动汽车电机选型的基本计算方法,并给出具体的步骤和示例。

2. 电机选型参数在进行电机选型计算之前,需要明确以下几个重要的参数:•汽车的总质量(m):包括车辆本身的重量和所有乘客和货物的重量。

•所需的最大加速度(a):车辆在起步和加速阶段所需的最大加速度。

•轮胎滑移系数(μ):表示轮胎与地面之间的摩擦系数,影响车辆的牵引力。

•电机的额定功率(P):表示电机在额定工况下的输出功率。

•电机的转速范围(n_min 和 n_max):电机能够工作的最低和最高转速。

3. 电机选型计算步骤进行双电机电动汽车的电机选型计算,可以按照以下步骤进行:步骤 1:计算车辆的牵引力需求根据车辆的总质量和最大加速度,可以计算出车辆在起步和加速阶段所需的总牵引力。

牵引力的计算公式如下:F_total = m * a步骤 2:计算每个电机所需的最大输出扭矩根据车辆的牵引力需求和轮胎滑移系数,可以计算出每个电机所需的最大输出扭矩。

每个电机所需的最大输出扭矩的计算公式如下:T_max = F_total / (2 * μ * r)其中,r表示轮胎半径。

步骤 3:确定每个电机的转速范围根据车辆的最高速度和轮胎半径,可以计算出每个电机的转速范围。

每个电机的转速范围的计算公式如下:n_min = 0n_max = v_max / (π * d)其中,v_max表示车辆的最高速度,d表示轮胎直径。

步骤 4:选择合适的电机根据每个电机所需的最大输出扭矩和转速范围,可以选择合适的电机型号。

在市场上有各种不同功率和转速的电机可供选择,根据具体需求进行选择。

4. 示例假设一辆双电机电动汽车,总质量为1000kg,最大加速度为3 m/s²,轮胎滑移系数为0.7,轮胎直径为0.6m,最高速度为100 km/h。

电动汽车的电力系统设计与控制

电动汽车的电力系统设计与控制

电动汽车的电力系统设计与控制近年来,随着人们对环境保护并行动的呼声不断增加,电动汽车作为一种环保、低碳的交通工具,越来越受到人们的青睐。

然而,电动汽车的电力系统设计与控制是电动汽车的关键技术之一,因此本文将重点探讨电动汽车的电力系统设计与控制。

一、电动汽车的电力系统概述电动汽车的电力系统主要包括电动机、电池和电子控制器。

其中,电动机是电动汽车的“心脏”,是实现电能转化为动力的关键部件。

而电池则是电动汽车的“动力支持”,对电动汽车的里程及性能影响较大。

此外,电子控制器是电动汽车电力系统中的“大脑”,可以控制电动机、电池和其他电子设备的正常运转。

二、电动汽车电池的设计与控制电动汽车的电池系统是电动汽车的重要组成部分,掌握其设计与控制技术是电动汽车制造商的必修课程。

电动汽车电池系统主要涉及电池组设计、电池管理系统的设计以及BMS的设计等方面。

1、电池组设计电池组的设计是电动汽车电池系统中的重要组成部分。

电池组一般由多个电池单体组成,其设计需要考虑到电池单体的电压、容量等指标,以及连接方式、结构图案、重量等一系列因素。

对于电动汽车电池组设计的主要注意点可以概括为“轻、薄、小、大”,即要重视发动机系统的轻量化设计,而且要考虑到空间的利用率和尺寸的限制。

2、电池管理系统设计电池管理系统是指控制电池单体电压、容量、温度、充放电过程、失效管理等一系列操作的系统。

其主要目的是为了延长电池组的寿命、提高电池的性能、防范电池失效风险,提供电池的状态信息等。

电池管理系统需要掌握能源管理技术、传感技术、通信技术等一些核心技术,因此制造商需要不断提升技术水平,满足市场需求。

3、BMS设计BMS是电动汽车电池管理系统的核心技术之一,其作用是监测电池的电压、电流、温度等参数,实现对电池的控制。

BMS的设计需要考虑电池型号、工作条件、安全要求等因素,同时需要实现精确、快速、稳定的管理、监测和控制功能。

三、电动汽车电机的设计与控制电动汽车的电机系统主要包括电机、控制器和传动装置等三个部分。

电动汽车驱动电机的设计与性能优化

电动汽车驱动电机的设计与性能优化

电动汽车驱动电机的设计与性能优化随着环保意识的提高和能源危机的日益严重,电动汽车作为一种新型的交通工具逐渐受到人们的关注和青睐。

而作为电动汽车的核心部件之一,驱动电机的设计与性能优化尤为重要。

本文将从电动汽车驱动电机的设计原理、性能参数以及性能优化等方面进行探讨,以期为电动汽车的发展做出贡献。

驱动电机的设计原理主要分为两种:直流电机和交流电机。

直流电机简单可靠,但效率较低;而交流电机具有高效率、宽速度范围和良好的调速性能。

近年来,随着电动汽车行业的快速发展,交流电机逐渐成为主流选择。

交流电机又分为感应电机和永磁同步电机,两者在结构和性能上有所不同。

感应电机结构简单,制造成本相对较低;而永磁同步电机由于其高效率、高动力密度等优点,成为电动汽车的首选。

电动汽车驱动电机的性能参数对其性能起着决定性的作用。

首先是额定功率,即电机能够持续运行的最大功率。

