常微分方程练习题及答案(复习题)

合集下载

大学专业课考试复习资料--《常微分方程》试题库含答案

大学专业课考试复习资料--《常微分方程》试题库含答案

大学专业课考试复习资料--《常微分方程》试题库含答案一、填空题1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________ 答:12.若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是 _________________________ 答:)()1)((y Mx N y M φ=-∂∂-∂∂ 3._________________________________________ 称为齐次方程.答:形如)(xy g dx dy =的方程 4.如果),(y x f ___________________________________________ ,则),(y x f dx dy =存在唯一的解)(x y ϕ=,定义于区间h x x ≤-0 上,连续且满足初始条件)(00x y ϕ= ,其中=h _______________________ .答:在R 上连续且关于y 满足利普希兹条件 ),min(mb a h = 5.对于任意的),(1y x ,),(2y x R ∈ (R 为某一矩形区域),若存在常数)0(>N N 使 ______________________ ,则称),(y x f 在R 上关于y 满足利普希兹条件.答: 2121),(),(y y N y x f y x f -≤-6.方程22y x dxdy +=定义在矩形区域R :22,22≤≤-≤≤-y x 上 ,则经过点 )0,0(的解的存在区间是 ___________________ 答:4141≤≤-x 7.若),.....2,1)((n i t x i =是齐次线性方程的n 个解,)(t w 为其伏朗斯基行列式,则)(t w 满足一阶线性方程 ___________________________________答:0)(1'=+w t a w8.若),.....2,1)((n i t x i =为齐次线性方程的一个基本解组,)(t x 为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_____________________答:x x c x n i i i +=∑=19.若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有≤-)()(x x n ϕϕ __________________ 答:1)!1(++n nh n ML 10.______________________称为黎卡提方程,若它有一个特解)(x y ,则经过变换 ___________________ ,可化为伯努利方程. 答:形如)()()(2x r y x q y x p dxdy ++=的方程 y z y += 11.一个不可延展解的存在区间一定是 区间.答:开12.方程1d d +=y x y 满足解的存在唯一性定理条件的区域是 . 答:}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面)13.方程y x xy sin d d 2=的所有常数解是 . 答: ,2,1,0,±±==k k y π14.函数组)(,),(),(21x x x n ϕϕϕ 在区间I 上线性无关的 条件是它们的朗斯基行列式在区间I 上不恒等于零.答:充分15.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零)16.方程02=+'-''y y y 的基本解组是 .答:x x x e ,e17.若)(x y ϕ=在),(∞+-∞上连续,则方程y x x y )(d d ϕ=的任一非零解 与x 轴相交. 答:不能18.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上 与x 轴相切.答:不能19.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们 共同零点.答:没有20.方程21d d y xy -=的常数解是 .答:1±=y21.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.答:必要22.方程22d d y x x y+=满足解的存在唯一性定理条件的区域是 . 答: xoy 平面23.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是 .答:1,1±=±=x y24.方程04=+''y y 的基本解组是 .答:x x 2cos ,2sin25.一阶微分方程的通解的图像是 维空间上的一族曲线. 答:2二、单项选择题1.n 阶线性齐次微分方程基本解组中解的个数恰好是( A )个.(A )n (B )n -1 (C )n +1 (D )n +22.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f x y=的任一解的存在区间(D ).(A )必为),(∞+-∞ (B )必为),0(∞+(C )必为)0,(-∞ (D )将因解而定3.方程y x x y+=-31d d 满足初值问题解存在且唯一定理条件的区域是( D ).(A )上半平面 (B )xoy 平面(C )下半平面 (D )除y 轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差( C ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解(C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解5. 方程21d d y x y-=过点)1,2(π共有( B )个解.(A )一 (B )无数 (C )两 (D )三6. 方程2d d +-=y x xy ( B )奇解. (A )有三个 (B )无 (C )有一个 (D ) 有两个7.n 阶线性齐次方程的所有解构成一个( A )线性空间.(A )n 维 (B )1+n 维 (C )1-n 维 (D )2+n 维8.方程323d d y xy =过点( A ). (A )有无数个解 (B )只有三个解 (C )只有解0=y (D )只有两个解 9. ),(y x f y '连续是保证),(y x f 对y 满足李普希兹条件的( B )条件.(A )充分 (B )充分必要 (C )必要 (D )必要非充分10.二阶线性非齐次微分方程的所有解( C ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间11.方程y x y =d d 的奇解是( D ). (A )x y = (B )1=y (C )1-=y (D )0=y12.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( C ).(A ))()(21x x ϕϕ- (B ))()(21x x ϕϕ+(C ))())()((121x x x C ϕϕϕ+- (D ))()(21x x C ϕϕ+13.),(y x f y '连续是方程),(d d y x f xy =初值解唯一的( D )条件. (A )必要 (B )必要非充分 (C )充分必要 (D )充分14. 方程1d d +=y x y ( C )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个15.方程323d d y xy =过点(0, 0)有( A ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 三、求下列方程的通解或通积分1.3yx y dx dy += 解:23y y x y y x dy dx +=+= ,则 )(121⎰+⎰⎰=-c dy e y e x dy y dy y 所以 cy y x +=23另外 0=y 也是方程的解2.