车辆的加速性能和爬坡能力等都与电机的额定功率密切相关。

其次是峰值功率,即电机能够短时间达到的最大功率。

在紧急加速、超车等特殊场景下,电机需要具备峰值功率较高的特性。

再次是峰值扭矩,即电机能够短时间输出的最大扭矩。

峰值扭矩的大小决定了车辆的起步动力和爬坡能力。

此外,还有电机的效率和响应时间等性能参数需要在设计过程中综合考虑。

为了优化电动汽车驱动电机的性能,可以采取以下几种方法。

首先是通过优化电机的结构设计。

结构优化可以包括磁路设计、线圈设计和散热设计等方面。

合理布置磁场线,设计合适的线圈结构,以及良好的散热系统,能够提高电机的效率和功率密度,降低热损耗,延长电机的寿命。

其次是通过改进控制算法和驱动系统。

控制算法的改进可以提高电机的响应速度和动态性能,实现更精确的控制。

驱动系统的优化可以提高电机的效率和稳定性,减少功耗。

最后是利用新材料和新技术来提高电机的性能。

例如,采用高性能的永磁材料、改变电机的结构形式、引入新的传感器和控制器等,均可以进一步提高电机的性能。

新能源汽车新型电机的设计及弱磁控制

新能源汽车新型电机的设计及弱磁控制

新能源汽车新型电机的设计及弱磁控制1. 新能源汽车新型电机的设计是指针对传统燃油汽车所使用的内燃机而言,新能源汽车采用的是电动机作为动力源。

新能源汽车电机的设计主要考虑到其高效能、高可靠性以及对环境友好等特点。

新能源汽车电机的设计首先需要考虑其功率输出,根据不同车型和使用需求,确定电机的额定功率。

同时,还需要考虑电机的体积、重量以及散热性能等方面的因素,以满足车辆整体设计的要求。

2. 新能源汽车电机的设计还需要考虑其转矩特性,即电机在不同转速下的输出转矩。

转矩特性对于车辆的加速性能和爬坡能力等方面至关重要。

因此,设计者需要通过合理选择电机的磁路结构、绕组设计以及控制算法等方式来实现所需的转矩特性。

3. 弱磁控制是指在新能源汽车电机工作过程中,根据车辆的实际需求,对电机的磁场进行控制,以达到提高效率和降低能耗的目的。

弱磁控制能够在一定范围内调整电机的磁场强度,以适应不同工况下的工作要求。

弱磁控制需要考虑的关键因素包括电机的电磁特性、控制器的设计和算法以及动力系统的整体优化。

通过对电机的电流和电压进行精确控制,可以实现优化动力输出和提高能量转换效率的目标。

4. 在弱磁控制中,一种常用的方法是通过调整电机的电流控制来实现磁场强度的调节。

电机的磁场强度与电流之间存在一定的关系,通过控制电流的大小和方向,可以实现对磁场的精确调节。

5. 弱磁控制还需要考虑到电机的动态响应特性。

在不同工况下,电机的输出要求可能会发生变化,因此需要设计合适的控制算法来实现电机动态响应的调节。

这些算法通常基于电机的模型和控制理论,以实现优化的磁场调节效果。

总结起来,新能源汽车新型电机的设计需要考虑功率输出、转矩特性等方面的因素,并通过弱磁控制来实现磁场强度的调节。

弱磁控制需要综合考虑电机的电磁特性、控制器设计和算法,以实现优化的动力输出和能量转换效率。

电动汽车电机及驱动:设计、分析和应用

电动汽车电机及驱动:设计、分析和应用

“电机是电动汽车的心脏,它不仅关乎车辆的动力性能,更直接影响到整车 的能效和行驶品质。”
这一观点直接点明了电机在电动汽车中的关键地位。电机不仅是提供动力的 设备,更是车辆性能和效率的核心因素。
“驱动系统是电机的配套设施,它的优化程度决定了电机效能的发挥。”
这句话强调了驱动系统的重要性,它就像电机的“助手”,帮助电机更好地 发挥其性能。
阅读感受
《电动汽车电机及驱动:设计、分析和应用》读后感
在当今这个能源转型和环保意识日益增强的时代,电动汽车成为了可持续出 行的重要选择。电动汽车的核心技术之一是其电机及驱动系统,它决定了汽车的 能源效率、性能和行驶安全性。最近,我有幸阅读了邹国棠教授的《电动汽车电 机及驱动:设计、分析和应用》,深深被其中的内容所吸引。
内容摘要
从参数设计、性能设计到控制系统设计,每一步都进行了详尽的解释和实例演示。同时,对如何 进行系统优化,提高电机及驱动系统的效率和可靠性,也进行了深入的探讨。 再者,本书对电机及驱动系统的分析方法进行了全面的介绍。包括电磁场分析、热分析、动态性 能分析等。这些分析方法对于理解和优化电机及驱动系统的性能至关重要。本书还提供了大量的 计算和分析实例,使读者能够更直观地理解这些方法的应用。 本书详细介绍了电机及驱动系统在电动汽车上的实际应用。不仅包括各种类型电机的应用场景和 注意事项,也包括驱动系统的匹配和优化。还对电动汽车的能效评估和性能测试进行了全面的讲 解,为读者在实际应用中提供了全面的指导。 《电动汽车电机及驱动:设计、分析和应用》这本书是电动汽车领域的一部全面、深入的著作。
电动汽车电机及驱动:设计、 分析和应用
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介