求方程2y x dxdy +=经过)0,0(的第三次近似解 解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ []52021220121)()(x x dx x x x x +=+=⎰ϕϕ []81152022316014400120121)()(x x x x dx x x x x+++=+=⎰ϕϕ 3.讨论方程2y dx dy = ,1)1(=y 的解的存在区间 解:dx y dy =2两边积分 c x y+=-1 所以 方程的通解为 cx y +-=1 故 过1)1(=y 的解为 21--=x y 通过点 )1,1(的解向左可以延拓到∞-,但向右只能延拓到 2,所以解的存在区间为 )2,(-∞4. 求方程01)(22=-+y dxdy 的奇解 解: 利用p 判别曲线得⎩⎨⎧==-+020122p y p 消去p 得 12=y 即 1±=y 所以方程的通解为 )sin(c x y += , 所以 1±=y 是方程的奇解5.0)1()1(cos 2=-++dy yx y dx y x 解: y M ∂∂=2--y , xN ∂∂=2--y , y M ∂∂=x N ∂∂ , 所以方程是恰当方程.⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos yx y y v y x x u 得 )(sin y y x x u ϕ++= )('2y xy yu ϕ+-=∂∂- 所以y y ln )(=ϕ 故原方程的解为 c y yx x =++ln sin 6. x x x y y y 22'sin cos sin 2-=-+解: x x x y y y 22'sin cos sin 2-++-= 故方程为黎卡提方程.它的一个特解为 x y sin = ,令x z y sin += , 则方程可化为2z dx dz -= , c x z +=1 即 c x x y +=-1sin , 故 cx x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy解: 两边同除以2y 得037322=-+-xdy dy y ydx xdx 0732=--yd xy d dx 所以 c y xy x =--732 , 另外 0=y 也是方程的解 8.21d d x xy x y += 解 当0≠y 时,分离变量得x x x y y d 1d 2+= 等式两端积分得C x y ln )1ln(21ln 2++=即通解为21x C y +=9. x y xy 2e 3d d =+ 解 齐次方程的通解为x C y 3e -= 令非齐次方程的特解为x x C y 3e )(-=代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为x C y 3e -=+x 2e 51 10. 5d d xy y xy += 解 方程两端同乘以5-y ,得x y xy y +=--45d d 令 z y =-4,则xz x y y d d d d 45=--,代入上式,得 x z x z =--d d 41 通解为41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x 11.0)d (d 222=-+y y x x xy解 因为xN x y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰020d d 2 即 C y y x =-3231 12. y y xy ln d d = 解:当0≠y ,1≠y 时,分离变量取不定积分,得C x yy y +=⎰⎰d ln d 通积分为 x C y e ln = 13.03)(22=+'+''x y y y解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-= 14.xy x y x y +-=2)(1d d 解:令xu y =,则xu x u x y d d d d +=,代入原方程,得 21d d u x u x -= 分离变量,取不定积分,得C xx u uln d 1d 2+=-⎰⎰ (0≠C ) 通积分为: Cx xy ln arcsin= 15. xy x y x y tan d d += 解 令u xy =,则x u x u x y d d d d +=,代入原方程,得 u u x u x u tan d d +=+,u xu x tan d d = 当0tan ≠u 时,分离变量,再积分,得C x x u u ln d tan d +=⎰⎰ C x u ln ln sin ln +=即通积分为: Cx x y =sin16. 1d d +=xy x y 解:齐次方程的通解为Cx y = 令非齐次方程的特解为x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为Cx y =+x x ln17. 0d d )e (2=+-y x x y x y解 积分因子为21)(x x =μ原方程的通积分为1012d d )(e C y x x y y x x=+-⎰⎰即 1e ,e C C C x yx +==+18.0)(2='+''y y y解:原方程为恰当导数方程,可改写为0)(=''y y即1C y y ='分离变量得x C y y d d 1=积分得通积分21221C x C y +=19.1)ln (='-'y x y解 令p y =',则原方程的参数形式为⎪⎩⎪⎨⎧='+=py p p x ln 1由基本关系式 y x y'=d d ,有p p pp x y y )d 11(d d 2+-⋅='= p p)d 11(-= 积分得 C p p y +-=ln得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 120.022=+'+''x y y y解 原方程可化为0)(2='+'x y y于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-= 21. 0)d (d )(3223=+++y y y x x xy x 解:由于xN xy y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为103023d d )(C y y x xy x yx=++⎰⎰ 即 C y y x x =++42242四、计算题1.求方程x y y e 21=-''的通解. 解 对应的齐次方程的特征方程为:012=-λ特征根为: 1,121-==λλ故齐次方程的通解为: x x C C y -+=e e 21因为1=α是单特征根.所以,设非齐次方程的特解为x Ax x y e )(1=代入原方程,有 x x x x Ax Ax A e 21e e e 2=-+, 可解出 41=A . 故原方程的通解为 x x x x C C y e 41e e 21++=- 2.求下列方程组的通解 ⎪⎪⎩⎪⎪⎨⎧+=--=y x ty y x t x 43d d 2d d . 解 方程组的特征方程为04321=----=-λλλE A即 0232=+-λλ特征根为 11=λ,22=λ11=λ对应的解为t b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡ 其中11,b a 是11=λ对应的特征向量的分量,满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得1,111-==b a .同样可算出22=λ对应的特征向量分量为 3,212-==b a .所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t t t t C C y x 2221e 32e e e 3.求方程x y y 5sin 5='-''的通解.解:方程的特征根为01=λ,52=λ齐次方程的通解为 x C C y 521e +=因为i i 5±=±βα不是特征根。

《常微分方程》答案_习题

《常微分方程》答案_习题

习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+ 习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。

常微分方程习题及答案.[1]

常微分方程习题及答案.[1]

第十二章常微分方程(A)、是非题任意微分方程都有通解。

()6. y sin y是一阶线性微分方程。

()7. ■ y x y xy不是一阶线性微分方程。

()8. ■ y 2y 5y 0的特征方程为r2 2r 5 0。

( )9. dy 1 x y2 xy2是可分离变量的微分方程。

()dx填空题1. .在横线上填上方程的名称①y 3 In xdx xdy 0 是。

②xv 2 xdx y x2y dy 0是。

③X鱼ylnY是。

dx x④xy y x2 si nx 是。

⑤y y 2y 0 是。

2. .y sin xy x cosx的通解中应含个独立常数。

3. .y e 2x的通解是。

4. .y sin 2x cos x的通解是。

5. .xy 2x2y 2 x3y x4 1 是阶微分方程。

6. ■微分方程y y y 60是一阶微分方程。

2. 微分方程的通解中包含了它所有的解。

3. 函数y 3sinx 4cosx是微分方程y 0的解。

()4. 函数y x2 e x是微分方程y 2y 0的解。

()5. 微分方程xy In x 0的通解是y 1一InxC (C为任意常数)。

()A.通解B .特解C .是方程所有的解D .上述都不对D . y 3 e xa cosx7. 8. 1丄所满足的微分方程是x空的通解为 ________x9.dxdy0的通解为 x10.dy dx 空 x 1 2,其对应的齐次方程的通解为 x 111. 方程xy 1 x 2 0的通解为 12. 3阶微分方程 x 3 *的通解为、选择题1.微分方程 xyy0的阶数是()2 .微分方程 x 5 6 7 8 1的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dcosx其中C 1, C 2为任意常数。