电动汽车电机选择与设计--毕业论文

电动汽车电机选择与设计--毕业论文

电动汽车电机选择与设计--毕业论文在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。

这些损耗都会使电动机效率和功率因数降低。

同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。

如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。

同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。

谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。

对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。

二、变频电机设计特点对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。

设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。

与传统异步电机相比,一般变频电机设计有如下一些特点:1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。

如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。

2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化大家好,今天我们来聊聊电动汽车的心脏——永磁同步电机。

别看它是个小小的电机,但它的设计和优化可是关乎到电动汽车的性能、续航里程和驾驶体验呢!咱们就从头说起吧。

咱们得了解什么是永磁同步电机。

简单来说,永磁同步电机就是一种能让你驾驶电动汽车像开燃油车一样轻松的电机。

它的优点是效率高、功率大、噪音小,而且还能根据驾驶需求自动调整转速,让你在加速、行驶和刹车时都能感受到平顺的驾驶体验。

那么,如何设计一个好的永磁同步电机呢?这可是个技术活儿。

咱们先来看看永磁同步电机的结构。

它主要由定子、转子和轴承三部分组成。

定子上有永磁体,转子上也有永磁体,两个永磁体之间通过电磁耦合产生磁场。

当电流通过定子和转子时,磁场会随着电流的变化而变化,从而带动转子旋转,实现动力输出。

接下来,咱们要说说永磁同步电机的优化。

优化的目的是为了提高电机的性能,降低能耗,延长使用寿命。

优化的方向有很多,比如提高效率、减小体积、降低噪音等。

咱们可以从以下几个方面来着手优化:1. 选择合适的永磁材料永磁体的性能直接影响到电机的效率和性能。

因此,选择合适的永磁材料非常重要。

一般来说,永磁材料的磁性能越好,电机的效率越高。

但是,磁性能好的永磁材料往往成本也比较高。

所以,在设计永磁同步电机时,需要在性能和成本之间找到一个平衡点。

2. 提高转子的机械强度转子是电机的核心部件,其机械强度直接影响到电机的使用寿命。

为了提高转子的机械强度,可以采用一些特殊的设计方法,比如增加转子的厚度、使用高强度的金属材料等。

3. 优化电磁设计电磁设计是影响永磁同步电机性能的关键因素之一。

通过对定子和转子的电磁场进行优化设计,可以提高电机的效率、降低能耗。

还可以采用一些特殊的技术手段,比如采用双馈电机技术、控制策略等,进一步提高电机的性能。

4. 降低噪音噪音是影响电动汽车驾驶体验的一个重要因素。

为了降低噪音,可以在设计过程中采用一些吸音材料、减少振动等方式来降低噪音水平。

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化随着环保意识的不断提高,越来越多的人开始关注电动汽车。

而电动汽车的核心部件就是电动机,其中永磁同步电机因其高效率、高性能和高可靠性而备受青睐。

本文将从理论层面对永磁同步电机的设计及优化进行探讨。

我们需要了解永磁同步电机的基本原理。

永磁同步电机是一种采用永磁体作为转子磁场源的同步电机。

它通过控制定子绕组中的电流,使转子产生旋转磁场,从而实现电能向机械能的转换。

与传统的异步电机相比,永磁同步电机具有更高的效率、更低的转速波动和更好的启动性能。

要设计出一款优秀的永磁同步电机并非易事。

在实际应用中,我们需要考虑多种因素,如电机的功率密度、温升、噪音等。

为了满足这些要求,我们需要对永磁同步电机进行优化设计。

具体来说,我们可以从以下几个方面入手:一、选择合适的永磁材料永磁材料的性能直接影响到电机的性能。

目前市场上主要有两种类型的永磁材料:NdFeB和SmCo。

其中,NdFeB具有较高的能积和较高的工作温度,适用于大功率、高转速的应用;而SmCo则具有较低的能积和较低的工作温度,适用于小功率、低转速的应用。

因此,在设计永磁同步电机时,需要根据具体的应用需求选择合适的永磁材料。

二、优化定子结构定子是永磁同步电机的重要组成部分,其结构对电机的性能有着重要影响。

一般来说,定子结构包括定子绕组、定子铁芯和定子端盖等部分。

为了提高电机的效率和降低温升,我们可以采用以下几种方法优化定子结构:1. 采用高效绕组材料和工艺:例如采用铜材代替铝材以减少电阻损耗;采用真空浸渍法或热压法形成绝缘层以提高绕组的绝缘强度;采用多层绕组结构以增加导体截面积以降低电阻损耗。

2. 优化定子铁芯结构:例如采用空心式定子铁芯以减少重量;采用特殊的几何形状以提高磁场分布均匀性;采用特殊的冷却方式以降低温升。

3. 优化定子端盖结构:例如采用高强度材料以增加刚度;采用特殊的密封结构以防止进水和灰尘;采用特殊的散热结构以降低温升。

新能源汽车中电机驱动系统的优化设计

新能源汽车中电机驱动系统的优化设计

新能源汽车中电机驱动系统的优化设计新能源汽车作为绿色出行的未来趋势,正在逐渐受到社会的关注和重视。

而作为新能源汽车的核心部件之一,电机驱动系统的设计和优化显得尤为重要。

本文将深入探讨。

首先,电机驱动系统的关键部件之一是电机。

传统的内燃机所驱动的车辆经常会产生噪音和尾气污染,而电机驱动的车辆则具有零排放和低噪音的特点。

因此,在新能源汽车中,选用合适的电机对于整个系统的优化设计至关重要。

电机的类型多种多样,包括永磁同步电机、感应电机、开关磁阻电机等。

不同类型的电机适用于不同的场景和需求,因此在设计电机驱动系统时需要综合考虑车辆的使用环境和性能需求,选择最适合的电机类型。

除了电机类型的选择,电机的参数设计也是电机驱动系统优化设计的重要环节。

电机的参数包括电机功率、扭矩、转速等,这些参数直接影响到电机的性能和效率。

例如,在电机功率方面,需要根据车辆的重量和行驶需求来确定电机的功率大小,以确保车辆具有足够的动力性能;在电机扭矩方面,需要根据车辆的起步和爬坡需求来确定电机的最大扭矩值,以确保车辆具有良好的动力输出特性。

此外,电机的转速范围也需要根据车辆的行驶速度范围来确定,以确保电机在不同速度下都能提供足够的动力输出。

此外,电机驱动系统的优化设计还需要考虑电机控制系统。

电机控制系统主要包括电机控制器和电机控制算法。

电机控制器是控制电机启停、加速减速、动力分配等功能的关键设备,其性能直接影响到整个电机驱动系统的效率和稳定性。

电机控制算法则是控制电机运行状态的关键算法,包括闭环控制、矢量控制、阶跃响应等。

通过优化电机控制系统,可以提高电机的运行效率和响应速度,提升车辆的动力性能和驾驶体验。

除了以上方面,新能源汽车中电机驱动系统的优化设计还需要考虑电机布局和传动系统。

电机的布局对于整个车辆的结构和空间利用具有重要影响。

传统的布局方式包括前置后驱、中置后驱等,而随着新能源汽车技术的发展,一些车辆开始采用电机集成于车轮的方式,以减少传动系统的传动损耗,提高车辆的能量利用率。

新能源电动汽车的电机技术与控制

新能源电动汽车的电机技术与控制

维护与保养
建立完善的维护和保养体系,定 期对电机控制系统进行检查和保 养,确保系统的稳定性和可靠性 。
电机控制系统的智能化与网络化
01
02
03
智能化控制
利用先进的算法和传感器 技术,实现电机控制系统 的智能化,提高系统的响 应速度和稳定性。
网络化协同控制
通过车载网络和云平台, 实现多个电机控制系统之 间的协同控制,提高整车 的性能和安全性。
关磁阻电机技术
开关磁阻电机技术是一种新型的电机 技术,具有结构简单、可靠性高、容 错能力强等优点。
开关磁阻电机通过改变相绕组的电流 方向和大小来改变磁场方向和大小, 从而实现旋转。控制方式包括角度控 制和电流斩波控制。
03 新能源电动汽车电机控制系统
电机控制系统组成与功能
电机控制器
负责接收来自车辆控制器的指令,根据指令输出相应的控制信号,驱 动电机运行。
人机交互
利用人机交互技术,使驾 驶员能够更加方便地控制 电机系统,提高驾驶的舒 适性和安全性。
05 新能源电动汽车电机技术的未来展望
高性能电机的研发与应用
总结词
随着新能源电动汽车技术的不断发展,高性能电机的研发与应用成为未来的重 要趋势。
详细描述
高性能电机具有更高的功率密度、更低的能耗和更长的使用寿命,能够提高新 能源电动汽车的效率和性能。未来,高性能电机将广泛应用于新能源公交车、 出租车、物流车等商用车领域,以及家用轿车领域。
新能源电动汽车的电机技术与控制
• 新能源电动汽车电机技术概述 • 新能源电动汽车的电机技术 • 新能源电动汽车电机控制系统
• 新能源电动汽车电机控制系统的 优化与挑战
• 新能源电动汽车电机技术的未来 展望

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化

电动汽车用永磁同步电机的设计及优化大家好,今天我们来聊聊关于电动汽车的一个小秘密——永磁同步电机。

别看它小小的一个家伙,可是在电动汽车里可是扮演着非常重要的角色哦!那么,永磁同步电机到底是个什么东东呢?它又有什么设计和优化的地方呢?接下来,就让我来给大家一一道来吧!
我们来说说永磁同步电机的基本概念。