A. y 2y 0y xy 3y 2 0C. 5y 4x 0y 2y 1A. y 1 B . y x C . y sin x D . y e x12 .过点1,3且切线斜率为2x 的曲线方程y y x 应满足的关系是()A . y 2xB . y2x C . y2x , y 13 D .y2x , y 1 313 .卜列微分方程中, 可分离变量的是 () 。

常微分方程阶段(2)复习题

常微分方程阶段(2)复习题

《常微分方程》第二阶段试题一. 单选题1. 函数 )cos(C x y +=(其中C 为任意常数)所满足的微分方程是( ) )sin()(C x y A +-='; 1)(22=+'y y B ;)sin()(C x y C +='; 22)(22=+'y y D 。

2.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式为零 (C )12()=()x C x ϕϕ(常数) (D )线性相关 3.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=不是基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式不为零 (C )12()()x C x ϕϕ≠(常数) ( )线性相关 4.线性齐次微分方程组()dx A t x dt=的一个基本解组的个数不能多于( ) (A ) -1n (B ) n (C )+1n (D )+2n 5.n 阶线性齐次微分方程线性无关解的个数不能多于( )个.(A ) n (B )-1n (C )+1n (D )+2n6. 设常系数线性齐次方程特征方程根i r r ±=-=4,32,1,1,则此方程通解为( ) (A )x C x C e x C C y x sin cos )(4321+++=-; (B )x C x C e C y x sin cos 321++=-;(C )x x C x C e C y x sin cos 321++=-; (D )x C x x C e C y x sin cos )(321+++=-7.方程xxe y y 2'2"=-的特解具有形式( )。

(A ) x Axe y 2*=; (B ) x e B Ax y 2)(*+=;(C ) x e B Ax x y 2)(*+= ; (D )x e B Ax x y 22)(*+=。

常微分方程期末考试练习题及答案

常微分方程期末考试练习题及答案

一,常微分方程的基本概念常微分方程:含一个自变量x,未知数y及若干阶导数的方程式。

一般形式为:F(x,y,y,.....y(n))=0 (n≠0).1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。

如:f(x)(3)+3f(x)+x=f(x)为3阶方程。

2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。

3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。

如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。

4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。

5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。

(方程线性与否与自变量无关)。

如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。

注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。

余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。

另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。

b.教材28页第八题不妨做做。

二.可分离变量的方程A.变量分离方程1.定义:形如dxdy=f (x)φ(y)的方程,称为分离变量方程。

这里f (x ),φ(x )分别是x ,y 的连续函数。

2.解法:分离变量法⎰⎰+=c dx x f y dy)()(ϕ. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。

需视情况补上φ(y )=0的特解。

(有时候特解也可以和通解统一于一式中)b.不需考虑因自变量引起的分母为零的情况。

例1.0)4(2=-+dy x x ydx解:由题意分离变量得:042=+-ydy x dx即:0)141(41=+--ydydx x x 积分之,得:c y x x =+--ln )ln 4(ln 41故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。

常微分方程习题与答案

常微分方程习题与答案

第十二章常微分方程(A)、是非题1.任意微分方程都有通解。

()2 •微分方程的通解中包含了它所有的解。

()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。

()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。

()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。

()26. y"=siny是一阶线性微分方程。

()7. / = x3y3 xy不是一阶线性微分方程。

()8 . /-2/ 5^0的特征方程为『-2—5=0。

()9. dy = 1 x y2 xy2是可分离变量的微分方程。

()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。

②xy2 x dx y _ x2 y dy = 0 是__________________________ 。

③x-d^ = y l n 丫是。

dx x④xy := y x2 sin x 是__________________ 。

⑤y y -2y =0是________________________ 。

2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。

3. _____________________________________ y “ = e Qx的通解是。

4. ______________________________________ y = sin 2x - cos x 的通解是。

5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。

6•微分方程y y - y Q =0是________________ 阶微分方程。

i7. y-丄所满足的微分方程是。

福师《常微分方程》期末复习题

福师《常微分方程》期末复习题

(单选题)1.过点(1,3)且切线斜率为 2x 的曲线方程 y=y(x) 应满足的关系是()。

A: y'=2xB: y''=2xC: y'=2x,y(1)=3D: y''=2x,y(1)=3正确答案: C(单选题)2.在下列函数中,能够是微分方程y''+y=0的解的函数是()。