永磁同步电机是一种新型的电机,它的特点是具有高效率、高功率密度、高转矩密度和快速响应等优点。

它的主要工作原理是通过磁场的作用,使转子产生旋转力矩,从而带动汽车行驶。

而永磁同步电机的核心部件就是永磁体,它可以产生强磁场,使得电机具有更高的性能。

那么,永磁同步电机有哪些设计和优化的地方呢?这可是个大问题,不过别担心,我会一一给大家讲解的。

我们来说说永磁同步电机的设计。

在设计永磁同步电机时,需要考虑到很多因素,比如说转子的形状、尺寸、材料等等。

这些因素都会影响到电机的性能。

所以,设计师们需要根据实际情况进行合理的设计,以达到最佳的性能。

接下来,我们来说说永磁同步电机的优化。

在实际应用中,为了提高永磁同步电机的性能,我们需要对其进行优化。

优化的方法有很多种,比如说改变永磁体的形状、尺寸和材料;改变定子的结构和参数;改变转子的形状和材料等等。

这些方法都可以有效地提高永磁同步电机的性能,使其更加适应各种工况的需求。

好了,今天的话题就先聊到这里啦!希望大家对永磁同步电机有了更深入的了解。

这只是一个简单的介绍,实际上还有很多细节和复杂的问题需要我们去研究和探讨。

不过没关系啦,只要我们继续努力,相信总有一天会取得突破性的进展的!谢谢大家!。

新能源汽车电机系统的设计与制造

新能源汽车电机系统的设计与制造

新能源汽车电机系统的设计与制造新能源汽车的兴起标志着汽车行业的一次重要变革,其中电动汽车作为一种环保且可持续发展的交通方式,不断受到消费者的关注。

而作为电动汽车的核心部件之一,电机系统的设计与制造对于其性能和效能具有关键作用。

本文将介绍新能源汽车电机系统的设计与制造过程,帮助读者更好地了解这一领域的技术与发展。

1.电机系统的基本架构新能源汽车电机系统由电机、控制器和电池组成。

电机是将电能转化为机械能的核心部件,控制器负责控制电机的运行,而电池则为电机提供能量。

在设计电机系统时,需要考虑电机类型、功率输出以及系统的整体匹配性等因素。

1.1电机类型目前市场上常见的电机类型有直流电机(DCmotor)和异步电机(Inductionmotor)两种。

直流电机结构简单,控制方便,但效率相对较低;异步电机则具有高效率和较大的功率输出能力,适用于大型电动汽车。

1.2控制器控制器是电机系统的智能部件,负责接收和处理来自车辆电子系统和驱动器的指令,控制电机的转速和扭矩输出。

控制器的设计需要考虑响应速度、电机保护功能以及对电池能量的管理等因素。

1.3电池电池是电动汽车的能源来源,其类型包括锂离子电池、镍氢电池等。

设计电池需要考虑能量密度、功率密度、循环寿命以及充电时间等因素。

2.电机系统的制造过程电机系统的制造过程包括设计、零部件制造和系统集成三个阶段。

2.1设计电机系统的设计需要进行电气设计和机械设计两方面的工作。

电气设计包括电机参数计算、电机控制系统设计等;机械设计则包括电机的外形结构设计和散热系统设计等。

设计阶段需要充分考虑性能、成本和可靠性等因素,确保电机系统能够满足汽车的需求。

2.2零部件制造零部件制造是电机系统制造的关键环节,包括电机定子、电机转子、控制器电路板等部件的加工和组装。

在制造过程中,需要确保零部件的质量和尺寸精度,以及零部件之间的配合精度,确保整个电机系统的可靠性和稳定性。

2.3系统集成系统集成是将设计好的电机、控制器和电池进行组装和调试的过程。

新能源汽车电机设计的关键技术

新能源汽车电机设计的关键技术

新能源汽车电机设计的关键技术新能源汽车的崛起,促使了电动汽车电机设计领域的迅速发展。

电机是电动汽车的心脏,设计得当将直接影响汽车性能、续航里程和驾驶体验。

在新能源汽车电机设计中,有一些关键技术至关重要,下面我们来看看这些技术都有哪些要点。

高效率电机结构设计高效率电机是电动汽车实现长续航里程的关键。

在设计中,需要考虑转子、绕组结构、永磁材料等因素。

采用先进的磁路设计和优化的绝缘结构可以降低电机的能量损耗,提高整体效率。

控制系统优化电机控制系统在电动汽车性能和驾驶体验中起着至关重要的作用。

控制系统需要能够精准控制电机转速、扭矩输出等参数,实现动力输出的平稳性和高效性。

智能控制算法的应用可以提高系统的响应速度和运行稳定性。

电机散热设计电机的工作效率和寿命与其散热效果密切相关。

在设计过程中,需要合理设计散热结构,提高散热效率,保证电机长时间高负荷工作时的稳定性。

采用高导热材料和辅助散热装置可以有效降低电机温度,延长使用寿命。

轻量化设计新能源汽车对于整车质量的控制要求较高,电机作为一个重要部件也需要进行轻量化设计。

采用高强度轻质材料、结构优化等措施可以实现电机重量的减轻,同时提高整车的能效比和动力性能。

磁场分析与仿真在电机设计过程中,磁场分析与仿真是不可或缺的环节。

通过仿真软件对电机进行电磁场分析,可以精确预测电机的性能参数,指导优化设计。

磁场仿真也能帮助工程师发现潜在的电磁干扰问题,提前解决设计缺陷。

新能源汽车电机设计的关键技术包括高效率电机结构设计、控制系统优化、电机散热设计、轻量化设计以及磁场分析与仿真。

这些技术将直接影响电动汽车的性能表现和使用体验,对于推动新能源汽车产业的发展具有重要意义。

在未来,随着科技的不断进步和创新,电机设计领域也将迎来更多突破和发展,为新能源汽车行业带来更多惊喜。

新能源汽车电机设计的关键技术是多方面综合的,需要在结构设计、控制系统、散热设计、轻量化和仿真分析等方面不断优化和创新,以满足日益增长的电动汽车市场需求,推动整个产业向更加可持续和智能的方向发展。

新能源汽车驱动永磁同步电机的设计

新能源汽车驱动永磁同步电机的设计

新能源汽车驱动永磁同步电机的设计摘要:目前,用于电动车的永磁同步电动机的调速系统以其结构简单、运行可靠、效率高、维护量小等优点,发展得越来越快。

由于单位功率因数控制策略能节省变流器容量,缩小变流器体积,减少工业成本,在电动车工业领域具有广阔的前景。

文章从永磁网步电机的概述出发,重点讨论了新能源汽车驱动永磁同步电机的设计。

关键词:新能源汽车;汽车驱动;永磁同步;电机设计引言近年来迫于石油资源短缺、环境污染严重以及全球气候变暖趋势的压力,各国政府都在力推节能减排,而新能源汽车以其低排放、低污染特性得到各国政府的大力扶持,其发展形势如火如茶。

与同规格其他类型的电机相比,永磁同步电机性能更加可靠,功率密度、效率以及转矩电流比更高,运行时振动和噪声水平更低,这种优异的性能推动了新能源汽车驱动系统向着永磁化的方向大步迈进,成为了整个新能源汽车行业乃至轨道机车行业的发展方向。

一、永磁同步电机的概述永磁同步电机的体积小、噪声低、效率高、功率密度较大,在电力电子技术与现代控制理论迅速发展的大环境下,这些优点使PISM渐渐得到了广泛的应用。

永磁同步电机的直接转矩控制(DTC)是在失最控制发展日渐成熟之后兴起的另一种高性能交流调速技术。

由于拥有控制结构简洁、动态响应较快、对电机参数依赖较少等特点,直接转矩控制已成为学术界研究的热点。

在现代交流调速系统领域中,速度传感器由于存在降低系统可靠性,增加系统成本等问题,已经大大制约了交流传动系统的发展,所以采用无速度传感器的调速方案是当今国内外研究的趋势。

永磁同步电机无速度传感器的研究方法主要有基于磁链位置的估算法、基于反电动势法、滑膜观测器法、扩展卡尔曼滤波法、高频注入法、人工智能估算法、模型参考自适应法(MRAS)。

因为模型多考自适应法具有控制相对简单面且精度高的优点,所以本文将模型参考自适应法应用到永磁同步电机调速系统当中。

将永盛同步电机本身作为参考模型,将含有转子转速的模型作为可调模型,采用并联型结构进行速度辨识,两个模型的输出量物理意义相同。

电动汽车用永磁同步电机设计流程

电动汽车用永磁同步电机设计流程

电动汽车用永磁同步电机设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!电动汽车用永磁同步电机的设计流程解析随着环保理念的普及和科技的进步,电动汽车已成为全球汽车行业的焦点,其中永磁同步电机(PMSM)因其高效、高功率密度等优点,成为电动汽车动力系统的核心部件。