A: y=1B: y=xC: y=sinxD: y=ex正确答案: C(单选题)3.微分方程y'-y=0满足初始条件 y(0)=1的特解为()。

A: exB: ex-1C: ex+1D: 2-ex正确答案: A(单选题)4.下列微分方程中, ( ) 是二阶常系数齐次线性微分方程。

A: y''-2y=0B: y''-xy'+3y=0C: 5y''-4x=0D: y''-2y'+1=0正确答案: A(单选题)5.下列函数中,哪个是微分方程dy-2xdx=0的解()。

A: y = 2xB: y = x2C: y = -2xD: y = -x正确答案: B(单选题)6.微分方程 y'''-x2y''-x5=1 的通解中应含的独立常数的个数为()。

A: 3B: 5C: 4D: 2正确答案: A(单选题)7.y''+y'-2y=0是()阶常系数齐次线性微分方程。

A: 一B: 二C: 三D: 四正确答案: B(单选题)8.微分方程xyy''+x(y')^3-y^4-y'=0的阶数是()。

A: 3B: 4C: 5D: 2正确答案: D(单选题)9.方程dy/dx=y^(1/2)+1()奇解.A: 有一个B: 有两个C: 无D: 有无数个正确答案: C(单选题)10.微分方程2ydy-dx=0的通解为()。

常微分方程练习题及答案

常微分方程练习题及答案

一、 填空题。

1. 方程23210d xx dt +=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 .3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 .9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程 的待定特解可取 的形式:12. 三阶常系数齐线性方程20y y y '''''-+=的特征根是二、 计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+.3. 求解方程222()0d x dxx dt dt+= 。

4.用比较系数法解方程. .5.求方程 sin y y x'=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dtdX=满足初始条件η=)0(x 的解.8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求 的通解10.若 试求方程组的解(),t ϕ 12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零);(ii) 和 没有共同的零点;(iii) 和 没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -=.答案一.填空题。

微分方程复习题(1)

微分方程复习题(1)

常微分方程复习题一、填空题1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:12.形如_ 的方程称为齐次方程。

答: )(xy g dx dy = 3.方程04=+''y y 的基本解组是 .答:cos 2,sin 2x x .1。

二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 .答:线性无关(或:它们的朗斯基行列式不等于零)2. 方程02=+'-''y y y 的基本解组是 .答:xx x e ,e3。

若()t ϕ和()t ψ都是()X A t X ''=的基解矩阵,则()t ϕ和()t ψ具有的关系是 。

4。

一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 .5。

方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。

有只含y 的积分因子的充要条件是 .6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。

7。

称为n 阶齐线性微分方程。

8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m Px 是m 次多项式)中,则方程有形如 的特解.9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解.10. 微分方程4210y y y ''''''+-=的一般解为 。

9。

微分方程4230xy y y ''''++=的阶数为 .10。

若()(0,1,2,,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的通解可表为 .11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2,,)i x t i n =是其对应的齐次线性方程的一个基本解组, 则非齐线性方程的所有解可表为 。