高效电动汽车驱动系统的设计与优化

高效电动汽车驱动系统的设计与优化

高效电动汽车驱动系统的设计与优化随着环保意识的不断增强和对可持续能源的追求,电动汽车在全球范围内得到了迅速发展。

而高效的电动汽车驱动系统是决定电动汽车性能、续航里程和用户体验的关键因素之一。

本文将深入探讨高效电动汽车驱动系统的设计与优化。

一、电动汽车驱动系统的组成与工作原理电动汽车驱动系统主要由电机、控制器、电池和传动系统等部分组成。

电机是将电能转化为机械能的核心部件,其性能直接影响车辆的动力输出和效率。

控制器负责控制电机的运行,根据驾驶员的操作指令和车辆状态,精确调节电机的转速和扭矩。

电池则为整个系统提供能源,其能量密度和充放电性能对续航里程有着重要影响。

传动系统将电机的动力传递到车轮,实现车辆的行驶。

在工作时,电池输出的直流电经过控制器转换为交流电,驱动电机旋转。

电机的转速和扭矩通过传动系统传递到车轮,使车辆加速、行驶或减速。

同时,车辆的制动能量可以通过电机的反转回收,为电池充电,提高能源利用效率。

二、高效电动汽车驱动系统的设计要点1、电机的选择与设计电机的类型主要有永磁同步电机、交流异步电机和开关磁阻电机等。

永磁同步电机具有高效率、高功率密度和良好的调速性能,是目前电动汽车中应用较为广泛的电机类型。

在电机设计中,需要考虑电机的电磁结构、绕组设计、磁路优化等因素,以提高电机的效率和性能。

2、控制器的优化控制器的性能直接影响电机的运行效率和控制精度。

先进的控制算法,如矢量控制、直接转矩控制等,可以实现对电机的精确控制,提高系统效率。

同时,控制器的硬件设计也需要考虑散热、可靠性和电磁兼容性等问题。

3、电池管理系统电池管理系统(BMS)负责监测电池的状态,包括电压、电流、温度、剩余电量等,并对电池进行均衡管理和保护。

优化的 BMS 可以提高电池的使用寿命和安全性,同时确保电池在不同工况下的性能稳定。

4、传动系统的匹配传动系统的传动比需要根据电机的特性和车辆的行驶需求进行合理匹配,以实现最佳的动力性能和经济性。

新能源汽车电动机控制系统的设计与优化

新能源汽车电动机控制系统的设计与优化

新能源汽车电动机控制系统的设计与优化新能源汽车的快速发展,为我国汽车产业带来了新的发展机遇和挑战。

作为新一代的绿色交通工具,新能源汽车以其零排放、低噪音、高效率等优点逐渐受到消费者的青睐。

其中,电动机作为新能源汽车的动力源,其控制系统的设计与优化显得尤为重要。

一、电动机控制系统的设计原理电动机控制系统包括电动机、控制器、传感器等组成部分。

其中,电动机是整个系统的核心,控制器则是控制电动机运行的大脑。

传感器则起到了监测电动机运行状态、实时传输数据等重要作用。

电动机控制系统的设计原理主要包括电动机类型选择、控制器选型、传感器应用等。

1. 电动机类型选择常见的电动机类型主要包括永磁同步电机、异步电机、直流电机等。

永磁同步电机由于结构简单、效率高、启动力矩大等优点,被广泛应用于新能源汽车中。

通过合理选择电动机类型,可以实现更高效的能量转换和更稳定的控制性能。

2. 控制器选型控制器是电动机控制系统的重要组成部分,影响着整个系统的性能和稳定性。

目前市场上常见的控制器主要有磁场定向控制器、电压源逆变控制器等。

不同类型的控制器具有不同的优缺点,根据电动机的要求和实际应用场景选择合适的控制器对于系统性能的提升至关重要。

3. 传感器应用传感器的应用可以实现对电动机运行状态的实时监测和数据传输,为系统控制提供重要的参数支持。

通过应用传感器,可以实现对电动机转速、温度、电流等关键参数的监测和控制,提高系统的稳定性和可靠性。

二、电动机控制系统的优化策略电动机控制系统的优化是为了提高系统的性能、降低能耗、延长电动机使用寿命等目的而进行的。

为了实现这些目标,可以采取一系列优化策略,包括控制策略优化、结构优化、参数调节等。

1. 控制策略优化控制策略是电动机控制系统关键的部分,直接影响着系统性能和效果。

常见的控制策略包括电流控制、速度控制、位置控制等。

在实际应用中,可以根据不同的工况和需求选择合适的控制策略,并通过优化算法提高系统的控制精度和稳定性。

电动汽车电机选择与设计.

电动汽车电机选择与设计.

电动汽车电机选择与设计3.1、概述全世界的电动汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在电动汽车领域占有了一个非常重要的位置,由于传统电动汽车的技术成熟,人们对电动汽车的性能要求已经达到一个比较高的程度。

在对于电动汽车普及方面上,这是一个很大的障碍。

但是,新能源电动汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。

早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。

该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。

相对与传动电动汽车、单电机集中驱动的电动汽车,轮毂电机式电动汽车具有以下优点:(1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统电动汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。

(2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。

(3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。

若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。

(4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。

3.2、电机的种类与性能分析3.2.1、直流电动机有刷直流电动机的主要优点是控制简单、技术成熟。

具有交流电机不可比拟的优良控制特性。

在早期开发的电动汽车上多采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。

但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动汽车电动汽车电机选择与设计学院:机械与车辆学院指导教师::::摘要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。

关键词:电动汽车;驱动系统;轮毂电机概述全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。

在对于电动汽车普及方面上,这是一个很大的障碍。

但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。

早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。

该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。

相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:(1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。

(2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。

(3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。

若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。

(4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。

1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:参数数值 参数 数值最大总质量(kg )1400 轮胎半径(m ) 0.33 迎风面积(㎡)2.50 传动效率 0.90 风阻系数0.33 最高车速(km/h ) 1001.2 动力性指标如下:(1)最大车速max 100a u km ≥;(2)在车速a u =60km/h 时爬坡度i ≥5%(3度);(3)在车速a u =40km/h 时爬坡度i ≥12% (6.8度);(4)原地起步至100km/h 的加速时间35t s ≤;(5)最大爬坡度i ≥12%(16度);(5)0到75km/h 加速时间25t s ≤;(6)具备2~3倍过载能力[7]。

2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。

2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率N P 应满足:2max max 360021.15a D a N T u C A u P m g f η⎛⎫⋅⋅=⋅⋅⋅+ ⎪⎝⎭ (1)20(1/19400)a f f u =+ (2)式中:N P ——电机输出功率,kw ;T η——传动系效率,取0.9;m ——最大车重,取1400kg;0f ——滚动摩擦系数,取0.014;D C ——风阻系数,取0.33;A ——迎风面积,取2.50㎡;max a u ——最高车速,取100km/h 。

根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。

2.2 根据要求车速的爬坡度计算()sin 3600a f w N T u F F G P αη⋅++=(3)根据公式(4),其中在车速a u =60km/h 时爬坡度i ≥5%可得: ()20.014160/1940014009.8cos 3227.4f F =⨯+⨯⨯⨯=(N ) 20.33 2.560140.421.15w F ⨯⨯==(N )()140.4277.414009.80.0526020.9536000.9N P ++⨯⨯⨯==⨯(kw )根据公式(4),其中在车速a u =40km/h 时爬坡度i ≥12%可得: ()20.014140/1940014009.8cos 12203.38f F =⨯+⨯⨯⨯=(N )20.33 2.54062.4121.15w F ⨯⨯==(N )()62.41203.3814009.80.1184023.30736000.9N P ++⨯⨯⨯==⨯(kw )根据(4)式,可以计算出满足车速为60km/h 时,爬坡度为5%,电机输出额定功率为20.95kw ,满足车速为40km/h 时,爬坡度为12%,电机输出额定功率为23.307kw[3][5]。