常微分方程题库(附答案)4.1线性微分方程的一般理论

常微分方程题库(附答案)4.1线性微分方程的一般理论

【单选题】n 阶齐次线性微分方程的基本解组中所含解的个数恰好是________个.A 、n -1;B 、n ;C 、n +1;D 、n +2.答案:B【单选题】下了判断正确的是_______________.A 、一阶线性非齐次微分方程组的任意两个解之差不是对应齐次微分方程组的解;B 、一阶线性非齐次微分方程组的任意两个解之差是对应齐次微分方程组的解;C 、一阶线性非齐次微分方程组的任意两个解之和还是该非齐次微分方程组的解;D 、一阶线性非齐次微分方程组的任意两个解之和是对应齐次微分方程组的解.答案:B【计算题】解微分方程'''1211,,11t t x x x t x t x e t t+-=-==--. 答案:常数变易法令12()()t x c t t c t e =+是原方程的解,并代入原方程得''12''12()()0()()1t t c t t c t e c t c t e t ⎧+=⎨+=-⎩, 解得''12()1,()t c t c t te -=-=,所以1122(),()(1)t c t t c c t t e c -=-+=-++ 因此原方程的通解为2121t x c t c e t =+-- 其中21,c c 是任意常数. 【计算题】解微分方程2'''2312ln 4636,,t t x tx x x t x t t-+===. 答案:常数变易法 令2312()()x c t t c t t =+是原方程的解,并代入原方程得'2'312'2'123()()0ln 2()3()36c t t c t t t tc t t c t t ⎧+=⎪⎨+=⎪⎩, 解得334411229()412ln ,()9ln 4c t t t t c c t t t t c ----=++=--+ 因此原方程的通解为23111273ln 4x c t c t t t t --=+++ 其中21,c c 是任意常数 . 【计算题】已知方程220d x x dt-=有基本解组 ,t t e e -,试求此方程适合初值条件'(0)1,(0)0x x ==及'(0)0,(0)1x x ==的基本解组.答案:由题意知通解为12t t x c e c e -=+ ,则'12t t x c e c e -=-,分别把初值条件代入得121111(),()2222t t t t x t e e x t e e --=+=-.因此方程的标准基本解组为 121111(),()2222t t t t x t e e x t e e --=+=-.【证明题】证明n 阶非齐次线性微分方程1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dtdt---++++= 存在且最多存在1n +个线性无关的解. 答案:设齐次线性微分方程的n 个线性无关的解为12,,,n x x x ,设满足某初值条件的非齐次线性微分方程的解为x ,则显然12,,,,n x x x x x x x +++为非齐次微分方程的+1n 个解。

常微分方程练习试卷及答案

常微分方程练习试卷及答案

常微分方程练习试卷及答案常微分方程练试卷一、填空题。

1.方程d2x/dt2+1=是二阶非线性微分方程。

2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。

3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。

4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。

xn(t)在[a,b]上线性无关的条件。

6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。

8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。

9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。

10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。

11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。

12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程练习题及答案(复习题)常微分方程练习试卷一、填空题。

1. 方程23210d xx dt +=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 .3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 .9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程的待定特解可取 的形式:12. 三阶常系数齐线性方程20y y y '''''-+=的特征根是二、计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+.3. 求解方程222()0d x dxx dt dt+= 。

4.用比较系数法解方程. .5.求方程sin y y x'=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设 3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX=的一个基解基解矩阵)(t Φ,求X A dtdX=满足初始条件η=)0(x 的解.8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求的通解试求方程组x Ax '=的解(),t ϕ12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt10.若三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零);(ii) 和 没有共同的零点;(iii) 和 没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -=.答案 一.填空题。

1. 二,非线性2.u xy=,11(()1)du dx u f u x=+ 3.无穷多 4.3,2,1αβγ=-==-5.必要6.3y7.1()()t t -'ΦΦ 8. 25 00t Att e e e ⎡⎤=⎢⎥⎣⎦9.10.11.2114A ⎡⎤=⎢⎥-⎣⎦32()480dy dyxy y dx dx-+=12. 1,二、计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.解: 设曲线方程为 , 切点为(x ,y ), 切点到点(1,0)的连线的斜率为 , 则由题意可得如下初值问题:. 分离变量, 积分并整理后可得 .代入初始条件可得 , 因此得所求曲线为 .2.求解方程13dy x y dx x y +-=-+.解:由10,30x y x y +-=⎧⎨-+=⎩求得1,2x y =-= 令1,2,x y ξη=-⎧⎨=+⎩则有.d d ηξηξξη+=-令z ηξ=,解得2(1)1z dz d z ξξ-=+,积分得21arctan ln(1)ln ||2z z C ξ-+=+,故原方程的解为222arctanln (1)(2)1y x y C x -=++-++.3. 求解方程222()0d x dxx dt dt+=解 令,直接计算可得,于是原方程化为 ,故有或,积分后得,即,所以 就是原方程的通解,这里为任意常数。

4.用比较系数法解方程. .解:特征方程为 , 特征根为 .对应齐方程的通解为 .设原方程的特解有形如代如原方程可得利用对应系数相等可得 , 故 .原方程的通解可以表示为( 是任意常数).5.求方程sin y y x'=+的通解.解:先解y y '=得通解为x y ce =, 令()x y c x e =为原方程的解,代入得()()()sin x x x c x e c x e c x e x '+=+, 即有()sin x c x e x -'=,积分得1()(sin cos )2x c x e x x c -=-++ , 所以1(sin cos )2x y ce x x =-+ 为原方程的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.解:由于22(,)cos sin ,(,)(1)M x y x x xy N x y y x =-=-,因为2M Nxy y x∂∂=-=∂∂所以原方程为恰当方程.把原方程分项组合得22cos sin ()0x xdx xy dx yx dy ydy -++=,或写成2222111(sin )()()0222d x d x y d y ++=, 故原方程的通解为2222sin x x y y C -+=.7.设3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dtdX=满足初始条件η=)0(x 的解.解:特征方程为31det()(2)(5)0,24A E λλλλλ---==++=--求得特征值122,5λλ=-=-,对应122,5λλ=-=-的特征向量分别为1211,,(,0).12V V αβαβ⎡⎤⎡⎤==≠⎢⎥⎢⎥-⎣⎦⎣⎦可得一个基解矩阵2525().2tt tt e e t ee ----⎡⎤Φ=⎢⎥-⎣⎦ ,又因为1211(0)113-⎡⎤Φ=⎢⎥-⎣⎦,于是,所求的解为=ΦΦ=-ηϕ)0()()(1t t 2525211111132tt t t e e ee ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 25252134t t t t e e e e ----⎡⎤+=⎢⎥-⎣⎦8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.解: 令0()0x ϕ=,于是221001()[213()],xx y x x dx x x ϕϕ=+--=-⎰223452011133()[213()],1025xx y x x dx x x x x x ϕϕ=+--=-+-+-⎰ 9.求的通解解:方程可化为3284dy y dx x dy y dx ⎛⎫+ ⎪⎝⎭=,令dyp dx =则有3284p y x yp +=(*),(*)两边对y 求导得322322(4)(8)4dpy p y p y p y p dy -+-=,即32(4)(2)0dp p y yp dy --=,由20dp y p dy -=得12p cy =,即2()p y c =.将y 代入(*)得2224c px c =+, 即方程的 含参数形式的通解为:22224()c p x c p y c ⎧=+⎪⎪⎨⎪=⎪⎩,p 为参数;又由3240p y -=得123(4)p y =代入(*)得3427y x=也是方程的解 .试求方程组x Ax '=的解(),t ϕ12(0),ηϕηη⎡⎤==⎢⎥⎣⎦ 并求expAt10.若解:特征方程221()69014p λλλλλ--==-+=-,解得1,23λ=,此时 k=1,12n =。

12v ηηη⎡⎤==⎢⎥⎣⎦,111123322120()()(3)()!it i t i t t t e A E e t i ηηηηϕηηηη=⎡⎤+-+⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦∑由公式expAt=10()!in tii te A E i λλ-=-∑得32()480dy dyxy y dx dx-+=2114A ⎡⎤=⎢⎥-⎣⎦[]33310111exp (3)01111t t t t t At e E t A E e t e t t ⎧-⎫-⎡⎤⎡⎤⎡⎤=+-=+=⎨⎬⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎩⎭三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.证:()t Φ是基解矩阵,故1()t -Φ存在,令1()()()X t t t -=Φψ , 则()X t 可微且det ()0X t ≠,易知()()()t t X t ψ=Φ.所以()()()()()t t X t t X t '''ψ=Φ+Φ()()()()()A t t X t t X t '=Φ+Φ()()()()A t t t X t '=ψ+Φ 而()()()t A t t 'ψ=ψ,所以()()0t X t 'Φ=,()0,X t '=()X t C =(常数矩阵),故()()t t C ψ=Φ .2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.证明:由题设,有⎰++≡xx d y x 0,])([)(20ξξξψξψ,)(00y x =ϕ⎰∈++≡-xx n n x x d y x 0],[,,])([)(0120βαξξξϕξϕ,),2,1(Λ=n .下面只就区间β≤≤x x 0上讨论,对于0x x ≤≤α的讨论完全一样。

相关文档
最新文档