2.3 根据最大爬坡度确定电机的额定功率根据公式(4),其中在车速a u =20km/h 时爬坡度i ≥28%(16度)可得:()20.014120/1940014009.8cos 16188.395f F =⨯+⨯⨯⨯=(N ) 20.33 2.52015.60221.15w F ⨯⨯==(N )()188.39515.60214009.80.2762024.63436000.9N P ++⨯⨯⨯==⨯(kw )根据(4)式,可以计算出满足车速为20km/h 时,爬坡度为28%,电机输出额定功率为24.634kw ,在这里假定额定功率为25kw 。

2.4 根据额定功率来确定电机的最大功率电机的最大功率可以由下式计算得出:max N P P λ=⨯ (4)式中:max P ——电机最大功率,kw ; λ——电机过载系数,一般取2~3。

根据式(3),可计算得max P =50~75kw ,所以初步假设电机的峰值功率为75kw 。

由于选用的是轮毂电机,所以每个电机设定为:峰值功率20kw ,额定功率为10kw[5]。

2.5 电机额定转速和转速的选择对电机本身而言,额定功率相同的电机额定转速越高,体积越小,质量越轻,造价越低;而且电机功率恒定时,随着电机额定转速和最高转速的增加,电机的最大转矩会减小,从而避免造成转矩过太的不利影响。

因此.选择高速电机是比较有利的。

但当电机转速超过一定程度后,其转矩降低幅度明显减小.因此,电机最高转速过高时,将导致电机及减速装置的制造成本增加。

电机转速的选择既要考虑负载的要求.又要考虑电机与传动机构的经济性等固素。

综合上述各种因素,由于选用轮毂电机,根据车用驱动电机的特点井参考其他电动车辆上采用的电机,选定电机的额定转速为2000r/min ,最高转速为3000r/min 。

max max max 1955095509550N N N N NN T n T n P T n P P λ⨯⨯⨯==⨯=⨯(5)式中:max T ——电机的最大转矩,N ·m ;NT ——电机的额定转矩,N ·m ; N n ——电机的额定转速,r/min 。

通过式(5),可算出电机的最大转矩为:max T =143.25N ·m ,额定转矩为:N T =47.75N ·m[1]。

3.传动系最大传动比的设计(1)0i 的选择首先应满足车辆最高行驶速度要求, 由最高车速max a u 与电机最高转速max n 确定传动比的上限。

根据公式:max 0max 0.377a n ri u ≤ (6)得:0i ≤3.732(2)由电机的最高转速对应的最大输出转矩max T 和最高车速对应的行驶阻力max F 确定速比的下限值:max 0max T F ri T η⋅≥⋅ (7)由前面的计算可得:max f w F F F =+=681.16(N )最大输出转矩max T =143.25(N ·m )max 0max 1.743T F r i T η⋅≥=⋅(3)由电机最大输出转矩和最大爬坡度对应行驶阻力确定0i 。

根据公式:max 0max T F ri T αη⋅≥⋅ (8)max (sin )F G fcos ααα=+=203.997(N )最大输出转矩max T =143.25(N ·m )max 0max 0.522T F r i T αη⋅≥=⋅由以上的计算我们选定一个合适的减速比0i =3.4[1]。

4.电机的种类与性能分析4.1 直流电动机有刷直流电动机的主要优点是控制简单、技术成熟。

具有交流电机不可比拟的优良控制特性。

在早期开发的电动汽车上多采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。

但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。

另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。

鉴于直流电动机存在以上缺陷,在新研制的电动汽车上已基本不采用直流电动机4.2交流三相感应电动机交流三相感应电动机的基本性能交流三相感应电动机是应用得最广泛的电动机。

其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件。

结构简单,运行可靠,经久耐用。

交流感应电动机的功率覆盖面很宽广,转速达到12000~15000r/min。

可采用空气冷却或液体冷却方式,冷却自由度高。

对环境的适应性好,并能够实现再生反馈制动。

与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。

4.3 永磁无刷直流电动机永磁无刷直流电动机的基本性能永磁无刷直流电动机是一种高性能的电动机。

它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。

加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。

此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。

永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景。

永磁无刷直流电动机的不足永磁无刷直流电动机受到永磁材料工艺的影响和限制,使得永磁无刷直流电动机的功率范围较小,最大功率仅几十千瓦。

永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降或发生退磁现象,将降低永磁电动机的性能,严重时还会损坏电动机,在使用中必须严格控制,使其不发生过载。

永磁无刷直流电动机在恒功率模式下,操纵复杂,需要一套复杂的控制系统,从而使得永磁无刷直流电动机的驱动系统造价很高4.4 开关磁阻电动机开关磁阻电动机的基本性能开关磁阻电动机是一种新型电动机,该系统具有很多明显的特点:它的结构比其它任何一种电动机都要简单,在电动机的转子上没有滑环、绕组和永磁体等,只是在定子上有简单的集中绕组,绕组的端部较短,没有相间跨接线,维护修理容易。

相关文档
最新文档